Show simple item record

dc.contributor.authorCynthia Jayne Amol, Everlyn Asiko Chimoto, Rose Delilah Gesicho, Antony M Gitau, Naome A Etori, Caringtone Kinyanjui, Steven Ndung'u, Lawrence Moruye, Samson Otieno Ooko, Kavengi Kitonga, Brian Muhia, Catherine Gitau, Antony Ndolo, Lilian DA Wanzare, Albert Njoroge Kahira, Ronald Tombe
dc.date.accessioned2024-11-11T16:00:18Z
dc.date.available2024-11-11T16:00:18Z
dc.date.issued2024-10-13
dc.identifier.urihttps://repository.maseno.ac.ke/handle/123456789/6211
dc.description.abstractKenya, known for its linguistic diversity, faces unique challenges and promising opportunities in advancing Natural Language Processing (NLP) technologies, particularly for its underrepresented indigenous languages. This survey provides a detailed assessment of the current state of NLP in Kenya, emphasizing ongoing efforts in dataset creation, machine translation, sentiment analysis, and speech recognition for local dialects such as Kiswahili, Dholuo, Kikuyu, and Luhya. Despite these advancements, the development of NLP in Kenya remains constrained by limited resources and tools, resulting in the underrepresentation of most indigenous languages in digital spaces. This paper uncovers significant gaps by critically evaluating the available datasets and existing NLP models, most notably the need for large-scale language models and the insufficient digital representation of Indigenous languages. We also analyze key NLP applications: machine translation, information retrieval, and sentiment analysis-examining how they are tailored to address local linguistic needs. Furthermore, the paper explores the governance, policies, and regulations shaping the future of AI and NLP in Kenya and proposes a strategic roadmap to guide future research and development efforts. Our goal is to provide a foundation for accelerating the growth of NLP technologies that meet Kenya's diverse linguistic demands.en_US
dc.publisherarXiv preprint arXiven_US
dc.subjectNLP, low-resource languages, Kenya, Kenyan languages, Kiswahili, datasets, machine translation, sentiment analysis, speech recognition, AI governance.en_US
dc.titleState of NLP in Kenya: A Surveyen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record