Show simple item record

dc.contributor.authorOdero Adhiambo Beatrice, J. O. Agure,F. O. Nyamwala
dc.date.accessioned2022-01-30T09:39:57Z
dc.date.available2022-01-30T09:39:57Z
dc.date.issued2019
dc.identifier.issnVol. 8, 2019, no. 1, 11 - 16
dc.identifier.urihttps://repository.maseno.ac.ke/handle/123456789/4776
dc.descriptionhttps://doi.org/10.12988/pms.2019.9810en_US
dc.description.abstractLet H be an infinite dimensional complex Hilbert space and B(H) the algebra of all bounded linear operators on H. For two bounded operators A, B ∈ B(H), the map δAB : B(H) → B(H) is a generalized inner derivation operator induced by A and B defined by δAB(X) = AX − XB (1) In this paper we show that the norm of a generalized inner derivation operator is given by k(δAB/B(B(H)))k = kAk+kBk for all A, B ∈ B(H). Mathematics Subject Classification: Primary 47A30, Secondary 47L25en_US
dc.publisherHIKARI Ltden_US
dc.subjectGeneralized derivation, Norm, maximal numerical range and finite rank operatorsen_US
dc.titleOn the Norm of a Generalized Derivationen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record