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Abstract

The numerical range of an operator on a Hilbert space has been extensively

researched on. The concept of numerical range of an operator goes back

as early as 1918 when Toeplitz defined it as the field of values of a matrix

for bounded linear operators on a Hilbert space. Major results like convex-

ity, that is the Toeplitz-Hausdorff theorem, the relationship of the spectrum

and the numerical range, the essential spectra and the essential numerical

range, have given a lot of insights. Most of these results have been on Hilbert

spaces. As for Banach spaces there is still work to be done. There is scanty

literature on the properties of the essential spectra and the essential numeri-

cal ranges on Banach spaces. The objectives of this study were to determine

the properties of the essential spectrum and the properties of the essential

numerical range, and to investigate the relationship between the essential

spectrum and the essential numerical range for operators on Banach spaces.

To study the properties of the essential spectra, we defined various parts of

the spectra and using known theorems, we established the duality properties

of these parts. For the essential numerical range, we applied the approach

of Barraa and Müller which considers a measure of noncompactness instead

of the usual essential norm on the Calkin algebra. We finally extended the

existing relations between the spectra and the numerical range to the setting

of the essential spectrum and essential numerical range. We hope that the

results of this study will be significant to both Applied Mathematicians and

theoretical physicists for further research.
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CHAPTER 1

INTRODUCTION

1.1 Background information

The concept of the numerical range of an operator on a Hilbert space H was

presented by O. Toeplitz [11] in 1918. The Toeplitz-Hausdorff Theorem es-

tablishes the convexity of the numerical range for any operator on a Hilbert

space. The concept of the numerical range on a Banach space X was ex-

tended by Bauer and Lumer [15] who showed that the numerical range im-

plemented by an operator on a Banach space is not necessarily convex. There

were certain properties established by Toeplitz on the numerical range in the

Hilbert space, which were also true for the numerical range in the Banach

space. For example the spectrum of an operator is contained in the closure

of its numerical range. This property makes the numerical range to serve as

a tool used to localise the spectrum [11]. In the last fifty years, several sub-

stantial attempts have been made to relate some of the important features

of the spectral theory of normal operators from the realm of Hilbert spaces

to the more general setting of Banach spaces. Probably the most prominent

and ambitious step in the early development of abstract spectral theory was

the systematic investigation of spectral operators on Banach spaces that was

initiated by Dunford [18]. For a comprehensive treatment of these opera-

tors, we refer the reader to the monographs of Dunford and Schwartz [19].

Moreover, a wide field of applications in analysis shows that the geometry

of Banach spaces can be quite different from that of Hilbert spaces. For ex-
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ample, the unit ball of a Banach space may have corners, and closed convex

sets need not possess a unique vector of smallest norm [12, 13]. The most

important geometric property absent in general Banach spaces is a notion of

perpendicularity (or orthogonality) which is determined by considering the

inner product. However, a linear space equipped with an inner product can

be made into a Banach space if it is made to be complete in the metric defined

by the inner product. Such spaces possess many of the more pleasant prop-

erties of the Hilbert spaces which makes it possible to study the numerical

range on quotient spaces using compact operators [12, 13]. In 1968, Stampfli,

Fillmore and Williams [49] defined an essential numerical range on bounded

linear operators on a Hilbert space. It was shown that the essential numer-

ical range is the set of the intersection of the closure of the compact cosets

and the convex hull of the essential spectrum is contained in the essential

numerical range. According to a result of Stampfli, Fillmore and Williams

[48, 49, 50], if T is a normal operator then the convex hull of the essential

spectrum of T is equal to the essential numerical range of T. The notion of an

essential spectrum is important in the spectral theory. Essential spectra are

subsets of the spectrum which are invariant under compact perturbation of

the given operator. These spectra are obtained, for example, by the strength-

ening of the invertibility of the operator using the Fredholm environment.

In this study, we consider two numerical ranges on Banach spaces, namely

the essential algebraic numerical range and the essential spatial numerical

range. For Banach space operators, the properties of the essential algebraic

numerical range have been remarkably studied in literature [3, 11, 13]. Sur-

prisingly, the first reasonable attempt for the corresponding study of the es-

sential spatial numerical range was by Baraa and Müller, in 2005 [9]. The

reasons behind this strange observation isn’t apparent but it is noted that for

a successful study of the properties of this numerical range, it is important to

consider another norm which is a “measure of non-compactness” instead of

the usual essential norm ‖.‖e. The literature on the study of essential spatial

numerical range for Banach space operators still remains very scanty. In fact,
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one visible study is the work by Barraa and Müller [9].

1.2 Basic Concepts and Preliminaries

The following basic concepts are necessary in the study of the essential spec-

trum and the essential numerical range of operators on a Banach space. These

can be found in [8, 42, 43, 45].

Definition 1.2.1

Let X, Y be linear spaces over the same scalar field K, which can be R, the

real field or C, the complex field. A mapping T : X → Y is said to be linear, if

T(αx1 + βx2) = α(Tx1) + β(Tx2)

for all α, β ∈ K and x1, x2 ∈ X. The domain of T denoted by D(T) is defined

by D(T) = {x ∈ X : Tx ∈ Y}, while the range of T denoted by R(T) is

defined by R(T) = {y = Tx : x ∈ X}. The null space of T denoted by N(T)

is the set N(T) = {x ∈ X : Tx = 0}. The set N(T) is also called the kernelof

T.

T is called a linear operator if it is a linear mapping from X into itself i.e.,

T : X → X.

If the range R(T) is contained in the scalar field K then T is called a linear

functional on X.

A linear operator T : X → Y is said to be bounded if for all x ∈ X there exists

M > 0 such that ‖Tx‖ ≤ M‖x‖. We shall denote the set of all bounded linear

operators of X into Y by L(X, Y). Also L(X, X) = L(X). A linear transfor-

mation T : X → Y is compact precisely when, for each bounded sequence

{xi}i∈N in X the sequence {Txi}i∈N has a sub-sequence that converges in Y.

We denote the set of all compact operators as K(X). If a linear operator T

gives a one-to-one map of D(T) onto R(T), then the inverse map T−1 gives

a linear operator on R(T) onto D(T), such that T−1Tx = x for all x ∈ D(T)

and TT−1y = y for all y ∈ R(T).

3



Definition 1.2.2

For each vector x in a linear space X there corresponds a real number denoted

‖x‖ called the norm of x, satisfying the following properties:

(i) ‖x‖ > 0 for any x ∈ X, and ‖x‖ = 0 if and only if x = 0 (Strict positivity),

(ii) ‖λx‖ = |λ|‖x‖ for all x ∈ X and scalars λ (Homogeneity), and

(iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X (Triangle inequality).

The non-negative real number ‖x‖ can be seen as the length of the vector

x. A normed linear space (X, ‖.‖) is a linear space on which a norm has been

defined. If the norm defines a metric on the linear space as d(x, y) = ‖x− y‖

for x, y ∈ X, then the normed space becomes a metric space. A Banach spaceX

is a complete normed linear space.

Definition 1.2.3

A non-negative function ‖.‖ : X → R is called a semi-norm (or a pseudo-

norm) if ‖.‖ satisfies properties (ii) and (iii) of the norm.

Definition 1.2.4

Let X and Y be Banach spaces on which a norm ‖.‖ has been defined. The

operators S ∈ L(X) and T ∈ L(Y) are said to be adjoint with respect to the

norm ‖.‖ if the scalar product 〈Sx, y〉 = 〈x, Ty〉, (x ∈ X, y ∈ Y). T can also

be denoted as S∗.

1.2.1 Dual spaces and Annihilators

Definition 1.2.5

The set of all linear functionals on a vector space X denoted by X∗ is called

the dual space of X. If f ∈ X∗ then dim Ker ( f )+ dim Im ( f ) = dim X,

where Im f is the range of f . Since Im( f ) ⊂ K, we have either Im( f ) = 0 the

zero linear functional or Im( f ) = K, i.e. f is surjective. Moreover for finite

dimensional vector spaces we have dimX = dim(X∗) [7].
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For an arbitrary subset M of a Banach space X, the annihilator of M in X∗ is

denoted by M⊥ and is defined as

M⊥ = {x∗ ∈ X∗ : x∗(x) = 0 for all x ∈ M}.

For an arbitrary subset N of the Banach space X∗, the annihilator of N in X

is denoted by N⊥ and is defined as

N⊥ = {x ∈ X : x∗(x) = 0 for all x∗ ∈ N}.

We refer to [33, 43].

Definition 1.2.6

The dual space X∗ of a normed linear space X which is the set of all bounded

linear functional also has what is known as the second dual space X∗∗. If X∗∗

is isomorphic to X then X is called reflexive.

Let X be a Banach space. The following are some important classes of bounded

operators on X. An operator T ∈ (L(X) is

(i) Self-adjoint or Hermitian if T∗ = T,

(ii) Normal if T∗T = TT∗,

(iii) Positive if T∗ = T and 〈T(x), x〉 ≥ 0 for all xinX,

(iv) Unitary if T∗T = TT∗ = l,

(v) Projection if T2 = T = T∗.

One has the implications that Projection⇒ Positive⇒ Self-adjoint⇒ Nor-

mal.
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1.2.2 Quotient spaces and Quotient mapping

Definition 1.2.7

Let M be a subspace of a linear space X and let the coset of an element x ∈ X

be defined by x + M = {x + m : m ∈ M}. Then the distinct cosets form a

partition of X. If addition and scalar multiplication are defined by

(x + M) + (y + M) = (x + y) + M

and

α(x + M) = αx + M,

then these cosets constitute a linear space denoted by X/M called the quo-

tient space of X with respect to M. The origin in X/M is the coset 0+ M = M,

and the negative of x + M is (−x) + M.

Definition 1.2.8

For any vector space X equipped with a semi-norm ‖.‖, and any closed sub-

space M ⊆ X, the norm of x + M ∈ X/M, defined by ‖x + M‖X/M =

infy∈x+M‖y‖ = infv∈M‖x + v‖ for x ∈ X is called the quotient norm.

Definition 1.2.9

The quotient mapping is defined as a map q : V → V/S where V is a vector

space and S is an ideal in V. Here q(v) = v + S for all v ∈ V. This map is

called the canonical projection of V onto S (Projection modulo S). It is linear

since q(αu + βv) = (αu + βv) + S = α(u + S) + β(v + S) = αq(u) + βq(v).

The canonical projection q : V → V/S is a surjective linear transformation

with Ker(q) = S, see [8, 20]

Any linear transformation T : V →W, can be factored through the projection

map q : V → V/S if S ⊂ Ker(T). Let T ∈ L(V, W) and S ⊂ Ker(T) be a sub-

space of V then there is a unique linear transformation T̃ : V/S → W with

the property that T̃ ◦ q = T. Moreover, Ker(T̃) = {v + S : v ∈ Ker(T)} and

Im(T̃) = Im(T). Thus the image of any linear transformation with domain V

is isomorphic to a quotient space of V. Conversely, any quotient space V/S

is the image of the surjective canonical projection map q : V → V/S. Thus
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up to isomorphism, images of linear transformations on a vector space V are

the same as the quotient spaces of V. The natural map q : V → V/S is a

contraction and is an open map.

1.2.3 Compact operators and Fredholm operators

Definition 1.2.10

Let X, Y be Banach spaces. We denote by L(X, Y) the vector space of all

bounded linear maps from X to Y. This is a Banach space when endowed

with the operator norm ‖T‖ = sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}. Let K be a field.

The dual space L(X, K) of X is denoted by X∗, and its elements are contin-

uous linear functionals. A linear transformation T : X → Y is said to be

compact if for each bounded sequence {xn}n∈N in X the sequence {Txn}n∈N

in Y has a subsequence that converges in Y. The set of all compact operators

from X to Y is denoted K(X, Y). We denote as K(X), the set K(X, X)

Definition 1.2.11

Let X denote an infinite dimensional Banach space. Suppose T ∈ L(X) is a

bounded operator with closed range. There are two natural Banach spaces

associated with T. These are the kernel of T, ker(T) = {x ∈ X : Tx = 0} =

N(T) and the co-kernel of T, coker(T) or codim(T) = X/R(T). The dim

coker(T) = dim ker(T∗) for every operator T ∈ L(X) whose range is closed

and of finite dimension in X. An operator T ∈ L(X) is said to be Fredholm if

both the dimensions of the kernel N(T) and the co-kernel (codimension) are

finite as complex vector spaces, (i.e. dim N(T) < ∞, the codim R(T) < ∞

and its range is closed). The number dim kerT measures the degree of failure

of existence of solutions. We define the nullity of T to be the dimension of

ker(T). The defect of T is the codimension of T(X) in X denoted codim(T)

REMARK 1.2.12

codim R(T) = dim (X/R(T)) and the index of T, denoted by ind(T) is given

by ind(T) = dimN(T)− codimR(T).
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We shall denote the set of all Fredholm operators from X to Y by F(X, Y) and

F(X) = F(X, X). Evidently, every invertible operator is a Fredholm operator

of index zero. In fact, the dimension of the null space of either T or T∗ will

equal the codimension of the range of the other, so that ind(T∗) = −ind(T).

The classical index theorem asserts that the index acts as a homomorphism,

in the sense that ind(TS) =ind(T)+ind(S). Thus the product of two Fred-

holm operators is again a Fredholm operator. Since invertible operators are

Fredholm operators of index zero, it follows that the Fredholm property as

well as the index are preserved under similarity [20].

Definition 1.2.13

Let X and Y be Banach spaces. Let T ∈ L(X, Y).

(i) T is upper semi-Fredholm denoted Φ+(X, Y) if R(T) is closed and dim

ker(T)< ∞.

(ii) T is lower semi-Fredholm denoted Φ−(X, Y) if codim R(T) < ∞.

(iii) T is Fredholm if dim kerT < ∞ and codimR(T) < ∞ i.e., Φ+(X, Y) ∩

Φ−(X, Y).

(iv) T is semi Fredholm if it is either upper semi-Fredholm or lower semi-

Fredholm, i.e., T ∈ Φ+(X, Y) ∪Φ−(X, Y)

Definition 1.2.14

For every T ∈ L(X), the Fredholm region ρe(T) = {λ ∈ C : T − λ is a Fred-

holm operator}, is an open subset of C. Evidently, ρe(T) contains the resol-

vent spectrum of T, ρ(T) = {λ ∈ C : T − λI is invertible}. Its complement

σe(T) = C \ ρe(T) = {λ ∈ C : T− λ is not a Fredholm operator} is the essen-

tial spectrum of T, which is a closed subset of the spectrum σ(T) of T. The

spectrum of T, σ(T) is defined as the set {λ ∈ C : T − λI is not invertible}.

The Fredholm alternative ensures that σe(T) ⊆ {0} for every compact oper-

ator T ∈ L(X). [33, 43]
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1.2.4 Algebra and ideals

Definition 1.2.15

An algebra A is a vector space over a field K together with a bilinear map

(product) xy such that (xy)z = x(yz), x(y+ z) = xy+ xz, (x+ y)z = xz+ yz,

and (αx)(βy) = αβ(xy), for all x, y, z ∈ A and α, β ∈ K.

A subalgebra on A is a vector subspace B such that b, b′ ∈ B and α ∈ K implies

that bb′, b + b′ and αb are in B (sometimes called a linear manifold). The al-

gebra is real (or complex) if the scalar field is real (or complex). If the algebra

A contains an element e such that ex = xe for every x ∈ A, then e is called

the unit of the algebra. It is unique if it exists. An algebra A is commutative

if xy = yx for all x, y ∈ A.

An algebra norm (algebra-semi-norm) ‖.‖ on an algebra A is a norm (semi-

norm) such that ‖xy‖ ≤ ‖x‖‖y‖, which shows that the norm is sub-multiplicative.

(A, ‖.‖) forms a normed algebra. It is unital if it admits a unit 1. Moreover,

‖ab− a′b′‖ ≤ ‖a‖‖b− b′‖+ ‖a− a′‖‖b′‖ and so is jointly continuous [12].

Example 1.2.16

Let X be a linear space over K. L(X) with the product defined by composi-

tion (S ◦ T)x = S(Tx)(x ∈ X), is an algebra

Definition 1.2.17

A complete normed algebra is called a Banach algebra. Given a normed alge-

bra A with two Banach spaces X and Y such that Y = X∗ (the dual space of

X), with 〈, 〉 denoting the natural bilinear form, (i.e. 〈x, y〉 = y(x), x ∈ X,

and y ∈ Y), then (X, Y, 〈, 〉) is a Banach pairing, and Y is a Banach A-module

(the dual module of X). Multiplication is defined by (ya)(x) = y(ax)(a ∈

A, x ∈ X, y ∈ Y). We then define (X, Y, 〈, 〉) as a Banach A-module pairing. If

(X, Y, 〈, 〉) is a Banach pairing, then (L(X, Y), 〈, 〉) with the norm of an op-

erator T ∈ L(X) defined as ‖T‖ = max(‖T‖, ‖T∗‖), is a Banach algebra. It

is clear that L(X, Y, 〈, 〉) is a sub-algebra of L(X) and that ‖.‖ is an algebra

norm. Let (Sn) be a Cauchy sequence inL(X, Y, 〈, 〉) with respect to the norm

‖.‖, then (Sn) and (S∗n) are Cauchy sequences in L(X) and L(Y) respectively.

Therefore there exists S ∈ L(X) and T ∈ L(Y) with limn→∞‖Sn − S‖ = 0
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and limn→∞‖S∗n − T‖ = 0. For all x ∈ X, y ∈ Y, 〈Sx, y〉 = limn→∞〈Snx, y〉 =

limn→∞〈x, S∗ny〉 = 〈x, Ty〉. Thus S ∈ L(X, Y, 〈, 〉), S∗ = T and limn→∞‖Sn −

S‖ = 0. So the algebra L(X) is complete hence it is a Banach algebra.

A Banach subalgebra of a Banach algebra A is a closed subalgebra of A which

contains 1. Banach algebras can be classified in general into function alge-

bras, operator algebras or group algebras according as multiplication is de-

fined pointwise, by composition or by convolution.

If we consider a non trivial Hilbert space H then L(H), the set of all bounded

linear operators on H is a Banach algebra . This special Banach space has the

adjoint operation T → T∗. A subalgebra of L(H) which are self-adjoint are

called C∗-algebras [12].

Definition 1.2.18

An ideal I in an algebra A is a vector space such that for all a ∈ A and b ∈ I,

we have ab ∈ I, or ba ∈ I that is simultaneously a left and right ideal in A.

There are two trivial ideals. These are I = {0} and I = A itself. An ideal

is a linear subspace I ⊆ A that is invariant under both the left and right

multiplications, i.e. AI + IA ⊆ I. An algebra A is called simple if the trivial

ideals are the only ideals. An ideal I in an algebra A is proper if I ⊂ A. A

maximal ideal is a proper ideal that is not contained in any other proper ideal

in A. An ideal I in an algebra A is modular if there exists an element u ∈ I

and a ∈ A such that a(1− u) and (1− u)a are both in I.

Definition 1.2.19

A homomorphism from an algebra A to an algebra B is a linear map ϕ : A→ B

such that ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ A. A monomorphism is an injective

homomorphism and an isomorphism is a bijective homomorphism. The ker-

nel of ϕ, ker(ϕ) is an ideal I in A while the range or image of ϕ is a sub-

algebra of B and ϕ(I) = 1. Let I be an ideal in A, then the quotient map

q : A→ A/I, is a homomorphism [11].

10



Let X denote an infinite dimensional complex Banach space and L(X) the

set of bounded linear operators on X. The vector space K(X) of all com-

pact operators on X, is a closed algebraic ideal on L(X). The quotient vector

space L(X)/K(X), whose elements are denoted as [T] under the algebraic

operations; [S + T] = [S] + [T], [λT] = |λ|[T], [S.T] = [S].[T] is a unital

algebra with the identity [I] as its unit element. We shall write [I] simply

as I. The quotient vector space under the quotient norm ‖T‖ =inf{‖S‖ :

S ∈ [T]} =inf {‖S‖ : S − T ∈ K(X)} is a Banach space. Since the quo-

tient norm also satisfies the properties ‖[S][T]‖ ≤ ‖[S]‖‖[T]‖ and ‖[I]‖ = 1,

L(X)/K(X) is a unital Banach algebra. This algebra is called the Calkin

algebra of X and is denoted C(X). The quotient map (also called the

canonical projection) of L(X) onto C(X) will be denoted by q. That is

q : L(X)→ C(X) is defined by q(T) = [T] = T +K(X). Since ‖q(T)‖ ≤ ‖T‖

it follows that q is a contraction. If A is a normed algebra then the closure of

an ideal I is an ideal.

Suppose I is a proper ideal of an algebra A forming the quotient vector space

A/I, then we have a natural linear map x ∈ A→ x̂ = x + I ∈ A/I of A onto

A/I. Since I is a two sided ideal one can define multiplication in A/I by:

(x + I)(y + I) = xy + I(x, y ∈ A).

This multiplication turns A/I into an algebra and the natural map x → x̂

becomes a surjective homomorphism of algebras having the given ideal I as

its kernel. If I is modular, then A/I is unital and (u + I) is the unit, where

u ∈ A. Conversely, if A/I is unital then I is modular.

If I is a closed ideal in a normed algebra A then A/I is a normed algebra

with the quotient norm ‖x + I‖ = infy∈I‖x + y‖. If I is a proper closed ideal

in a Banach algebra A with normalized unit 1 then the unit of A/I satisfies

‖1̂‖ =infz∈A‖1 + z‖ = 1, hence the unit of A/I is also normalized. More

generally, if I is a closed ideal in an arbitrary Banach algebra A (with or

without unit) then A/I is a Banach space [33].
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1.2.5 Convex sets

A set S is convex if it contains the line segment −−→x1x2, whenever x1, x2 ∈ S.

Thus α1x1 + α2x2 ∈ S whenever α1 + α2 = 1, and α1, α2 > 0. A subset S of a

linear space X over a field K is said to be absolutely convex if x, y ∈ S, and α,

β ∈ K are such that |α|+ |β| ≤ 1 implies αx + βy ∈ S

The convex hull of S is the intersection of all convex sets which contain S,

denoted conv(S). The convex hull of S consist of all points which are ex-

pressible in the form α1x1 + · · ·+ αnxn, where x1, . . . , xn ∈ S, αk > 0 for each

k = 1, 2, . . . , n and ∑n
k=1 αk = 1.

Definition 1.2.20

A function f : Rn → R is convex if its domain is a convex set and for all x,

y in its domain, and all λ ∈ [0, 1], we have f (λx + (1− λ)y) ≤ f (x) + (1−

λ) f (y).

1.2.6 Spectra of linear operators

Let X be a Banach space and T ∈ L(X). Then the spectrum of T, σ(T) is

defined as the set {λ ∈ C : T − λI is not invertible}. We denote T − λI by

Tλ. The resolvent set of T, ρ(T) = C \ σ(T). The Spectral radius of T, r(T) =

sup{|λ| : λ ∈ σ(T)}. It is clear that 0 ≤ r(T) ≤ ‖T‖.

The Point spectrum (the set of eigenvalues) of T, is defined as σp(T) = {λ ∈

C : Tλ is not injective}.

The approximate point spectrum of T is defined as, σap(T) = {λ ∈ C : there

exists a sequence (xn), ‖xn‖ = 1, limn→∞(T − λI)xn = 0}. The Surjectivity

spectrum of T is defined as σsu(T) = {λ ∈ C : T − λI is not surjective },

while the compression spectrum of T by σcom(T) = {λ ∈ C : R(T − λI) is not

dense in X}.
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1.2.7 The essential spectrum of bounded operators

Recall that an operator is Fredholm if its kernel and co-kernel are finite-

dimensional. The essential spectrum of an operator T, usually denoted σe(T),

is the set of all complex numbers λ such that λI − T is not a Fredholm oper-

ator. The essential spectral radius is denoted by re(T)and is defined as re(T) =

sup{|λ| : λ ∈ σe(T)}. Some of the main properties of the essential spectrum

known from the Hilbert space case studies include;

(a) The essential spectrum is always a closed set, and is a subset of the spec-

trum.

(b) If T is self-adjoint, the spectrum is contained on the real axis.

(c) The essential spectrum is invariant under compact perturbations. That

is, if K is a compact, self-adjoint operator on a Hilbert space X, then the

essential spectra of T and that of T + K coincide.

1.2.8 Numerical Ranges

The numerical range of any linear operator T on a Hilbert space H is the set

of complex numbers W(T) = {〈Tx, x〉 : x ∈ H, ‖x‖ = 1}.

Some important properties of the numerical range on a Hilbert space are

given in the proposition below:

Proposition 1.2.21

Let T be a linear operator on a Hilbert space H. Its numerical range W(T)

satisfies the following properties:

(a) W(T) contains every eigenvalue of T,

(b) W(T) lies in the disc {|w| ≤ ‖T‖},

(c) The closure W(T) of W(T) contains the spectrum of T, i.e., σ(T) ⊂W(T),

(d) W(T) is convex, and
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(e) W(T) is invariant under unitary equivalence of operators. Thus W(T) =

W(U∗TU) where U is unitary.

For details, see [1, 5, 33, 34]. There are various ways to generalize the numeri-

cal range in the Banach algebras of bounded linear operators on both Hilbert

and Banach spaces. In our study, we focus on the spatial numerical range

and the algebraic numerical range as defined on the Banach space. Let X

denote a complex Banach space, L(X) be the Banach algebra of all bounded

linear operators acting on X with the operator norm ‖.‖. The norm of an

operator T ∈ L(X) is given by ‖T‖ = sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}. Its unit

sphere is S(X) = {x ∈ X : ‖x‖ = 1}, and X∗ its dual space. Let I denote the

identity operator on X. For T ∈ L(X), the spatial numerical range is defined

by W(T) = {〈Tx, x∗〉 : x ∈ X, x∗ ∈ X∗, ‖x‖ = 1 = ‖x∗‖ = 〈x, x∗〉}, which

can also be written as W(T) = {x∗(Tx) : x ∈ S(X), x∗ ∈ S(X∗), x∗x = 1},

see [49, 53]. In the case where X is a Hilbert space the definition reduces to

W(T) = {〈Tx, x〉 : x ∈ X, ‖x‖ = 1} which is the well known definition of

the Hilbert space numerical range.

For an operator T on a Banach space X with dual X∗, the algebraic numerical

range is defined as the set V(T) = {φ(Tx) : x ∈ X, φ ∈ X∗, ‖φ‖ = ‖x‖ =

φ(x) = 1} ⊆ C, which can also be expressed as V(T) = {φ(T) : φ ∈

L(X)∗, ‖φ‖ = φ(I) = 1}.

The algebraic numerical range is considered to be the closure of the spatial

numerical range, i.e., V(T) = W(T). A thorough treatment of the spatial nu-

merical range and the algebraic numerical range can be found in [9, 12, 13].

Definition 1.2.22

Let X be an infinite-dimensional Banach space and T ∈ L(X). Denote the

essential spatial numerical range by We(T) which is the set of all complex num-

bers λ with the property that there are nets (uα) ⊂ X, (u∗α) ⊂ X∗ such that

‖uα‖ = ‖u∗α‖ = 〈uα, u∗α〉 = 1 for all α, uα → 0 weakly and 〈Tuα, u∗α〉 → λ [9].

Definition 1.2.23

Let X be an infinite-dimensional Banach space and T ∈ L(X). Denote by

K(X) the ideal of all compact operators acting on a complex Banach space
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X, and let q be the canonical projection from L(X) onto the Calkin algebra

L(X)/K(X). Denote further by ‖T‖e the essential norm of T where ‖T‖e =

inf{‖T + K‖ : K ∈ K(X)}. The essential algebraic numerical range Ve(T) of

T is denoted by Ve(T) = {x∗((T + K)x)) : x ∈ L(X), x∗ ∈ L(X)∗, ‖x‖ =

‖x∗‖ = x∗(x) = 1, K ∈ K(X)} The essential algebraic numerical range

Ve(T) of T ∈ L(X) can be characterized by Ve(T) = V(q(T)) = V(T + K)

where K ∈ K(X). That is Ve(T) = V (q(T),L(X)/K(X), ‖‖e) [9].

Definition 1.2.24

Let X be a reflexive Banach space and T ∈ L(X). The essential spacial nu-

merical range of T is defined by We(T) = conv(Ve(T)), where conv(Ve(T))

is the convex hull of Ve(T), see[9].

1.3 Statement of the Problem

Let X be an infinite dimensional Banach space and L(X) the set of bounded

linear operators on X. The algebraic and structural properties of the spec-

tra and the numerical range for the Hilbert space operators have remark-

ably been studied over the past few decades. The corresponding study of

the essential spectra and the essential numerical range for T ∈ L(X) which

are operators on Banach spaces, does not have as much literature. In this

study, we have determined the properties of the essential spectra and the

essential numerical range for operators in Banach spaces. We have further

investigated the relationship between the essential numerical range and the

essential spectra.

1.4 Objective of the Study

The main objective is to investigate the properties of the essential numerical

range and the essential spectra for operators on Banach spaces as a corre-
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sponding study to what has been done in Hilbert spaces. The specific objec-

tives are:

(i) To determine the properties of the essential spectrum on Banach spaces.

(ii) To determine the properties of the essential numerical range on Banach

spaces.

(iii) To investigate the relationship between the essential spectrum and the

essential numerical range on Banach spaces.

1.5 Significance of the Study

The study of the properties of the essential numerical range of operators both

on the Hilbert and Banach spaces provides a clear picture of the character-

istics of the operators. The spectrum of an operator defines the algebraic

properties of an operator regardless of the norm used. Since the spectrum is

contained in the closure of the numerical range one can identify appropriate

operators by studying their numerical ranges. The Banach space has more of

these properties than the Hilbert space because of the diverse norms one can

apply. The study of the essential spectra and the essential numerical ranges

will be key in identifying and classifying operators. This makes their appli-

cations in different fields of study much easier. The study will therefore be

important to physicists and applied mathematicians.

1.6 Methodology

To achieve our first objective we defined the various parts of the spectrum

using the various studies done on Banach spaces. We used the closed range

theorem to determine the duality properties of these parts of the spectrum

and the corresponding parts of the adjoints. For the second objective, we
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used the methods applied by Barraa and Müller in their paper [9]. To de-

termine the properties of the essential numerical range we considered an-

other norm on the Calkin algebra instead of the usual essential norm on the

Calkin algebra. This norm is a measure of non compactness. This had been

introduced by Barraa and Müller [9]. We used the existing relations in lit-

erature on both Hilbert and Banach spaces between the spectra and numer-

ical ranges and established the relationship between the essential spectrum

and the essential numerical range especially for compact operators. Overall,

we used existing methods, used previously by other mathematicians in this

area of research. Discussions with experts in this area gave us more insights

where necessary.

1.7 Organization of the thesis study

In Chapter 1, we give definitions and basic concepts to enable us give the

problem statement of the study with ease. In Chapter 2, we review related

literature that outlines the development of the study of the essential spectra

and essential numerical ranges. It is in Chapter 3 where we establish some

properties of the essential spectra while in Chapter 4 we study the properties

of the essential numerical ranges. These properties are established in the

general setting of Banach spaces. Finally we give a summary of our study as

well as recommendations derived from our results in Chapter 5.
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CHAPTER 2

LITERATURE REVIEW

In this chapter we review related literature that will enable us expose the

knowledge gap. The essential spectra and its properties have been consid-

ered in a number of studies over the past few decades. For instance, in 1981,

Fialkow [21] described the Fredholm essential spectrum and index function

for a class of operators on the Hilbert spaces. He also described the essential

spectra and index functions of the restrictions of these operators to norm ide-

als. These results thus complemented the spectral analysis of multiplications

initiated by Lumer [37].

Zima [58] established a theorem on the spectral radius of the sum of lin-

ear operators. The application of this theorem to a functional differential

equation of neutral type was also given. In his study, Laursen [33] used

the well established local spectral theory in investigating the semi-Fredholm

spectrum of a continuous linear operator. He also examined the retention

of the semi-Fredholm spectrum under weak intertwining relations where it

is shown, inter alias, that if two decomposable operators are intertwined

asymptotically by a quasiaffinity then they have identical semi-Fredholm

spectra. The results are applied to multipliers on commutative semi-simple

Banach algebras. Later, Alekho [5] in the year 2000 strongly developed the

perturbation theory in many directions and found plural applications to wide

classes of linear operators on Banach spaces (See, [31, 20]). The notion of

an essential spectrum is important in the perturbation theory. So, essential

spectra are subsets of the spectrum which are invariant under a perturba-
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tion of the given operator by operators of the concrete form. These spectra

are obtained, for example, at the expense of the strengthening of the non-

invertibility definition. On the other hand, the spectral theory of positive

operators occupies a major place in the general concept of operators on Ba-

nach lattices (See [3] which has the main stages of the development and the

achievements in this direction). However, in spite of numerous attempts, the

general operator theory is united and connected with the theory of positive

operators. In [1], the authors established some results concerning a certain

class of semi-Fredholm and Fredholm operators via the concept of measures

of non-compactness. Moreover, they established a fine description of the

Schechter essential spectrum of closed densely defined operators. These re-

sults were then exploited to investigate the Schechter essential spectrum of

a multidimensional neutron transport operator. Salvador and Slaviša [44]

considered the conditions for continuity of spectrum which are given for the

approximative point spectrum and defect spectrum on the set T + K(X),

where T ∈ L(X) and K(X) is the set of compact operators. They assumed

continuity of the spectrum at T ∈ L(X) and gave sufficient conditions for

continuity of spectrum at T + K, where K ∈ K(X). Recently, Dehici [17]

studied the diverse properties satisfied by the Wolf and Weyl essential spec-

tra of bounded linear operators and their links with the structures of Banach

spaces. He divided the structures of Banach spaces into two categories; those

which have subspaces that have an unconditional basis and those which con-

tain hereditarily indecomposable subspaces. He answered questions within

the scope of bounded linear operators theory and Fredholm, semi-Fredholm

perturbations by exploiting the two directions of the geometry of Banach

spaces. Later the same year, the authors in [14] proved a variant of Hilde-

brandt theorem which asserts that the convex hull of the essential spectrum

of an operator T on a complex Hilbert space is equal to the intersection of the

essential numerical ranges of operators which are similar to T. As a conse-

quence, it gives a necessary and sufficient condition for zero not being in the

convex hull of the essential spectrum of A. Most recently in 2017, Breuer and
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Latif [15] established that the essential spectrum of a Schrodinger operator

T on L2 is equal to the union of the spectra of right limits of T. The natural

generalization of this relation to Zn is known to hold as well. In the study the

possibility of generalizing this characterization of σe(T) to Schrodinger oper-

ators was done. The essential spectrum σe of a bounded self-adjoint operator

T is shown to be the complement in the spectrum of the discrete spectrum,

i.e. σe(T) = σ(T) \ σdis(T), where σdis(T) is the set of isolated eigenvalues of

T of finite multiplicity. They considered the possibility of extending a char-

acterization that holds in the 1-dimensional case to describes the essential

spectrum using the concept of right limits.

Apparently, most of the studies mentioned above on the properties of the

essential spectra are based on the Hilbert space. The corresponding study

on Banach spaces is much less complete. This study therefore focuses on the

properties of the essential spectra on Banach spaces. Specifically, the vari-

ous parts of the essential spectra will be defined and their duality relations

established.

Similarly, just as is the case for the essential spectra, the study of the essential

numerical range is several decades old now. Initiated by Lumer [37] in 1961,

the concept of the numerical range was then well presented by Stampfli, Fill-

more and Williams [49] in 1968. In their work they considered the numerical

range in an arbitrary Banach algebra with identity, and studied its relation

to various growth conditions on the resolvent. An extension of the spatial

numerical range for a class of operators on locally convex spaces was then

latter outlined by Moore in 1969 [49].

In [22], the authors remarked that the theory of the numerical range for linear

operators on normed linear spaces and for elements of normed algebras is

now firmly established and the main results of the study were conveniently

presented by Bonsall and Duncan in 1971 and 1973 [11, 12]. An extension of

the algebra numerical range for elements of locally m-convex algebras was

presented by Giles and Koehler also in 1973 [22]. In their paper, the afore-

mentioned authors contributed by extending the concept of spatial numeri-
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cal range to a wider class of operators on locally convex spaces.

Lancaster [32] in 1975 gave two results which indicated a set theoretic re-

lationship between the boundary of the numerical range and the essential

numerical range. Several applications were derived including the first exten-

sive study on the essential numerical range by Williams [54] in 1977, where

a simple proof was given of Lancaster’s theorem that the convex hull of the

numerical and essential numerical ranges of a Hilbert space operator is the

closure of the numerical range. In 1981 Legg and Townsend [36], gave atten-

tion to a general problem of the residue class T +K(X) in the Calkin algebra.

They wanted to find out that if the residue class possesses a certain property,

does there exist a representative T + K possessing the same property? For

example, if X is a separable Hilbert space, then for each T ∈ L(X) there ex-

ists K ∈ K(X) such that the spectrum of T + K equals the Weyl spectrum

of T, See [51]. For each T ∈ L(X), does there exist K ∈ K(X) such that the

numerical range of T + K equals the essential numerical range of T? This

question is answered in the affirmative for X = lp, 1 < p < ∞ and for X = l1

in the case where the essential numerical range of A has no interior points.

Specifically, given an operator T, there exists a compact perturbation T + C

such that the numerical range of T + K equals the essential numerical range

of A. This result has also been established for essentially Hermitian opera-

tors on l1 [51]. In the same year [52], Stout, showed that any operator T is

in the kernel (hull (compact operators)) in some L(X) if and only if 0 is in

the essential numerical range of T. In 1988, Puttmadaiah and Gowda [39]

characterized the spatial numerical range of a normal operator on a smooth

reflexive Banach space to be closed and convex. This generalized the theo-

rem for normal operators on Hilbert spaces. A few more results concerning

the spatial numerical ranges of convexoid and iso-abelian operators are also

obtained. In 2005, Baraa and Müller [9] introduced and studied the proper-

ties of the essential numerical range for Banach space operators. This gener-

alized the corresponding well-known concept for Hilbert space operators. In

[40], it is shown that the elliptical shape of the numerical range of quadratic
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operators holds also for the essential numerical range. The latter is described

quantitatively, and based on that, sufficient conditions are established under

which the c-numerical range is also an ellipse. Several examples were con-

sidered, including singular integral operators with the Cauchy kernel and

composition operators. Mecheri [38] then offered a simple proof that con-

vexoid operators on Hilbert space are normaloid, and gave an example to

show that the converse fails. Later, Abdolaziz and Mohammad [2] studied

the spatial numerical range of operators on weighted Hardy spaces and con-

ditions for closedness of numerical range of compact operators. After giving

some background material, a useful formula for the spatial numerical range

of operators on weighted Hardy space was given. They proved that the spa-

tial numerical range of finite rank operators on weighted Hardy spaces is

star shaped; though, in general, it does not need to be convex.

The study of the numerical range and numerical radius has an extensive his-

tory, and there is a great deal of current research on these concepts and their

generalizations. In particular, the subject has connections and applications

to various areas including C∗ algebras, iterations methods, operator theory,

dilation theory, Krein space operators, factorizations of matrix polynomials,

unitary similarity and many others. (see [11, 12, 13, 28], and their reference)

All these constitute a very active field of research in operator theory. The

numerical range of an operator, like the spectrum, is a subset of the com-

plex plane whose geometrical properties should say something about that

operator. Our major concern was to compare the properties and utility of

the essential numerical range and the essential spectrum. In [56] Williams

showed that an operator T ∈ L(H) is normaloid if and only if it is convex-

oid. It is known that the part ”if” in Williams result is not true [56]. An

example which contradicts the part if in Williams result and a simple proof

of the part only if of this result is given in this thesis. A necessary and suf-

ficient condition for an operator T ∈ L(H) to be convexoid is also given.

Again, based on the preceding literature, the properties of the essential nu-

merical range are well established in the setting of Hilbert spaces while the
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corresponding study in Banach spaces is wanting. In fact the only study we

came about on the general Banach space is the work of Baraa and Müller [9].

There’s therefore a need to study the properties of the essential numerical

range on Banach spaces.

In relating the essential spectrum and the essential numerical range several

results can be found in [3, 11, 12, 13, 25, 26, 27, 28, 33, 34, 40] and their refer-

ences.

In 1967, Williams [55] presented an extension of the relation that the spec-

trum of an operator on a Hilbert space H is contained in the closure of the

numerical range of the operator, to bounded linear operators on a Banach

space, and certain nonlinear transformations on a real or complex Hilbert

space. The extension was mild, as he showed that if zero is not in the clo-

sure of the numerical range of an operator A, then the spectrum of (A−1B) is

contained in W(B)/W(A) for any operator B on H. Here the set on the right

is by definition the set of quotients b/a with b in W(B) and a in W(A). The

extension had interesting consequences. For example it implied that if A is

strictly positive and B is greater than 0, then the product AB has a nonnega-

tive spectrum. Also, if A is positive and B is self-adjoint then the product AB

has real spectrum. In 1968, Stampfli, Fillmore and Williams [49] defined an

essential numerical range for linear bounded operators in a Hilbert space. It

was shown that the essential numerical range is the intersection of the closed

compact cosets and the convex hull of the essential spectrum of an operator

T was contained in the essential numerical range of T. According to a result

of Stampfli, Fillmore and Williams [49], if T is normal then the convex hull of

the essential spectrum of an operator T equals the essential numerical range

of T, but equality does not hold in general. In their work the convex hull of

the essential spectrum of a bounded linear operator defined on a separable

Hilbert space is obtained in terms of intersections of appropriate bi-operative

numerical ranges. After establishing that the essential numerical range on a

Hilbert space is invariant under norm-preserving isomorphisms, Stampfli,

Fillmore and Williams [49] considered the numerical range in an arbitrary
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Banach algebra with identity, and studied its relation to various growth con-

ditions on the resolvent. They have shown that, if q is an algebra homomor-

phism of norm 1, from a complex Banach algebra A with unit into another

such algebra A′, then the essential numerical range is contained in the es-

sential numerical range of (x) for each x in A. It has been established that

the convexity of the numerical range leads to effective numerical algorithms

for its graphical representation, at least for finite dimensional operators [25,

section 5.6], and this has implications for locating the spectrum. It has been

shown that the entire spectrum of an operator T, and hence its convex hull,

belongs to the closure of the numerical range of T [25, section 1.2]. Hilde-

brand [29] has shown that, upon intersecting the closures of the numerical

ranges of all the bounded operators on a Hilbert space H similar to T, one

obtains precisely the convex hull of the spectrum. He has also shown that

the numerical range lacks similarity invariance unlike the spectrum. In this

way, the numerical range plays a role in spectral location similar to that of

the Gershgorin set of matrix theory (see, for example, [25, section 5.2]. For

maps φ assuming some kind of normal form in a Banach space the numer-

ical range of the compositions of φ, Cφ is easy to determine. The challenge

arises in trying to show that composition operators induced by maps con-

formally conjugate to such normal forms have similarly shaped numerical

ranges. Each elliptic automorphism of the unit sphere is conformally conju-

gate to one that fixes the origin, that is to a rotation. The normal form for

such an elliptic automorphism is therefore a map. The notion of essential

numerical range appears naturally here, and this set is shown to be charac-

terized in the way one would expect by analogy with the essential spectrum.

In 1973 Amelin, [6] defined a numerical range for two closed, linear opera-

tors for the purpose of obtaining some new results on the stability of index

of a Fredholm operator perturbed by a bounded or relatively bounded oper-

ator.

Zarantonello [57] introduced the concept of numerical range of nonlinear

Hilbert space operator, and proved that the numerical range contains the
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spectrum. He applied this connection for solving the nonlinear functional

equations. In 1991, Verma [53], gave a generalization of Zarantonellos result

on the numerical range of a nonlinear Hilbert space valued operator to the

case of the Banach space valued operator. The results obtained provide a

constructive method for solving the nonlinear functional equations similar

to that of Zarantonello [57]. Agnes [4], in 2014, showed that the numerical

of positive operators on Banach lattices have many properties that resemble

the spectral properties of positive operators. In particular, they have shown

that the numerical radius is always contained in the closure of the numerical

range. Moreover, the numerical range is symmetric with respect to the real

axis. For irreducible operators on suitable Lp-spaces Agnes proved a rota-

tional symmetry for the numerical range. In addition, they determined the

numerical range and radius for some concrete operators. More research on

the relationship of the essential numerical range and the essential spectra in

Banach spaces will make a strong and better understanding of the many new

and important operator classes coming out of computational linear algebra

and applications. Almost all of the available literature have their results well

established on the Hilbert spaces. But for Banach spaces each class of op-

erators carries particular structure properties reflecting those of the class of

applications and those of the norm used. This makes their study more te-

dious. In this way, the numerical range will remain a vital and growing part

of operator theory whose literature is still scarce.

The following fundamental theorems of functional analysis will be useful in

this study:

Theorem 2.0.1 (Open Mapping Theorem)

Let X and Y be Banach spaces. Then every surjective continuous linear map-

ping T : X → Y is open.

Theorem 2.0.2 (Closed Graph Theorem)

Let X and Y be Banach spaces. Then every closed mapping T : X → Y is

continuous.
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Theorem 2.0.3 (Ascoli’s theorem)

If xn is a bounded sequence from C[a, b] such that x′ns form an equi-continuous

sequence (i.e., to each ε > 0 corresponds a δ > 0 such that |x(t1)− x(t2)| < ε

whenever x ∈ C and t1, t2 ∈ [a, b] such that |t1 − t2| < δ), then xn contains a

convergent subsequence. (Convergent in the topology of C[a, b])

Theorem 2.0.4 (Krein-Milman)

A non-void compact convex subset K of a locally convex linear topological

space X has at least one extremal point.

Theorem 2.0.5 (Closed Range Theorem)

Let X and Y be Banach spaces. Let D(T) be a dense linear subspace of X and

let T : D(T) → Y be a closed linear operator with null space N(T) = {x ∈

D(T) : Tx = 0} and the range space R(T) = {Tx : x ∈ D(T)}. Then the

following are equivalent:

(a) R(T) is closed in Y,

(b) R(T∗) is closed in X∗,

(c) R(T∗) = N(T)⊥,

(d) T : D(T)→ R(T) is open,

(e) T∗ : D(T∗)→ R(T∗) is open, and

(f) R(T) = N(T∗)⊥.

Theorem 2.0.6 (Characterization of compact operators)

Let X and Y be Banach spaces and T ∈ L(X, Y), then the following condi-

tions are equivalent:

(a) T is compact.

(b) For each bounded set S ∈ X the set T(S) is relatively compact in Y.

(c) For each bounded sequence {xn} in X the sequence {Txn} admits a sub-

sequence that converges in Y.
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The following theorem is a characterization of the approximate point spec-

trum which is well known in literature, (see for instance [8]).

Theorem 2.0.7 (Characterization of the approximate point spectrum)

For T ∈ L(X) and λ ∈ C, the following are equivalent:

(a) λI − T is bounded below (i.e. there exists c > 0 such that ‖(λI − T)x‖ ≥

c‖x‖).

(b) N(λI − T) = {0} and R(λI − T) closed.

(c) λ /∈ σap(T).

The following characterization of the spectra will be useful in the next chap-

ter.

Proposition 2.0.8

Let X be a non-zero Banach space and T ∈ L(X) be a non-invertible isometry.

Then:

(i) σ(T) = ∇(0, 1) and

(ii) σap(T) = ∂∇(0, 1)

where ∇(0, 1) denotes a closed unit ball and ∂∇(0, 1) its boundary.

For proof, see [8].

Theorem 2.0.9 (Annihilator Theorem)

Let M be a closed linear subspace of a normed vector space X. Let q : X →

X/M denote the canonical quotient mapping. Let T ∈ L(X) be an operator

for which T(M) ⊆ M. Then the following canonical identifications hold:

(i) (X/M)∗ ∼= M⊥ and

(ii) X∗/M⊥ ∼= M∗.
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Theorem 2.0.10 (Hahn-Banach Extension theorem)

Let E be a normed space over K = R or C, and let F ⊆ E be a linear subspace.

Then for every ψ ∈ F∗ there exists some φ ∈ E∗ such that φ = ψ on F and

‖φ‖ = ‖ψ‖.

Theorem 2.0.11 (Characterization of compact sets)

Let (X, d) be a metric space and A ⊆ X, then the following characterization

of compact sets holds:

(i) A is precompact if and only if every sequence in A contains a sub-sequence

that is Cauchy,

(ii) A is compact if and only if every sequence in A contains a convergent

sub-sequence,

(iii) A is compact if and only if A is precompact and complete,

(iv) A is precompact if and only if its closure A is precompact and

(v) A is relatively compact if and only if A is precompact and A is complete.

For details and proofs of the above results, we refer to [8, 20, 24, 33, 43, 45, 47].
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CHAPTER 3

PROPERTIES OF ESSENTIAL

SPECTRA

In this chapter, X denotes an infinite dimensional complex Banach space and

L(X), the set of all bounded linear operators on X. In Sections 3.1 and 3.2, we

review some properties of compact operators and Fredholm operators which

are vital in this study. In Section 3.3, we establish some algebraic properties

of the essential spectra, while it is in Section 3.4, where we present our major

results of this chapter which correspond to the first objective of this study.

Specifically, we define various parts of the essential spectra and establish

their duality relations.

3.1 Compact operators

In the next proposition, we give some basic properties of compact operators.

Even though known in literature, we give our alternative shorter proofs.

Proposition 3.1.1

Let E and F be normed spaces. Then the following hold:

(a) A linear transformation T : E → F is compact precisely when, for each

bounded sequence {xi}i∈N in E, the sequence {Txi}i∈N has a subse-

quence that converges in F.
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(b) Every compact linear transformation T : E→ F is continuous.

(c) Every continuous linear transformation T : E → F with dim R(T) < ∞

is compact.

(d) The identity I : E→ E is compact precisely when dim E < ∞.

(e) For T ∈ K(E) and 0 6= λ ∈ F, we have dim (N(λI − T)) < ∞.

PROOF. (a) Follows from general characterization of relative compactness

given in Theorem 2.0.11.

(b) This follows from the fact that relative compact sets in normed spaces

are bounded.

(c) By continuity of T, there exists c > 0 such that T( Ball (E) ⊆ c Ball(R(T)).

The latter set is compact since dim R(T) < ∞ and so T(Ball(E)) is

compact. This means that T is compact.

(d) From assertion (c), it is clear that I : E → E with dim (R(I)) < ∞ is

compact. The result now follows immediately from the fact that R(I) =

E. Conversely, if I is compact, then Ball(E) is relatively compact hence

dim (E) < ∞.

(e) Let N = N(λI − T) denote the null space of λI − T. This means (λI −

T)x = 0 for all x 6= 0 on N . Hence λI |N= T |N are compact, where

T |N is a restriction of T on N . It then follows that dim (N ) < ∞, by

assertion (d).

�

Example 3.1.2

Let αij ∈ Cn for all i, j ∈ N such that α = ∑∞
i,j=1 |αij|2 < ∞. Then the defini-

tion

Tx =

(
∞

∑
k=1

αikxk

)
i∈N
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yields a compact linear map T : l2 → l2.

Note: Tx =



α11 α12 α13 . . .

α21 α22 α23 . . .

α31 α32 α33 . . .

. . . . . .

. . . . . .

. . . . . .





x1

x2

x3

.

.

.


.

PROOF. For each x ∈ l2, we have by Cauchy-Schwartz inequality,

‖Tx‖2
2 = ∑∞

i=1 |Txi|2 = ∑∞
i=1 |∑∞

k=1 αikxk|2 ≤ ∑∞
i=1(∑

∞
k=1 |αik||xk|)2 ≤ ∑∞

i=1(∑
∞
k=1 |αik|2)(∑∞

k=1 |xk|2).

So ‖Tx‖2 ≤
√

α‖x‖2 for all x ∈ l2. (∗) Thus T : l2 → l2 is bounded and linear

with ‖T‖ ≤
√

α.

It remains to show that T(Ball(l2)) is relatively compact in l2. It suffices to

show that T(Ball(l2)) is bounded and uniformly convergent. l2−convergence

holds for the sequences in T(Ball(l2)).

Now for all x ∈ Ball(l2), we have ‖Tx‖2 ≤
√

α by (∗). Also for all n ∈ N,

we have ∑∞
i=n |Txi|2 ≤ ∑∞

i=n(∑
∞
k=1 |αik|2|xk|2) ≤ ∑∞

i=n ∑∞
k=1 |αik|2 < ∞, inde-

pendent of x. Hence the sequence is bounded and uniformly convergent.

�

3.2 Fredholm Operators

Let X, Y and Z be Banach spaces over F(= R or C). Then the following

proposition gives some characterization of Fredholm operators. (See [46, 47,

33, 34])

Proposition 3.2.1

Let F(X, Y) be the set of all Fredholm operators from X into Y. Then:

(a) T ∈ F(X, Y) if and only if T∗ ∈ F(X∗, Y∗) and ind(T∗) = −ind(T).

(b) T ∈ F(X, Y) if there exist linear maps P, Q : Y → X with PT ∈ F(X) and

TQ ∈ F(Y). Then T ∈ F(X, Y).
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(c) T ∈ F(X, Y) and S ∈ F(X, Y), implies ST ∈ F(X, Y) and ind(ST) =

ind(S) + ind(T).

Having stated the proposition above, we give an alternative prove of the next

result which gives the necessary and sufficient conditions for an operator to

be Fredholm. We refer to [33, 46] for details.

Theorem 3.2.2

For T ∈ L(X, Y), the following are equivalent:

(a) T is Fredholm,

(b) There exists S ∈ F(Y, X), P ∈ L(X) with P2 = P and dim R(P) < ∞, Q ∈

L(Y) with Q2 = Q and dim R(Q) < ∞ such that ST = IX + P and

TS = IY + Q, where IX and IY are identities in X and Y respectively.

PROOF. (b) implies (a): Since P and Q are compact, we know that IX + P

and IY + Q are Fredholm. So ST and TS are Fredholm. Now part (b) of

proposition above applies.

(a) implies (b): Since dimN(T) < ∞, there exists some P ∈ L(X) with

P2 = P and R(P) = N(T). For X1 = N(P), we obtain from P2 = P that

X = R(P)⊕ N(P) = N(T)⊕ X1.

Moreover we have Y = R(T)⊕Y1 for some finite dimensional space Y1 ⊆ Y.

So again there exists some Q ∈ L(Y) with Q2 = Q and R(Q) = Y1 and

R(I − Q) = R(T). Now, T|X1 : X1 → R(T) is a bijective linear operator

between Banach spaces, so (T|X1)
−1 : R(T) → X1 is continuous by the open

mapping theorem.

Define S = i ◦ (T|X1)
−1 ◦ (IY +Q) where i : X1 → X is the canonical inclusion

mapping. So S ∈ L(X, Y) with TS = IY + Q. Also ST = 0 = IX1 + P

on X. But N(T) = R(P) so ST = IX1 = IX1 + P and X1 = N(P). Since

X = N(T)⊕ X1 it follows that ST = IX + P on X as desired. �

Next, we provide with details an example of a Fredholm operator.
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Example 3.2.3

Consider the unilateral right shift T : l1 → l1 given by T(x) = (0, x1, x2, x3, . . .)

where x = (xk)k∈N ∈ l1. We would like to find the eigenvalues of T, the spec-

tra and the approximate point spectra of T as well as all λ ∈ C for which the

operator λI − T is a Fredholm operator and we compute its index.

We begin by proving that T is a non-invertible isometry. For x = (x1, x2, x3, · · · )

and T(x) = (0, x1, x2, x3, . . .), we find that ‖Tx‖1 = 0 + ∑∞
k=1 |xk| = ‖x‖1.

Hence T is an isometry. By taking supremum over all x ∈ Ball(l1) on both

sides, we get that ‖T‖ = 1.

All the elements in R(T) are of the form (0, x1, x2, x3, . . .). Therefore the ba-

sis element (1, 0, 0, · · · ) /∈ R(T), so R(T) 6= l1. Hence T is not surjective

and therefore not invertible. This makes T a non-invertible isometry. Using

Proposition 2.0.8, we then conclude that σ(T) = ∇(0, 1) (a closed unit disc)

and σap(T) = ∂∇(0, 1) from Proposition 2.0.8.

Next, we now show that σp(T) = ∅. Let λ ∈ σp(T). This is equivalent to

λx = Tx for some x ∈ l1, x 6= 0. Since for any x = (x1, x2, x3, . . .), we have

T(x) = (0, x1, x2, x3, . . .); it follows that λx1 = 0, λx2 = x1, λx3 = x2, . . ..

Now if λ = 0, we have x1 = x2 = x3 = · · · = 0 implying that x = 0. Hence

λ = 0 is not an eigenvalue of T.

On the other hand, if λ 6= 0, then x1 = x2 = x3 = · · · = 0. Again x = 0. So

λ 6= 0 is not an eigenvalue of T and therefore σp(T) = ∅.

Now we would like to find all λ ∈ C for which λI − T is Fredholm. The

following three cases arise:

Case1 : |λ| > 1.

If |λ| > 1, then λ /∈ σ(T) and this means that λI − T is invertible i.e.

bijective. So N(λI− T) = {0} and R(λI− T) = l1. Hence dim(N(λI−

T)) = 0 and codim (R(λI− T)) = 0. Therefore ind (λI− T) = 0+ 0 =

0 and so λI − T is Fredholm.

Case2 : |λ| = 1.

If |λ| = 1, then λ ∈ σap(T). Recall from Theorem 2.0.7, λ /∈ σap(T)
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implies N(λI − T) = {0} and R(λI − T) closed. Since σp(T) = ∅, it

follows that N(λI− T) = {0}. So λ ∈ σap(T) is equivalent to R(λI− T)

fails to be closed. Therefore codim R(λI − T) = ∞. So λI − T is not

Fredholm.

Case3 : |λ| < 1.

If |λ| < 1, then it follows that λ ∈ σ(T) and λ /∈ σap(T)

But λ /∈ σap(T) if and only if N(λI − T) = {0} and R(λI − T) is closed

(Theorem 2.0.7). Hence dim (N(λI − T)) = 0. Now we want to find

codim R(λI − T) = dim l1/R(λI − T). Recall from Theorem 2.0.9

that (l1/R(λI − T))∗ ∼= R(λI − T)⊥ = N(λI − T∗). We know that:

T∗(x) = (x2, x3, x4, · · · ), the unilateral left shift.

Therefore x ∈ N(λI − T∗) implies that (λI − T∗)x = 0 and hence

λx = T∗x. Comparing the elements of λx and T∗x, we find that λx1 =

x2, λx2 = x3, λx3 = x4, etc. Taking x1 = x1, and x2 = λx1, then

x3 = λx2 = λ2x1, while x4 = λx3 = λ3x1, and so on. This gives a

general pattern of xk = λk−1x1. Hence x = x1(1, λ, λ2, · · · ) and so the

dim N(λI − T∗) = 1. From Theorem 2.0.5, it therefore follows that

codim (R(λI − T)) = 1. But the dim (N(λI − T)) = 0. Therefore ind

(λI − T) = dim (N(λI − T))− codim (R(λI − T)) = 0− 1 = −1 and

hence λI − T is Fredholm.

3.3 Algebraic properties of the essential spectrum

In this section, we give some algebraic properties of the essential spectrum

of bouded operators acting on Banach spaces. We begin by proving the fol-

lowing characterization;

Theorem 3.3.1

Let X be a complex Banach space. Let the quotient space C(X) = L(X)/K(X)

be endowed with the usual vector space operations and the canonical quo-

tient norm. Let q : L(X) → C(X) denote the corresponding quotient map-
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ping so that q(T) = T +K(X) for all T ∈ L(X). For T∗ ∈ L(X∗), define an

equivalent map q̃ by q̃(T∗) = T∗ +K(X∗). Then:

(a) C(X) is an algebra with respect to the multiplication:

(T +K(X))(S +K(X)) = TS +K(X)

for all T, S ∈ L(X). C(X) is known as the Calkin algebra.

(b) Given an arbitrary T ∈ L(X), then T is a Fredholm operator on X if and

only if q(T) is invertible in the Calkin algebra C(X)

(c) σe(T) = σ(q(T))

(d) σe(T) is compact and nonempty for each T ∈ L(X) provided that X is of

infinite dimension.

(e) For T∗ ∈ L(X∗), we have that q̃(T∗) = q(T)∗. In particular, C(X)∗ =

C(X∗).

PROOF. To prove (a), it suffices to prove that the multiplication (T+K(X))(S+

K(X)) = TS + K(X) is well defined and that the quotient norm is sub-

multiplicative. Indeed for the well definition, let T1 + K(X) = T2 + K(X)

and S1 + K(X) = S2 + K(X). Then T1 − T2 ∈ K(X) and S1 − S2 ∈ K(X).

Assume T1 = T2 + T3 and S1 = S2 + S3 for some T3, S3 ∈ K(X). Then

T1S1 = (T2 + T3)(S2 + S3) = T2S2 + T2S3 + T3S2 + T3S3. Thus T1S1 =

T2S2 +K(X) (since T2S3 + T3S2 + T3S3 ∈ K(X)) which further implies that

T1S1 − T2S2 ∈ K(X). Hence T1S1 +K(X) = T2S2 +K(X) as desired.

Next, we prove that the quotient norm is sub-multiplicative. To do this we

need to show that ‖q(T)q(S)‖ ≤ ‖q(T)‖‖q(S)‖ for all T, S ∈ L(X).

Now suppose ε > 0 is arbitrarily chosen. Then by definition of the quo-

tient norm, there exists T1, S1 ∈ K(X) such that ‖q(T)‖ + ε ≥ ‖T + T1‖

and ‖q(S)‖ + ε ≥ ‖S + S1‖. Then ‖q(T)q(S)‖ = ‖q(T + T1)q(S + S1)‖ ≤

‖(T + T1)‖‖(S + S1)‖ ≤ (‖q(T)‖+ ε)(‖q(S)‖+ ε). Letting ε → 0, we obtain

the desired result.
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For (b), we need to prove that if T ∈ L(X), then T is Fredholm on X if

and only if q(T) is invertible in C(X). Now, since T is Fredholm on X, then

by Theorem 3.2.2 choose S, P and Q ∈ L(X), with P2 = P, Q2 = Q, dim

(R(P)) < ∞ and dim (R(Q)) < ∞ such that TS = I + P and ST = I + Q.

Since dim (R(P)) < ∞ and dim (R(Q)) < ∞, it follows that P, Q are com-

pact, that is, P, Q ∈ K(X). But (T +K(X))(S +K(X)) = I +K(X) and (S +

K(X))(T + K(X)) = I + K(X), implies that (T + K(X))−1 = (S + K(X)).

Hence q(T) is invertible in C(X).

Conversely, suppose q(T) is invertible in C(X) and let S ∈ L(X) be such

that q(S) = q(T)−1. Then q(S)q(T) = q(ST) and q(T)q(S) = q(TS). But

TS = I + K(X) and ST = I + K(X). So both TS, ST are Fredholm. From

this result it is clear that N(T) ⊆ N(ST) which is finite dimensional, and

R(T) ⊇ R(ST) which is finite co-dimensional. Therefore N(T) is finite di-

mensional while R(T) is finite co-dimensional and hence T is Fredholm, as

required.

For (c), recall that σe(T) = {λ ∈ C : λI − T not Fredholm in X}. We wish to

show that σe(T) = σ(q(T)), that is, for λ ∈ C, we have λ /∈ σe(T) if and only

if λ /∈ σ(q(T)) or for λ ∈ C, λI − T is Fredholm on X if and only if λI − q(T)

is invertible in C(X). It thus suffices to prove the fact that T is Fredholm on

X if and only if q(T) is invertible in C(X). For the proof of this fact simply

look at (b).

For (d), we need to prove that σe(T) is compact and nonempty for each

T ∈ L(X) provided X is infinite dimensional. Indeed, if dim X < ∞, then

L(X) = K(X) and so C(X) = K(X)/K(X) which yields σ(q(T)) = ∅. This

contradicts the fact that the spectrum of a nonzero operator is nonempty and

compact, so dim X = ∞. Hence σe(T) = σ(q(T)) is compact and nonempty

whenever dim X = ∞.

The assertion (e) is clear from the fact that an operator is compact if and only

if its adjoint is compact. Indeed, q(T)∗ = (T + K(X))∗ = T∗ + K(X)∗ =

T∗ +K(X) = q̃(T∗). � In the next result, we relate the essential spectrum of

an operator and that of its adjoint. Even though known, we apply the closed
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range theorem to simplify the proof.

Theorem 3.3.2

Let X and Y be Banach spaces and T ∈ L(X, Y). Then σe(T) = σe(T∗)

PROOF. It suffices to prove that for λ ∈ C, λ /∈ σe(T) if and only if λ /∈

σe(T∗). Equivalently, for λ ∈ C, λI − T is Fredholm if and only if λI − T∗ is

Fredholm. Thus it suffices to prove that T : X → Y is Fredholm if and only

if T∗ : Y∗ → X∗ is Fredholm.

Recall that T is Fredholm if and only if dim (N(T)) < ∞, and dim (Y/R(T)) <

∞. It therefore suffices to show that dim (N(T∗)) = dim (Y/R(T)) and dim

(X∗/R(T∗)) = dim (N(T)).

Now N(T∗) = R(T)⊥ ∼= (Y/R(T))∗. Since dim(Y/R(T)) < ∞, it fol-

lows that dim (Y/R(T))∗ < ∞. So dim (N(T∗)) = dim (Y/R(T))∗ =

dim(Y/R(T)) < ∞. By the closed range theorem, R(T∗) is closed in X∗

and equals N(T)⊥.

Now X∗/R(T∗) = X∗/N(T)⊥ ∼= N(T)∗.

Since dim (N(T)) < ∞, we have dim (N(T)∗) = dim N(T) and so,

dim (X∗/R(T∗)) = dim (N(T)) < ∞. Therefore the dimension of N(T) and

Y/R(T) are finite and hence T is Fredholm.

Conversely, if T∗ is Fredholm, then dim (N(T∗)) < ∞ and dim (X∗/R(T∗)) <

∞. It therefore suffices to show that dim (N(T)) = dim (X∗/R(T∗)) and dim

(Y/R(T)) = dim (N(T∗)). Now X∗/R(T∗) = X∗/N(T))⊥ ∼= N(T)∗. Since

dim(X∗/R(T∗)) < ∞, it follows that dim (N(T)∗) = dim (N(T)) < ∞. By

the closed range theorem, N(T∗) = R(T)⊥ ∼= (Y/R(T))∗.

But dim (N(T∗)) < ∞, so it implies that dim (Y/R(T))∗) = dim (Y/R(T)) <

∞, as desired. � An immediate consequence of the above theorem is the

following corollary:

Corollary 3.3.3

For S, T ∈ L(X), σe(T + S) = σe((T + S)∗).

PROOF. Since S,T ∈ L(X), S + T ∈ L(X), and therefore from Theorem 3.3.2,

it follows that σe(T + S) = σe((T + S)∗) as desired. �
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Another consequence that relates the essential spectral radius of an operator

T, re(T) =sup{|λ| : λ ∈ σe(T)} and that of its adjoint is the following:

Corollary 3.3.4

For S, T ∈ L(X), the following hold;

(i) re(T∗) = re(T).

(ii) re(T + S) = re((T + S)∗).

PROOF. Assertion (i) follows immediately from Theorem 3.3.2 above as well

as the definition of the essential spectral radius, while (ii) is a consequence

of Corollary 3.3.3. � The next theorem relates the essential spectrum of an

operator and that of its scalar multiple.

Theorem 3.3.5

For T ∈ L(X), α ∈ R with α 6= 0, we have σe(αT) = ασe(T). Moreover,

re(αT) = |α|re(T).

PROOF. Recall that λ ∈ σe(αT) if and only if λI − αT is not Fredholm. Fac-

toring out the scalar we have α(λ
α I − T) is not Fredholm, and hence λ

α I − T

is not Fredholm.

The latter statement is equivalent to λ
α ∈ σe(T), and hence λ ∈ ασe(T).

So λ ∈ σe(αT) if and only if λ ∈ ασe(T).

Therefore σe(αT) = ασe(T) as claimed. By the definition of the essential

spectral radius, it immediately follows that re(αT) = |α|re(T). �

REMARK 3.3.6

Relating the spectra of two operators and that of their sum on Banach spaces

is not obvious. In fact if A and B are two operators on a Banach space, then

in general σ(A), σ(B) and σ(A + B) are not related. The question has been

to find the conditions necessary for them to be related. This question to-

gether with related ones were considered in [41, 58]. For the essential spec-
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tra analogue, Shapiro and Snow [46] considered such questions and obtained

among others the following result:

Theorem 3.3.7

Let A, B ∈ L(X) and suppose that A and B commute, then we have:

(i) σe(A + B) ⊆ σe(A) + σe(B).

Moreover, if B is Fredholm, then

(ii) σe(AB) ⊆ σe(A)σe(B).

Now if we scale the operators A and B using scalars α and β, we obtain the

following result,

Corollary 3.3.8

Let A and B be defined as in Theorem 3.3.7 above. Then for α, β ∈ R, we

have

(i) σe(αA + βB) ⊆ ασe(A) + βσe(B).

Moreover, if B is Fredholm, then

(ii) σe ((αA)(βB)) ⊆ αβσe(A)σe(B).

PROOF. Using Theorems 3.3.5 and 3.3.7 above, we have σe(αA + βB) ⊆

σe(αA) + σe(βB) = ασe(A) + βσe(B), which proves (i). The proof of (ii) is

similar. Indeed, σe ((αA)(βB)) ⊆ σe(αA)σe(βB) = αβσe(A)σe(B). �

Another consequence giving the essential spectral radii relations is the

following,

Corollary 3.3.9

Let A and B be defined as in Theorem 3.3.7. Then for α, β ∈ R, we have

(i) re(αA + βB) ≤ |α|re(A) + |β|re(B).

(ii) re((αA)(βB)) ≤ |αβ|re(A)re(B).
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PROOF. Follows immediately from the definition of the essential spectral ra-

dius and the Corollary 3.3.8 above. �

3.4 Parts of the essential spectrum and Duality

Recall from Theorem 3.3.1 part (c), that the essential spectrum σe(T) is (by

definition) the spectrum of the coset T +K(X) in the Calkin algebra C(X) =

L(X)/K(X), where K(X) is the ideal of all compact operators on X. More

precisely, σe(T) = σ(q(T)). Using this fact, we introduce the following parts

of the essential spectrum on L(X):

Definition 3.4.1

(i) Essential approximate point spectrum, σess
ap (T)

σess
ap (T) = {λ ∈ C: there exists xn ⊂ X such that(q(T)− λI)xn → 0 as

n→ ∞}.

(ii) Essential surjectivity spectrum, σess
su (T)

σess
su (T) = {λ ∈ C : q(T)− λI is not surjective }.

(iii) Essential point spectrum, σess
p (T)

σess
p (T) = {λ ∈ C : (q(T)− λI)x = 0 for some x 6= 0, x ∈ X}. In other

words σess
p (T) is the set of eigenvalues of q(T).

(iv) Essential compression spectrum, σess
com(T)

σess
com(T) = {λ ∈ C : R(q(T)− λI) is not dense in C(X)}.

From the above definition, it’s apparent that σess
ap (T) = σap(q(T)), σess

su (T) =

σsu(q(T)), σess
p (T) = σp(q(T)) and σess

com(T) = σcom(q(T)), where σap, σsu, σp

and σcom are the usual approximate point spectrum, surjectivity spectrum,

point spectrum and compression spectrum respectively. For a comprehen-

sive theory on these parts of the spectrum, we refer the reader to [33, 41].

There are some obvious relations between the various parts of the essential

spectrum defined above. In particular, we give the following result,
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Theorem 3.4.2

Let X be an infinite dimensional Banach space and T ∈ L(X). Then

(i) σess
p (T) ⊆ σess

ap (T)

(ii) σess
com(T) ⊆ σess

su (T)

(iii) σe(T) = σess
p (T) ∪ σess

su (T).

In particular, σe(T) = σess
ap (T) ∪ σess

com.

PROOF. Assertion (i) Follows from the definition. For (ii), let λ ∈ σess
com(T).

Then R(q(T)− λI) 6= C(X), which implies that q(T)− λI is not surjective,

as desired. Moreover,

σe(T) = σ(q(T)) = {λ ∈ C : q(T)− λI is not invertible}

= {λ ∈ C : q(T)− λI is not bijective }

= {λ ∈ C : q(T)− λI is not surjective or

q(T)− λI is not injective}

= σess
p (T) ∪ σess

su (T),

which proves (iii). Finally, by the characterization of the approximate point

spectrum given by Theorem 2.0.7, we have that λ ∈ σap(q(T)) if and only if

either q(T)− λI is not injective or R(q(T)− λI) is not closed. This completes

the proof. �

In the next results, we shall use duality theory to provide connections be-

tween these various parts of the essential spectrum of a bounded operator

on X and the corresponding parts of the spectrum of the adjoint operator on

the dual space X∗. We also give a relationship between the essential surjec-

tivity spectrum of an operator and the essential approximate point spectrum

of its adjoint on a Banach space, and vice versa.

Theorem 3.4.3

Let X be an infinite dimensional Banach space and T ∈ L(X), then σess
ap (T) =

σess
su (T∗), where σess

su (T∗) = σsu(q̃(T∗)) and σess
ap (T) = σap(q(T)).
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PROOF. To prove this theorem we shall show that C \ σess
ap (T) = C \ σess

su (T∗).

Using the characterization of the approximate point spectrum given by The-

orem 2.0.7, it suffices to prove that q(T) is bounded below if and only q̃(T∗)

is surjective. Since q(T) is bounded below, it follows that R(q(T)) closed

and N(q(T)) = {0}. By Closed Range theorem (Theorem 2.0.5) R(q̃(T∗)) =

R(q(T)∗) = N(q(T))⊥ = {0}⊥ = C(X), and so q̃(T∗) is surjective as de-

sired.

Conversely, let R(q̃(T∗)) = C(X∗) and so R(q̃(T∗)) is closed. By Closed

Range theorem, R(q(T)) is closed and N(q(T)) = R(q̃(T∗))⊥ = (C(X∗))⊥ =

{0}. Therefore q(T) is bounded below, and this completes the proof. �

Theorem 3.4.4

Let X be an infinite dimensional Banach space and T ∈ L(X), then σess
su (T) =

σess
ap (T∗), where σess

su (T) = σsu(q(T)) and σap(T∗) = σess
ap (q̃(T∗)).

PROOF. We prove that C \ σess
su (T) = C \ σess

ap (T∗). That is, for λ ∈ C we

have; λ /∈ σess
su (T) if and only if λ /∈ σess

ap (T∗). Thus λI − q(T) surjective is

equivalent to λI − q̃(T∗) bounded below. It therefore suffices to prove that

q(T) is surjective if and only if q(T∗) bounded below. Now let R(q(T)) =

C(X), then by the Closed range theorem, R(q̃(T∗)) is closed and N(q̃(T∗)) =

R(q(T))⊥ = {0}. Hence q̃(T∗) is bounded below.

Conversely, if q̃(T∗) is bounded below, then R(q̃(T∗)) is closed and N(q̃(T∗)) =

R(q(T))⊥ = {0}. By the Closed range theorem R(q(T)) is closed and R(q(T)) =

N(q̃(T∗))⊥ = {0}⊥ = C(X). Therefore q(T) is surjective, and this completes

the proof. �

The following theorem now gives the relationship of the compression essen-

tial spectrum of an operator with the essential point spectrum of its adjoint

on a Banach space and vice versa.

Theorem 3.4.5

Let X be an infinite dimensional Banach space and let T ∈ L(X). Then

we have, σess
com(T) = σess

p (T∗), where σess
p (T∗) = σp(q̃(T∗)) and σess

com(T) =

σcom(q(T)).
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PROOF. We wish to prove that C \ σess
com(T) = C \ σess

p (T∗). That is, for λ ∈ C,

we have λ /∈ σess
com(T) if and only if λ /∈ σess

p (T∗). This means that λI − q(T)

has a dense range, and this is equivalent to λI − q̃(T∗) being injective. So

R(λI − q(T)) = C(X) if and only if N(λI − q(T∗)) = {0}. It suffices to

prove that R(q(T)) = C(X) if and only if N(q̃(T∗)) = {0}. Since N(q̃(T∗)) =

R(q(T))⊥ and from the Hahn-Banach extension theorem (Theorem 2.0.10), it

follows that for each M ⊆ Y,

M = Y ⇔ M⊥ = {0}. (3.1)

Now from Equation (3.1), N(q(T∗)) = R(q(T))⊥ = {0}which completes the

proof. �

Theorem 3.4.6

Let X be an infinite dimensional Banach space and let T ∈ L(X). Then,

σess
p (T) ⊆ σess

com(T∗), where σess
p (T) = σp(q(T)) and σess

com(T∗) = σcom(q̃(T∗)).

PROOF. By replacing T with T∗ in Theorem 3.4.5, we get σess
com(T∗) = σess

p (T∗∗).

Therefore, we obtain σess
p (T) ⊆ σess

p (T∗∗) = σess
com(T∗) as desired. �

REMARK 3.4.7

If X is reflexive, that is, X ∼= X∗∗; then σess
p (T) = σess

com(T∗).
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CHAPTER 4

PROPERTIES OF ESSENTIAL

NUMERICAL RANGES

In this chapter as well, X denotes an infinite dimensional complex Banach

space and L(X) the space of bounded linear operators on X. In section 4.1

we give the algebraic properties of the algebraic essential numerical range

while section 4.2 is devoted to the study of the properties of the essential

spatial numerical range. The relationship between the essential spectra and

the essential numerical range in the setting of a Banach space is considered

in the last section 4.3.

4.1 Essential Algebraic Numerical Range

The Calkin algebra over an arbitrary Banach space where the essential ver-

sion of the numerical range is considered, has been an area of consider-

able study. The essential algebraic numerical range is given as Ve(T) =

V(q(T)) = V(T + K), where T ∈ L(X) and K ∈ K(X). This is the numeri-

cal range of q(T) in the quotient space L(X)/K(X). We define the essential

algebraic numerical range as the set Ve(T) = { f ((T + K)x) : x ∈ S(X), f ∈

S(X∗), f (x) = 1, f (K) = 0}.

Some of the known properties of the essential algebraic numerical range

Ve(T) on the Calkin algebra L(X)/K(X) can be found in [9], and we sum-
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marize them in the following theorem:

Theorem 4.1.1

For T ∈ L(X), the following properties hold.

(i) Ve(T) is a nonempty compact convex set and σe(T) ⊆ Ve(T) where σe(T)

denotes the essential spectrum of T,

(ii) Ve(T) = {0} if and only if T ∈ K(X),

(iii) Ve(T) =
⋂{V(T + K, ) : K ∈ K(X)},

(iv) Ve(T) = { f (T) : f ∈ L(X)∗, f (I) = 1 = ‖ f ‖, f (K(X)) = 0} and

(v) exp(−1)‖T‖e ≤max{|λ| : λ ∈ Ve(T) ≤ ‖T‖e}.

The details on the properties above can be found in [9].

As an extension of the properties above, we give more algebraic properties

of Ve(T).

Theorem 4.1.2

For T, S ∈ L(X) and α, β ∈ C, we have:

(i) Ve(αT) = αVe(T).

(ii) Ve(T + S) ⊆ Ve(T) + Ve(S).

(iii) Ve(αI + T) = α + Ve(T).

(iv) Ve(αT + βS) ⊆ αVe(T) + βVe(S).

PROOF. To prove (i), let p be a complex number. Then p ∈ Ve(T) if and only

if |p− λ| ≤ ‖T +K− λ‖ for each complex number λ and each compact oper-

ator K. So p ∈ Ve(αT) if and only if |p− λ| ≤ ‖α((T +K)− λ)‖ = α‖T +K−

λ‖ for each pair of complex numbers α and λ and each compact operator K.

Hence Ve(αT) = V(q(αT)) = V(αq(T)) = αV(q(T)) = αVe(T). For (ii), we

have Ve(T + S) = V(q(T + S)) = V((T + S) +K) = V((T +K) + (S+K)) ⊆

V(T + K) + V(S + K) = V(q(T)) + V(q(S)) = Ve(T) + Ve(S). The assertion
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(iii) follows from the fact that I and T commute.

The proof of (iv) follows from (i) and (ii) above. From(ii), we have that

Ve(αT + βS) ⊆ Ve(αT) + Ve(βS). Now using (i) we obtain Ve(αT + βS) ⊆

Ve(αT) + Ve(βS) = αVe(T) + βVe(S). �

Now let νe(T) = sup{|λ| : λ ∈ Ve(T)}, be the essential algebraic numerical

radius, that is, the numerical radius associated with Ve(T). Then we obtain

the following consequence of the above theorem;

Corollary 4.1.3

For T, S ∈ L(X) and α,β ∈ C, we have:

(i) νe(αT) = |α|νe(T),

(ii) νe(T + S) ≤ νe(T) + νe(S),

(iii) νe(αI + T) = |α|+ νe(T), and

(iv) νe(αT + βS) ≤ |α|νe(T) + |β|νe(S).

PROOF. Follows immediately from Theorem 4.1.2 and the definition of νe(T),

that is, νe(T) = sup{|λ| : λ ∈ Ve(T)}. Indeed, let λ ∈ Ve(αT) = αVe(T).

Then there exists µ ∈ Ve(T), such that λ = αµ, implying that |λ| = |α||µ|.

Now taking supremum over all λ ∈ Ve(αT), we get sup λ∈Ve(αT)|λ| = |α||µ|.

Again taking supremum over all µ ∈ Ve(T), we obtain sup λ∈Ve(αT|λ| = |α|

supµ∈Ve(T)|µ|. Therefore νe(αT) = |α|νe(T).

For (ii) we have from Theorem 4.1.2 assertion (ii) that Ve(T + S) ⊆ Ve(T) +

Ve(S). Let λ ∈ Ve(T + S), then there exist λ1 ∈ Ve(T) and λ2 ∈ Ve(S)

such that |λ| ≤ |λ1|+ |λ2|. Now taking supremum over all λ ∈ Ve(T + S),

then over all λ1 ∈ Ve(T) and finally over all λ2 ∈ Ve(S), we obtain sup

λ∈Ve(T+S)|λ| ≤ supλ1∈Ve(T)|λ1|+ supλ2∈Ve(S)|λ2|. Hence νe(T + S) ≤ νe(T) +

νe(S), as desired.

For (iii) and (iv), we first note that νe(T + S) ≤ νe(T) + νe(S). Using (i) we

obtain νe(αI + T) = |α|+ νe(T), and νe(αT + βS) ≤ |α|νe(T) + |β|νe(S). �
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4.2 Essential Spatial Numerical Range

There is scarse literature on the essential spatial numerical range for Banach

space operators. Part of the study that we have come across is the work by

Barraa and Müller [9]. In their attempt to study some properties of the essen-

tial numerical range We(T) on Banach spaces, the authors considered a mea-

sure of non-compactness instead of the essential norm in the Calkin algebra.

They remarked that this is a probable reason why the essential numerical

range We(T) has not been extensively studied for Banach space operators.

For T ∈ L(X), where X is an infinite dimensional Banach space, we define

a seminorm ‖.‖µ on L(X) by ‖T‖µ = inf{‖T|M‖ : M ⊂ X a subspace of

finite codimension }. Following [9], ‖.‖µ is a measure of non-compactness,

that is, ‖T‖µ = 0 if and only if T is compact. Moreover, ‖.‖µ is an algebra

norm on the Calkin algebra L(X)/K(X). As a result, another type of essen-

tial numerical range Vµ(T) defined by Vµ(T) = V(T,L(X)/K(X), ‖.‖µ) was

introduced. In particular, Vµ(T) is the set of all λ ∈ C such that there is a

functional Φ̃ ∈ (L(X)/K(X), ‖.‖µ)∗ satisfying ‖Φ̃‖ = 1 = Φ̃(I +K(X)) and

Φ̃(T +K(X)) = λ. Equivalently, there is a functional Φ ∈ L(X)∗ such that

Φ(K(X) = 0, Φ(I) = 1, Φ(T) = λ and |Φ(S)| ≤ ‖S‖µ for all S ∈ L(X),

where X is a general Banach space.

Before looking at the properties of the essential spatial numerical range We(T),

we summarize some properties of Vµ(T) in the following theorem:

Theorem 4.2.1

Let T ∈ L(X). Then

(i) Vµ(T) = conv(We(T)).

(ii) Vµ(T) ⊂ Ve(T).

(iii) exp(1)‖T‖µ ≤max{|λ| : λ ∈ Vµ(T)} ≤ ‖T‖µ.

Theorem 4.2.2

Let X be an infinite dimensional Banach space and T ∈ L(X). Then
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(i) Vµ(T) is a closed, convex and compact subset of C,

(ii) Vµ(T) = {0} if and only if T is compact,

(iii) Vµ(T + K) = Vµ(T) for K ∈ K(X), and

(iv) Vµ(T + S) ⊆ Vµ(T) + Vµ(S), where S ∈ L(X).

PROOF. To prove that Vµ(T) is closed, let λn ∈ Vµ(T) be such that λn →

λ as n → ∞. Then for each n ∈ N, there exists (Φn)n ⊆ L(X)∗ such

that Φn(K(X)) = 0, Φn(I) = 1, Φn(T) = λn and ‖Φn(S)‖ ≤ ‖S‖µ for

all S ∈ L(X). Now, since (Φn)n is bounded, let Φn → Φ as n → ∞.

Then Φ(I) =lim n→∞Φn(I) =lim n→∞1 = 1; Φ(T) =lim n→∞Φn(T) =lim

n→∞λn = λ; Φ(K(X)) =lim n→∞Φn(K(X)) = 0, and for all S ∈ L(X),

‖Φ(S)‖ = ‖ limn ‖Φn(S)‖ =lim n‖φn(S)‖ ≤ limn‖S‖ = ‖S‖. It therefore

follows that λ ∈ Vµ(T) and this proves that Vµ(T) is closed as claimed.

Following [9], Vµ(T) = conv(We(T)) which clearly indicates that Vµ(T) is

convex since it is a convex hull of We(T). In general, we know that Vµ(T) ⊂

Ve(T). But Ve(T) is compact from Theorem 4.1.1 and Vµ(T) is closed. The re-

sult then follows immediately from the fact that a closed subset of a compact

set is compact. This proves (i).

Now, for any T ∈ L(X), we have that Vµ(T) = {0} if and only if Ve(T) = {0}

which is true if and only if T is compact. This proves (ii).

The proof of (iii) follows from the definition of Vµ(T) and from the fact that

‖.‖µ is a measure of non-compactness.

For (iv), from the sum property of the algebraic numerical range, we have

for S ∈ L(X),

Vµ(T + S) = V(T + S,L(X)/K(X), ‖.‖µ)

⊆ V(T,L(X)/K(X), ‖.‖µ) + V(S,L(X)/K(X), ‖.‖µ)

= Vµ(T) + Vµ(S).

�

If νµ(T) = sup{|λ| : λ ∈ Vµ(T)}, then νµ is the numerical radius corre-
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sponding to the numerical range Vµ(T) and we can deduce the following

corollary.

Corollary 4.2.3

Let X be an infinite dimensional Banach space and T ∈ L(X). Then

(i) νµ(T) = 0 if and only if T is compact,

(ii) νµ(T + K) = νµ(T), for K ∈ K(X),

(iii) νµ(T + S) ≤ νµ(T) + νµ(S) where S ∈ L(X).

PROOF. Follows from the definition of νµ(T) and Theorem 4.2.1 above. For

(i), we use assertion (ii) of Theorem 4.2.1, where Vµ(T) = {0} if and only if

T is compact. This is equivalent to the fact that λ ∈ Vµ(T), λ = 0, if and

only if T is compact. Equivalently λ ∈ Vµ(T), |λ| = 0 if and only if T is

compact. Hence sup λ∈Vν(T)|λ| = 0, if and only if T is compact. For (ii), it

is clear from the definition of νµ(T) and assertion (iii) of Theorem 4.2.1. For

(iii), Vµ(T + S) ⊆ Vµ(T) + Vµ(S). This means that for λ ∈ Vµ(T + S) there

exist λ1 ∈ Vµ(T) and λ2 ∈ Vµ(S) such that λ = λ1 + λ2. So |λ| ≤ |λ1| +

|λ2|. This implies that sup λ∈Vµ(T+S)|λ| ≤ supλ1∈Vµ(T)|λ1|+ supλ2∈Vµ(S)|λ2|.

Hence νµ(T + S) ≤ νµ(T) + νµ(S). �

It’s important to take note that in general Vµ(T) ⊂ Ve(T), but if X is a Hilbert

space we obtain equality, that is, Vµ(T) = Ve(T), see [9].

The next result gives some properties of the essential spatial numerical range

of a bounded operator T, We(T).

Theorem 4.2.4

Let X be an infinite dimensional Banach space, and T ∈ L(X), Then the

following properties hold.

(i) We(T) is nonempty, closed, non-convex and compact subset of the com-

plex plane C,

(ii) We(T) = {0} if and only if T is compact,
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(iii) We(βT) = βWe(T) for some β ∈ C,

(iv) We(T + S) ⊆We(T) + We(S), where S ∈ L(X), and

(v) We(αT + βS) ⊆ αWe(T) + βWe(S), where S ∈ L(X) and β, α ∈ C.

PROOF. Following [9], σe(T) ⊂ We(T). Since σe(T) is nonempty, it follows

that We(T) is nonempty as well. The non-convexity of We(T) is immediate

from the relation: Vµ(T) = conv(We(T)) where conv(We(T)) is the convex

hull of We(T) . To prove that We(T) is closed, let λn ∈ We(T) be such that

λn → λ as n → ∞. We want to show that λ ∈ We(T). Since λn ∈ We(T),

choose nets which are partially ordered on subsets of X and X∗ by the rela-

tion ≤ as (uα) ⊂ X, (u∗α) ⊂ X∗ such that ‖uα‖ = ‖u∗α‖ = 〈uα, u∗α〉 = 1 for

each α and uα → 0 weakly. Fix n such that |〈Tuα, u∗α〉 − λn| < 1
n . Then

|〈Tuα, u∗α〉 − λ| ≤ |〈Tuα, u∗α〉 − λn|+ |λn − λ| < 1
n
+ |λn − λ| → 0

as n→ ∞ and therefore λ ∈We(T). The compactness of We(T) follows from

the compactness of Vµ(T) since We(T) is a closed subset of Vµ(T). This com-

pletes the proof of (i).

To prove (ii), take note that We(T) ⊂ conv (We(T)) = Vµ(T) = {0} if and

only if T is compact. Since We(T) is nonempty, the latter statement is equiv-

alent to We(T) = {0} if and only if T is compact, as desired.

For (iii), let λ ∈ We(T). This is equivalent to having (uα) ⊂ X, (u∗α) ⊂

X∗ such that ‖uα‖ = ‖u∗α‖ = 〈uα, u∗α〉 = 1 for all α, uα → 0 weakly and

〈Tuα, u∗α〉 → λ. Then βWe(T) is equivalent to β〈Tuα, u∗α〉 → βλ. This

in turn is equivalent to 〈βTuα, u∗α〉 → βλ. Since βλ ∈ C, it follows that

βWe(T) = We(βT).

To prove (iv), let λ ∈ We(T + S). Then there exists (uα) ⊂ X, (u∗α) ⊂

X∗ such that ‖uα‖ = ‖u∗α‖ = 〈uα, u∗α〉 = 1 for all α, uα → 0 weakly and

〈(T + S)uα, u∗α〉 → λ. Then 〈Tuα + Suα, u∗α〉 → λ is equivalent to 〈Tuα, u∗α〉+

〈Suα, u∗α〉 → λ. This implies that 〈Tuα, u∗α〉 → λ1 and 〈Suα, u∗α〉 → λ2 where

λ = λ1 + λ2. Thus, λ1 ∈ We(T) and λ2 ∈ We(S) with λ = λ1 + λ2. Hence
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λ ∈We(T) + We(S).

Assertion (v) follows immediately from assertions (iii) and (iv) above. From

(iii), we have that We(βT) = βWe(T) for some β ∈ C. Now using (iv) we

obtain We(αT + βS) ⊆ αWe(T) + βWe(S), where S ∈ L(X) and β, α ∈ C. �

Define the essential spatial numerical radius ωe(T) by

ωe(T) = sup{|λ| : λ ∈We(T)}.

Then the following is an immediate consequence of Theorem 4.2.3 above.

Corollary 4.2.5

For T, S ∈ L(X) and α, β ∈ C, we have

(i) ωe(T) = 0 if and only if T ∈ K(X),

(ii) ωe(βT) = |β|ωe(T),

(iii) ωe(T + S) ≤ ωe(T) + ωe(S), and

(iv) ωe(αT + βS) ≤ |α|ωe(T) + |β|ωe(S).

PROOF. Follows from the definition of ωe(T) and Theorem 4.2.3 above. For

(i), we use assertion (ii) of Theorem 4.2.3, where We(T) = {0} if and only

if T is compact. This is equivalent to λ ∈ We(T), λ = 0, if and only if T is

compact, which is further equivalent to λ ∈We(T), |λ| = 0 if and only if T is

compact. Hence sup λ∈We(T)|λ| = 0, if and only if T is compact. For (ii), it is

clear from the definition of ωe(T) and assertion (iii) of Theorem 4.2.3.

For (iii), since We(T + S) ⊆ We(T) + We(S), let λ ∈ We(T + S). Then there

exist λ1 ∈ We(T) and λ2 ∈ We(S) such that |λ| ≤ |λ1|+ |λ2|. This implies

that sup λ∈We(T+S)|λ| ≤ supλ1∈We(T)|λ1|+ supλ2∈We(S)|λ2|. Hence ωe(T +

S) ≤ ωe(T) + ωe(S).
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For (iv), Since We(αT + βS) ⊆ αWe(T) + βWe(S), we have

ωe(αT + βS) = sup{|λ| : λ ∈We(αT + βS)}

≤ sup{|α||λ1|+ |β||λ2| : λ1 ∈We(T), λ2 ∈We(S)}

≤ sup{|α||λ1| : λ1 ∈We(T)}+ sup{|β||λ2| : λ2 ∈We(S)}

= |α|ωe(T) + |β|ωe(S).

�

4.3 Relationship between Essential spectra and Es-

sential numerical range

In this section, we attempt to relate the essential spectra and the essential

numerical range for Banach space operators.

Theorem 4.3.1

If T ∈ L(X) is normal, then conv(σe(T)) = Ve(T).

PROOF. Since σe(T) ⊂ Ve(T) and T is normal, convσe(T) ⊂
⋂{Vp(T) : p ∈

N}, where N is the set of equivalent norms to the essential norm. Since

σe(T) is compact, conv(σe(T)) is a compact convex set and is therefore the

intersection of the open circular discs containing σe(T). Suppose then that

|λ− α| < r, (λ ∈ σe(T)), then p(T − αI) < r and so there is a p ∈ N with

p(T − αI) < r. But then it is obvious that |λ − α| < r, (λ ∈ Ve(T)), and

so
⋂{Vp(T) : p ∈ N} is contained in every open circular disc that contains

σe(T). �

For compact operators, the following theorem details the relation between

the essential spectrum and the essential algebraic numerical range;

Theorem 4.3.2

If T, S ∈ K(X) and α ∈ C, then

(i) σe(T) = Ve(T) = {0},
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(ii) σe(T + S) = Ve(T + S) = Ve(T) + Ve(S),

(iii) σe(T∗) = Ve(T∗), and

(iv) σe(αT) = Ve(αT).

PROOF. For T ∈ K(X), Ve(T) = {0}. But σe(T) ⊆ Ve(T), and since the

spectrum σe(T) is nonempty, the result follows, and this proves (i).

To prove (ii), since T, S ∈ K(X), T + S ∈ K(X) and {0} = σe(T + S) ⊆

Ve(T + S) = Ve(T) + Ve(S) = {0}. So the equality holds.

Assertion (iii) follows from the fact that σe(T) = σe(T∗), while assertion (iv)

is obvious. �

Consequently, if re(T) is the essential spectral radius in the sense that re(T) =

sup{|λ| : λ ∈ σe(T)}, then we have the following result;

Corollary 4.3.3

If T ∈ K(X), then re(T) = νe(T) = 0.

PROOF. This follows from the fact that σe(T) = Ve(T) = {0}, given by The-

orem 4.3.2 above. �

REMARK 4.3.4

We have determined the relationship between the essential spectra and the

essential algebraic numerical range for Banach space operators specifically

when the operator is compact. The relation between the essential spectra

and the essential spatial numerical range has not been investigated in this

thesis and remains open for further research.
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CHAPTER 5

SUMMARY AND

RECOMMENDATIONS

5.1 Summary

In this thesis we considered the properties of the essential spectra and the es-

sential numerical ranges of bounded linear operators in the general setting

of Banach spaces. We determined some algebraic properties of the essential

spectrum and went further to define the various components of the essential

spectrum. In Theorems 3.4.2, 3.4.3 and 3.4.4 we have established the relation

between the various parts of the essential spectrum of a bounded operator

and the corresponding adjoint operator. For the essential numerical ranges

on Banach spaces, we have extended the known algebraic properties that

can be found in Theorems 4.1.2, 4.2.1 and 4.2.3. Specifically we have shown

that the spatial numerical range for Banach space operators is a closed non-

convex and compact subset of the complex plane. On the relationship be-

tween the essential spectra and essential numerical ranges, we have shown

that for compact operators, the essential spectrum and the essential algebraic

numerical range coincide and is a singleton set with element 0, see Theorem

4.3.2. Moreover, for normal operators, we have proved that the convex hull

of the essential spectrum is the essential algebraic numerical range for Ba-

nach space operators.
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5.2 Recommendation

From the results of this study, we recommend the following for further re-

search:

(i) The properties of the essential spatial numerical range have not been

exhaustively studied on Banach spaces. Further studies can still be

done to establish more properties, for example, on the joint opera-

tors, commuting operators, composition operators, adjoint operators,

among others.

(ii) The study of the essential spectra can be extended to unbounded opera-

tors on Banach spaces.

(iii) The spatial numerical range has not been widely studied compared to

other types of numerical ranges. We remarked that the lack of equal-

ity in the relation We(T) 6= W(q(T)) might be a probable reason. It

would be interesting to study and find the properties that would en-

able this equality to be achieved. In this study we have established

that for compact operators, We(T) = {0} which is a trivial case for this

equality. The non trivial cases remain open.

(iv) Not much has been done on the relation between the essential spectrum

and the essential spatial numerical range and since not much is known

about We(T), it would be interesting to study this relation.

(v) The consideration for the spectrum being equal to essential spectrum for

a given operator (i.e. σ(T) = σe(T)) has been widely studied in Hilbert

spaces along classes of operators starting with normal operators. This

can be correspondingly taken up in Banach spaces.
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