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ABSTRACT

Trees are connected graphs which do not have loops, multiple edges and cycles.

A variety of trees such as binary trees, ordered trees, d-ary trees, Cayley trees and

noncrossing trees have been studied at length. Tree-like structures such as cacti

and Husimi graphs have the properties of trees where we consider blocks of the

structures instead of vertices. Plane Husimi graphs, plane cacti and plane ori-

ented cacti have been enumerated with regards to leaves, number of blocks and

block types. However, there is no literature on the study of plane tree-like struc-

tures according to root degree and degree sequence. Moreover, d-ary tree-like

structures have not been enumerated at all . In this work, we have enumerated

plane Husimi graphs, plane cacti and plane oriented cacti according to the de-

gree of the root and outdegree sequences. We have also enumerated bicoloured

plane tree-like structures with regards to number of vertices, blocks and block

types. Finally, we have introduced and enumerated d-ary Husimi graphs, cacti

and oriented cacti with given indegree sequence, number of leaves, blocks and

block types. To obtain our results we have used symbolic method to obtain gen-

erating functions for tree-like structures, used Lagrange Inversion formula and

Lagrange Bürmann to extract the coefficients of the variables in the generating

functions and in some instance, we constructed a bijection. The results of this

study will add to literature in this area of study.
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CHAPTER 1

INTRODUCTION

Combinatorics is an area of mathematics which primarily deals with counting.

The counting objects include sets, graphs, partitions among others. The branch of

combinatorics that deals with obtaining exact formulas of these structures with

a collection of parameters is called enumerative combinatorics. Our research is

in enumerative combinatorics and our counting objects are tree-like structures

which we define in the next section. In this work, we have obtained explicit for-

mulas of these combinatorial objects and in one instance we have constructed a

bijection.

1.1 Basic concepts

In this section, we illustrate basic mathematical concepts which we require to

present our results.

1



1.1.1 Graph theoretic concepts

Concepts in this section can be found in the book by Diestel [5].

A graph G constitutes a pair (V(G), E(G)) with V(G) a collection of vertices

and E(G) a collection of edges of G. A loop is an edge from a vertex into itself.

Multiple edges are at least two edges that share initial vertex and terminal vertex.

A simple graph lacks both loops and multiple edges. The number of vertices (resp.

edges) of a graph is called the order (resp. size) of the graph. A path in a graph

is a finite or infinite sequence of edges which connect a given number of vertices

in the graph. A cycle is a path that starts at a given vertex and ends at the same

vertex. Consider a graph in which there is a path between any pair of distinct

vertices. Then such a graph is said to be connected. A degree of a vertex in a graph

is the number of edges incident to the vertex. A subgraph H of a graph G is a

graph with some or all vertices of G and edges are some or all edges of G. A tree

is a connected graph without cycles, loops and multiple edges. Figure 1.1 is a

depiction of a tree on 8 vertices.

Figure 1.1: Tree on 8 vertices.

Given a tree T, a subtree of T is a subgraph of T which is also a tree. A leaf in a tree

is a vertex of degree 1 whereas a non-leaf vertex is an internal vertex. A collection

of trees is a forest. A noncrossing tree is a connected acyclic graph with edges that

do not cross inside the circle and vertices on its boundary. See Figure 1.2 for an

example of a noncrossing tree.

If we designate a vertex of a tree then we have a rooted tree. Given a vertex u

in a plane tree, all the vertices at a lower level which are connected to u, are

2
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Figure 1.2: Noncrossing tree.

said to be children of u. A plane tree (or ordered tree) is a rooted tree drawn in the

plane such that all children of internal vertices are ordered. In Figure 1.3, we

have two different plane trees. (See [19] for more details.) In a plane tree, the

̸=

Figure 1.3: Plane trees on 6 vertices

number of children of the vertex is its degree and, degree sequence is the monotonic

non-increasing sequence of the vertex degree of the tree. The degree sequence of

the plane trees in Figure 1.3 is 2, 2, 1, 0, 0, 0. A d-ary tree is a plane tree in which

every internal vertex has no more than d children. 2-ary and 3-ary trees are called

binary and ternary trees respectively. In Figure 1.4, we show a ternary tree on 10

vertices.

Figure 1.4: Ternary trees on 10 vertices.

3



The number of d-ary trees on dn + 1 vertices is the generalised Catalan number,

1
n + 1

(
dn

n − 1

)
.

(See [19]). Some of the properties of trees are connectedness and cycle freeness.

Structures which satisfy these properties are called tree-like structures. A cutpoint

of a connected graph G is a vertex whose removal will disconnect G. A graph

which has no cutpoint is said to be 2-connected. A block in a simple graph is a

maximal 2-connected subgraph. A complete graph is a simple graph in which ev-

ery vertex is adjacent to all other vertices. In 1950, Kodi Husimi [11] introduced

Husimi graphs. These are connected graphs whose blocks are complete graphs.

If the blocks are cycles or polygons then we obtain cacti (singular cactus). Cacti

were first studied by Harary and Unlenbeck [10]. The said authors called them

’Husimi trees’. Oriented cacti [18] are connected graphs where blocks are oriented

cycles. So, Husimi graphs, cacti and oriented cacti are tree-like structures. If a

tree-like structure is drawn in a plane such that blocks are ordered then we have

a plane tree-like structure. Figure 1.5, shows a ternary cactus on 25 vertices. In

a plane tree-like structure the number of blocks that are incident to a vertex is

the degree of that vertex. A leaf is a non-root vertex which is incident to exactly

one block. A block child is a block that is attached at a lower level of a partic-

ular vertex. The outdegree of vertex i is the number of block children of i. The

outdegree sequence is an ordered sequence of the outdegrees of the vertices of the

tree-like structure. If the outdegree of each vertex is at most d then we get a d-ary

tree-like structure. A bicoloured tree-like structure is a tree-like structure in which

the blocks are coloured using two colours such that blocks of the same colour are

not incident to each other.

1.1.2 Generating functions and functional equations

Generating functions are vital in obtaining our results. Ordinary and exponential

generating functions are used for counting unlabelled and labelled structures

4



Figure 1.5: Ternary cactus on 25 vertices with 11 blocks.

respectively.

Definition 1.1.1. The ordinary generating function of the sequence (s0, s1, . . .), of

integers, is ∑
i≥0

sixi with its exponential generating function being ∑
i≥0

si
xi

i!
.

It is common practice to denote the coefficient of xn in the generating function

g(x) by [xn]g(x). A functional equation is an equation expressing a function in

terms of itself. We use the following theorems to extract the coefficient of xn in a

generating function g(x) which takes the form g(x) = xψ(g(x)).

Theorem 1.1.2 (Lagrange Inversion Formula, [19]). Let g(x) be a generating func-

tion that satisfies the functional equation g(x) = xψ(g(x)), where ψ(0) ̸= 0. Then, we

have

[xn]g(x)k =
k
n
[tn−k]ψ(t)n.

Theorem 1.1.3 (Lagrange-Bürmann Formula [8]). Let ψ(t) be a power series in t, not

involving x. Then there is a unique power series f = f (x) such that f (x) = xψ( f (x)),

and for any Laurent series g(t), not involving x and for any integer n ̸= 0 we have

[xn]g( f (x)) =
1
n
[tn−1]

(
d
dt

g(t)
)

ψ(t)n.
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Wilf’s generatingfunctionology [21] is devoted to the study of generating functions

and its applications.

1.1.3 Łukasiewicz words

Consider an alphabet A which consists of letters l0, l1, . . . and the empty word be

denoted by 1. Let the weight of the letter li be φ(li) = i − 1. A word w1w2 · · ·wm

made of letters from A is a Łukasiewicz word if φ(w1) + · · · + φ(wj) ≥ 0 for

1 ≤ j ≤ m − 1 and φ(w1) + · · · + φ(wm) = −1. Let |A| = n and let ni be the

multiplicity of letter li in a Łukasiewicz word. Then the number of Łukasiewicz

words on A are (
n

n0, n1, . . .

)
[19].

1.1.4 Basic identities

For integers N, M, n, k ≥ 0, the following identities hold:[16]

(i)Binomial theorem

(x + y)n =
n

∑
k=0

(
n
k

)
xkyn−k,

(ii) Hockey-stick identity

n

∑
i=k

(
i
k

)
=

(
n + 1
k + 1

)
,

(iii) Vandermonde identity

n

∑
k=0

(
N
k

)(
M

n − k

)
=

(
N + M

n

)
, and

(iv) Multinomial theorem

(x1 + x2 + x3 + · · ·+ xk)
n = ∑

n1,n2,...,nk≥0

n!
n1!n2! · · · nk!

xn1
1 xn2

2 · · · xnk
k ,

where, n1 + n2 + n3 + · · ·+ nk = n.

6



1.2 Statement of the problem

Various statistics concerning plane and d-ary trees have been investigated by

both mathematicians and computer scientists. The parameters already studied

are root degree, number of vertices, number of leaves, degree of a given vertex

and degree of vertices at a given level. Plane tree-like structures have been enu-

merated by number of vertices, leaves, blocks and block types. However, there

is no literature on the study of plane tree-like structures according to root de-

gree and degree sequence. Moreover, d-ary tree-like structures have not been

enumerated at all. In this work, we have obtained closed formulas for the num-

ber of plane Husimi graphs, cacti and oriented cacti according to root degree,

total number of vertices of a given outdegree and outdegree/degree sequence.

We have also enumerated bicoloured plane tree-like structures according to the

number of vertices, blocks and block types. Finally, we have introduced and

enumerated d-ary tree-like structures with regard to number of vertices, blocks,

block types, outdegree sequence and number of leaves.

1.3 Objectives of the study

The aim of this work was to enumerate plane and d-ary tree-like structures ac-

cording to the number of vertices, blocks, block types, root degree, outdegree

sequence and number of leaves. Specifically, we have obtained:

i. Explicit formulas for the number of plane Husimi graphs, cacti and oriented

cacti according to root degree and outdegree sequence.

ii. Explicit formulas for the number of bicoloured plane Husimi graphs, cacti

and oriented cacti according to number of vertices, blocks and block types.

iii. Explicit formulas for the number of d-ary Husimi graphs, cacti and oriented

7



cacti according to number of vertices, blocks, leaves, block types and outde-

gree sequence.

1.4 Methodology

To obtain our results, we have applied symbolic method to find generating func-

tions for plane and d-ary tree-like Husimi graphs, cacti and oriented cacti. We

then used Lagrange Inversion Formula and Lagrange-Bürmman Formula to ex-

tract the coefficients of the variables in the generating functions to obtain closed

formulas. We have also constructed a bijection. Moreover, we have used direct

proofs and built on the previous works of various authors.

1.5 Significance of the study

Plane and d-ary trees have been previously investigated by various mathemati-

cians and computer scientists. However, no study has been done to enumerate

plane tree-like structures using the parameters such as root degrees and outde-

gree sequences. Moreover, d-ary tree-like structures have not been enumerated.

This study adds to the richly available literature. The results may be of impor-

tance to other areas of mathematics, physics and computer science.

8



CHAPTER 2

LITERATURE REVIEW

This chapter is dedicated to the review of literature on plane and d-ary trees

as well as their tree-like counterparts. Trees and tree-like structures have been

studied before [1, 2, 3, 4, 6, 7, 10, 14, 15, 17, 18]. Labelled trees on n vertices are

counted by Cayley’s formula, i.e nn−2 [1]. Dershowitz and Zaks [4] showed that

the number of plane trees with n edges is given by,

Cn =
1
n

(
2n − 2
n − 1

)
,

which is the famous Catalan number. R. Stanley in [19] later showed that the

number of d-ary trees with n internal vertices is given by

1
n + 1

(
dn

n − 1

)
.

In an attempt to generalize the concept of trees and solving counting problems

arising from physics, Japanese physicist Kodi Husimi introduced Husimi graphs

back in 1950 (See [11]). The author showed that if (n2, n3, . . .) is a sequence of

non-negative integers satisfying the condition:

n = ∑
i≥2

(i − 1)ni + 1, (2.1)

9



then the number of Husimi graphs having ni blocks of size i is

(n − 1)!nk−1

∏
i≥2

((i − 1)!)ni ni!
, (2.2)

where k is the total number of blocks. Husimi proved the formula by first ob-

taining a recurrence equation satisfied by the graphs and solving the recurrence

relation. Mayer [13] provided a direct proof and Leroux [12] used generating

functions to prove the formula. Summing over all ni in (2.2), we find that there

are {
n − 1

k

}
nk−1

Husimi graphs on n ≥ 1 nodes with k blocks, where

{
m
r

}
is the Stirling’s num-

ber of the second kind, which counts set partition.

In 1953, Harary and Unlenbeck in [10] introduced cacti and enumerated them

according to number of blocks and sizes. Collin Springer in [18] then enumerated

oriented cacti, again by the number of blocks and block sizes.

Okoth, in his PhD thesis [14], introduced coloured Husimi graphs, cacti and ori-

ented cacti. These are structures whose blocks are assigned two different colours

such that incident blocks are assigned different colours. He showed that these

structures were in bijections with some families of set partitions introduced by

Teufl and Wagner [20].

In the same thesis [14], he also introduced noncrossing tree-like structures and

enumerated them according to number of blocks and block sizes. He also ob-

tained counting formulas for these structures such that blocks are coloured using

only two colours and incident blocks do not receive the same colour. He called

them bicoloured noncrossing Husimi graphs. To obtain his results, the aforemen-

tioned author used generating function approach.

In 2021, Okoth in his paper [15] studied plane tree-like structures and found

explicit formulas for plane Husimi graphs, cacti and oriented cacti with given

10



number of blocks, block sizes and leaves. He mainly used symbolic methods to

find generating functions for such structures and then used Lagrange Inversion

Formula to extract the coefficients of the variables in the generating function.

Plane Husimi graphs had not been counted with root degree and outdegree se-

quence as the parameters of enumeration. Moreover, d-ary tree-like structures

have not been enumerated by number of vertices, leaves, blocks, block types,

root degree and outdegree sequence. In this work, we have built on the latest

studies of Okoth [15] and obtained closed formulas for plane tree-like structures

according to root degree and outdegree sequence. We have also enumerated d-

ary tree-like structures according to number of blocks, block types, leaves, root

degree and outdegree sequences.

11



CHAPTER 3

ENUMERATION OF PLANE

TREE-LIKE STRUCTURES

We present our results on plane tree-like structures. We have obtained closed

formulas for plane Husimi graphs, cacti and oriented cacti with a given root

degree, total number of vertices of a given outdegree and outdegree sequence.

We have also obtained closed formulas for the number of bicoloured plane tree-

like structures according to number of vertices, blocks and block types. We begin

by enumerating plane tree-like structures by outdegree sequence.

3.1 Counting plane tree-like structures by outdegree

sequences

In this section, plane Husimi graphs, cacti and oriented cacti are enumerated by

number of vertices of a given degree, total number of vertices of a given outde-

12



gree and outdegree sequences. We also obtain a formula counting these graphs

with a given root degree. We start by proving the following important lemma.

Lemma 3.1.1. Let n, k ≥ 1 and let n1, n2, . . . be non-negative integers such that n1 +

n2 + · · · = k and n1 + 2n2 + · · · = n − 1. Then,

∑
n1+n2+···=k

n1+2n2+···=n−1
n1,n2,...≥0

k!
n1!n2! · · · =

(
n − 2
k − 1

)
.

Proof. We have

∑
n1+n2+···=k

n1+2n2+···=n−1
n1,n2,...≥0

1
n1!n2! · · · = [xn−1yk]∏

i≥1

(
∑
j≥0

xijyj

j!

)

= [xn−1yk]∏
i≥1

exp(xiy)

= [xn−1yk] exp(y(x + x2 + · · · ))

= [xn−1yk] exp
(

xy
1 − x

)
= [xn−1yk] ∑

i≥0

xiyi(1 − x)−i

i!

= [xn−1]
xk(1 − x)−k

k!
.

By binomial theorem, we have

∑
n1+n2+···=k

n1+2n2+···=n−1
n1,n2,...≥0

1
n1!n2! · · · = [xn−k−1]

1
k! ∑

i≥0

(
−k
i

)
(−x)i

= [xn−k−1]
1
k! ∑

i≥0

(
k + i − 1

i

)
xi

=
1
k!

(
n − 2

n − k − 1

)
.

13



Theorem 3.1.2. There are

1
n

(
n

d0, d1, . . . , dk

)(
n − 2
k − 1

)
(3.1)

plane Husimi graphs on n vertices with k blocks and exactly di vertices of outdegree i.

Proof. Consider any plane Husimi graph H of order n with k blocks such that

there are ni blocks of size i ≥ 2. Label the vertices of the graph with integers

1, 2, . . . n such that node i is the ith node visited when H is traversed in preorder

(i.e visit the root, left most subtree, second most subtree, etc). Let di be the out-

degree of vertex i.

Let A be the set of words of length n. Also, let B the set of Łukasiewicz words

of length n. In the book [19], R. Stanley constructed a bijection ϕ : A × [n] −→

B × [r] by means of plane forests with r components where [n] := {1, 2, . . . , n} .

Setting r = 1, we obtain the necessary result since we are dealing with tree-like

structures and not forest of tree-like structures. Here, the set A is the set of words

xd1 xd2 · · · xdn where di is the degree of vertex i.

From the bijection, we have

n|A| =
(

n
d0, d1, . . . , dk

)

since dj = 0 for all j > k. Making use of Lemma 3.1.1 to sum over all block types,

the number of plane Husimi graphs on n vertices with k blocks is thus

|A|
(

n − 2
k − 1

)
=

1
n

(
n

d0, d1, . . . , dk

)(
n − 2
k − 1

)
.

14



Corollary 3.1.3. The total number of vertices of outdegree i ≥ 0 over all plane Husimi

graphs on n ≥ 1 vertices with k blocks is

(
n + k − i − 2

n − 2

)(
n − 2
k − 1

)
. (3.2)

Proof. We first obtain the sum,

∑
d1+d2+···=n
d1+2d2+···=k

d1,d2,...≥0

di

d1!d2! · · · = [xkyn]

(
∑
j≥1

jxijyj

j!

)
∏
m≥1
m ̸=i

(
∑
j≥0

xmjyj

j!

)

= [xkyn]xiy

(
∑
j≥1

xi(j−1)y(j−1)

(j − 1)!

)
∏
m≥1
m ̸=i

(
∑
j≥0

xmjyj

j!

)

= [xkyn]xiy

(
∑
j≥0

xijyj

j!

)
∏
m≥1
m ̸=i

(
∑
j≥0

xmjyj

j!

)

= [xkyn]xiy exp(xiy) ∏
m≥1
m ̸=i

exp(xmy)

= [xkyn]xiy ∏
m≥1

exp(xmy)

= [xkyn]xiy exp(y(x + x2 + · · · ))

= [xk−iyn−1] exp
(

xy
1 − x

)
= [xk−iyn−1] ∑

i≥0

xiyi(1 − x)−i

i!

= [xk−i]
xn−1(1 − x)−(n−1)

(n − 1)!
.

15



By binomial theorem, we have

∑
d1+d2+···=n
d1+2d2+···=k

d1,d2,...≥0

di

d1!d2! · · · = [xk−i−n+1]
1

(n − 1)! ∑
j≥0

(
−(n − 1)

j

)
(−x)j

= [xk−i−n+1]
1

(n − 1)! ∑
j≥0

(
n + j − 2

j

)
xj

=
1

(n − 1)!

(
k − i − 1

k − i − n + 1

)
.

Let di be the number of vertices of outdegree i. Now, we have the total number

of vertices of outdegree i > 0 in plane Husimi graphs on n vertices with k blocks

as:

∑
d0≥0

∑
d1+d2+···=n−d0

d1+2d2+···=k
d1,d2,...≥0

di

n

(
n

d0, d1, . . . , dk

)(
n − 2
k − 1

)

= ∑
d0≥0

1
n

(
n
d0

)
(n − d0)!

(
n − 2
k − 1

)
∑

d1+d2+···=n−d0
d1+2d2+···=k

d1,d2,...≥0

di

d1!d2! · · · dk!

= ∑
d0≥0

1
n

(
n
d0

)
(n − d0)!

(
n − 2
k − 1

)
· 1
(n − d0 − 1)!

(
k − i − 1

n − d0 − 2

)

= ∑
d0≥0

(
n − 1

d0

)(
k − i − 1

n − d0 − 2

)(
n − 2
k − 1

)

=

(
n + k − i − 2

n − 2

)(
n − 2
k − 1

)
.

The last equality follows by Vandermonde identity. Next, we obtain the number

16



of vertices of outdegree 0, i.e., we get the sum

∑
d1+d2+···=n−d0

d1+2d2+···=k
d1,d2,...≥0

d0

n

(
n

d0, d1, . . . , dk

)(
n − 2
k − 1

)

=
d0

n

(
n
d0

)
(n − d0)!

(
n − 2
k − 1

)
∑

d1+d2+···=n−d0
d1+2d2+···=k

d1,d2,...≥0

1
d1!d2! · · · dk!

=

(
n − 1
d0 − 1

)
(n − d0)!

(
n − 2
k − 1

)
· 1
(n − d0)!

(
k − 1

n − d0 − 1

)
=

(
n − 1
d0 − 1

)(
k − 1

n − d0 − 1

)(
n − 2
k − 1

)
.

The formula follows by summing over all d0 making use of Vandermonde iden-

tity.

Corollary 3.1.4 was also proved by Okoth [15] using generating functions.

Corollary 3.1.4. There are

1
n

(
n
d0

)(
k − 1

n − d0 − 1

)(
n − 2
k − 1

)
(3.3)

plane Husimi graphs on n vertices with k blocks and d0 leaves.

Proof. We sum over all di for i = 1, 2, . . . in Equation (3.1):

17



∑
d1+d2+···+dk=n−d0
d1+2d2+···+kdk=k
d1≥0,d2≥0,...,dk≥0

1
n

(
n

d0, d1, . . . , dk

)(
n − 2
k − 1

)

=
1
n

(
n
d0

)
∑

d1+d2+···+dk=n−d0
d1+2d2+···+kdk=k
d1≥0,d2≥0,...,dk≥0

(
n − d0

d1, d2, . . . , dk

)(
n − 2
k − 1

)

=
(n − d0)!

n

(
n
d0

)(
n − 2
k − 1

)
∑

d1+d2+···+dk=n−d0
d1+2d2+···+kdk=k
d1≥0,d2≥0,...,dk≥0

1
d1!d2! · · · dk!

.

From the proof of Lemma 3.1.1, we have the sum as:

(n − d0)!
n

(
n
d0

)(
n − 2
k − 1

)
· 1
(n − d0)!

(
k − 1

n − d0 − 1

)
=

1
n

(
n
d0

)(
k − 1

n − d0 − 1

)(
n − 2
k − 1

)
.

This completes the proof.

The total number of leaves in plane Husimi graphs on n vertices with k blocks is

thus
n−k

∑
d0=1

d0

n

(
n
d0

)(
k − 1

n − d0 − 1

)(
n − 2
k − 1

)

=
n−k

∑
d0=1

(
n − 1
d0 − 1

)(
k − 1

n − d0 − 1

)(
n − 2
k − 1

)
=

(
n + k − 2

n − 2

)(
n − 2
k − 1

)
.

Lemma 3.1.5. The number of plane Husimi graphs on n vertices with k blocks such that

the root has degree r is given by

r
k

(
n + k − r − 2

k − r

)(
n − 2
k − 1

)
. (3.4)

Proof. Let T be a plane Husimi graph on n vertices such that the root has degree

r. Using Depth First Search (DFS), we label the vertices of the graph with integers
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1, 2, . . . , n such that the root is labelled 1. Let the degree of vertex i be ri. Then

r + r2 + r3 + · · · + rn = k. The number of nonnegative integer solutions of the

equation r2 + r3 + · · · + rn = k − r is (n+k−r−2
k−r ). Moreover, there are exactly r

permutations of the total k cyclic permutations of r2, r3, . . . , rn which are valid

degree sequences.

Since there are a total of (n−2
k−1) choices for block types (see Lemma 3.1.1) if there

are n vertices in the plane tree-like structure with k blocks then the result follows.

We provide alternative proof for Lemma 3.1.5 based on generating functions and

making use of Lagrange-Bürmann Formula proved in [8].

Alternative proof of Lemma 3.1.5. Let P(x) be the generating function for plane Husimi

graphs, where x marks a vertex. Let yi mark blocks of size i. Then

P(x) = x + x ∑
i≥1

yi+1Pi + x

(
∑
i≥1

yi+1Pi

)2

+ · · · = x
1 − ∑i≥1 yi+1Pi .

Thus the generating function for plane Husimi graphs with root degree r is

x
(
∑i≥1 yi+1Pi)r . We remain to extract the coefficient of xn in x

(
∑i≥1 yi+1Pi)r,
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By Lagrange-Bürmann formula (Theorem 1.1.3), we have

[xn]x

(
∑
i≥1

yi+1Pi

)r

= [xn−1](∑
i≥1

yi+1Pi)r

=
1

n − 1
[tn−2]r

(
∑
i≥1

yi+1ti

)r−1(
∑
i≥1

yi+1iti−1

)
(

x
1 − ∑i≥1 yi+1ti

)n−1

=
r

n − 1
[tn−2]

(
∑
i≥1

yi+1ti

)r−1(
∑
i≥1

yi+1iti−1

)
∑
ℓ≥0

(
n + ℓ− 2

ℓ

)
(

∑
i≥1

yi+1ti

)ℓ

=
r

n − 1
[tn−2] ∑

ℓ≥0

(
n + ℓ− 2

ℓ

)(
∑
i≥1

yi+1ti

)r+ℓ−1(
∑
i≥1

yi+1iti−1

)

=
r

n − 1
[tn−2] ∑

ℓ≥0

(
n + ℓ− 2

ℓ

)
d
dt

1
r + ℓ

(
∑
i≥1

yi+1ti

)r+ℓ

=
r

n − 1 ∑
ℓ≥0

(
n + ℓ− 2

ℓ

)
(n − 1)[tn−1]

1
r + ℓ

(
∑
i≥1

yi+1ti

)r+ℓ

= ∑
ℓ≥0

r
r + ℓ

(
n + ℓ− 2

ℓ

)
[tn−1]

(
∑
i≥1

yi+1ti

)r+ℓ

.

We thus have,

[xn]x

(
∑
i≥1

yi+1Pi

)r

= ∑
ℓ≥0

r
r + ℓ

(
n + ℓ− 2

ℓ

)
∑

n2+n3+···=r+ℓ
n2+2n3+···=n−1

(r + ℓ)!yn2
2 yn3

3 · · ·
n2!n3! . . .

.

So, the number of plane Husimi graphs on n vertices, k blocks and root degree r

such that there are ni blocks of size i is given by

r
(

n + k − r − 2
k − r

)
(k − 1)!

n2!n3! . . .

where n2 + n3 + · · · = k. By the proof of Lemma 3.1.1, we have that the number
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of plane Husimi graphs on n vertices, k blocks and root degree r is

r(k − 1)!
(

n + k − r − 2
k − r

)
∑

n2+n3+···=k

1
n2!n3! . . .

= r(k − 1)!
(

n + k − r − 2
k − r

)
· 1

k!

(
n − 2

n − k − 1

)
=

r
k

(
n + k − r − 2

k − r

)(
n − 2
k − 1

)
.

Corollary 3.1.6. There are a total of

1
n

(
n + k − 1

k

)(
n − 2
k − 1

)
plane Husimi graphs on n vertices with k blocks.

Proof. We sum over all r in Equation (3.4):

k

∑
r=1

r
k

(
n + k − r − 2

k − r

)(
n − 2
k − 1

)
=

k

∑
r=1

r
k

(
n + k − r − 2

n − 2

)(
n − 2
k − 1

)
=

n+k−3

∑
i=n−2

n + k − i − 2
k

(
i

n − 2

)(
n − 2
k − 1

)

=
n+k−3

∑
i=n−2

n + k − 1
k

(
i

n − 2

)(
n − 2
k − 1

)
−

n+k−3

∑
i=n−2

(i + 1)(n − 1)
k(n − 1)

(
i

n − 2

)(
n − 2
k − 1

)

=
n + k − 1

k

n+k−3

∑
i=n−2

(
i

n − 2

)(
n − 2
k − 1

)
−

n+k−3

∑
i=n−2

n − 1
k

(
i + 1
n − 1

)(
n − 2
k − 1

)

=
n + k − 1

k

n+k−3

∑
i=n−2

(
i

n − 2

)(
n − 2
k − 1

)
− n − 1

k

n+k−2

∑
j=n−1

(
j

n − 1

)(
n − 2
k − 1

)

=
n + k − 1

k

(
n + k − 2

n − 1

)(
n − 2
k − 1

)
− n − 1

k

(
n + k − 1

n

)(
n − 2
k − 1

)
=

1
k

(
n + k − 1

n

)(
n − 2
k − 1

)
=

1
n

(
n + k − 1

k

)(
n − 2
k − 1

)
.
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We now obtain the following result:

Theorem 3.1.7. Let n, r ≥ 1 and i ≥ 0. Then the total number of vertices with outdegree

i among all plane Husimi graphs on n vertices with root degree r and k blocks is given by
r(n+k−r−i−3

n−3 )(n−2
k−1), when i ̸= r,

r(n+k−2r−3
n−3 )(n−2

k−1) +
r
k
(n+k−r−2

n−2 )(n−2
k−1), when i = r.

Proof. We consider the two cases:

Case 1: Let i ̸= r. Let T be a plane Husimi graph on n vertices with k blocks

such that the root has degree r and a given vertex u has outdegree i. Let the

outdegree of the remaining vertices be d1, d2, . . . , dn−2. Again these outdegrees

of T are arranged as one traverses the Husimi graph by DFS. The total number

of nonnegative integer solutions of the equation d1 + d2 + · · ·+ dn−2 = k − r − i

is (n+k−r−i−3
n−3 ) [19]. This proves the result.

Case 2: For i = r, we need to note that the roots are also counted. Thus the result

follows by adding the result of Case 1 and Equation (3.4).

Corollary 3.1.8. The total number of vertices of degree i ≥ 1 over all plane Husimi

graphs on n ≥ 1 vertices with k blocks is

n + k − 1
k

(
n + k − i − 2

n − 2

)(
n − 2
k − 1

)
.

Proof. The desired formula is the sum of the total number of non-root vertices

of outdegree i − 1 and the number of roots of degree i in plane Husimi graphs
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on n vertices with k blocks. By Equations (3.2) and (3.4), we have the required

formula as:

[(
n + k − i − 1

n − 2

)
− i − 1

k

(
n + k − i − 1

n − 2

)
+

i
k

(
n + k − i − 2

n − 2

)](
n − 2
k − 1

)
=

[
k − i + 1

k

(
n + k − i − 1

n − 2

)
+

i
k

(
n + k − i − 2

n − 2

)](
n − 2
k − 1

)
=

n + k − 1
k

(
n + k − i − 2

n − 2

)(
n − 2
k − 1

)
.

3.2 Bicoloured plane tree-like structures

We recall from Subsection 1.1.1 that a bicoloured plane tree-like structure is a tree-

like structure whose blocks are coloured using two colours such that no blocks of

the same colour are incident to one another. A 2-colourable plane tree-like structure

is a structure with root degree at most 2 and the rest of the vertices with at most

degree 1. This makes it possible to colour the blocks using two colours. We start

by enumerating 2-colourable plane tree-like structures with roots of degree 1.

Proposition 3.2.1. The number of 2-colourable plane Husimi graphs on n vertices and

k blocks such that the root of graph has degree 1 and there are nj blocks of size j is given

by

1
n

(
n
k

)
k!

∏
j≥2

nj!
. (3.5)

Proof. Let B(x) be the generating function for 2-colourable plane Husimi graphs

with root degree 1 (or 0). Since each vertex is to have degree less than or equal

to 2, the generating function satisfies B(x) = x(1 + ∑i≥1yi+1Bi). By the Lagrange
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Inversion Formula [19], we have

[xn]B(x) =
1
n
[tn−1](1 + ∑

i≥1
yi+1ti)n

=
1
n
[tn−1] ∑

k≥0

(
n
k

)(
∑
i≥1

yi+1ti

)k

=
1
n
[tn−1] ∑

k≥0

(
n
k

)
(y2t + y3t2 + · · · )k

=
1
n ∑

k≥0

(
n
k

)
∑

n2+n3+···=k
n2+2n3+···=n−1

k!yn2
2 yn3

3 · · ·
n2!n3! · · ·

Therefore, there are

1
n

(
n
k

)
k!

∏
j≥2

nj!

such 2-colourable plane Husimi graphs.

Corollary 3.2.2. The number of 2-colourable plane Husimi graphs with root of degree 1

is given by the Narayana number,

1
n

(
n
k

)(
n − 2
k − 1

)
. (3.6)

Proof. By the proof of Lemma 3.1.1, we have

∑
n2+n3+···=k

n2+2n3+···=n−1

k!
n2!n3! · · · =

(
n − 2
k − 1

)
.

Formula (3.6) thus follows immediately from Equation (3.5) by summing over all

nj.

Summing over all k in Equation (3.6), we find another combinatorial structure

counted by the Catalan number.
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Corollary 3.2.3. The number of 2-colourable plane cacti on n vertices and k cycles such

that the root degree is 1, and nj cycles of size j is given by

1
n

(
n
k

)
k!

∏
j≥3

nj!
.

Proof. The result follows from Equation (3.5) by noting that we can convert a

complete graph to a cycle by deleting all edges except the boundary ones.

Corollary 3.2.4. The number of 2-colourable plane oriented cacti with root of degree 1,

having n vertices and k blocks, nj of which are of size j is given by

2k−n2(n − 1)!
(n − k)! ∏

j≥3
nj!

. (3.7)

Proof. The proof follows since every edge in a cycle of size at least three has two

orientations.

Corollary 3.2.5. The number of 2-colourable plane oriented cacti on n vertices such that

root is of degree 1 is given by

∑
k≥1

∑
n2+n3+···=k

n2+2n3+···=n−1

2k−n2(n − 1)!
(n − k)! ∏

j≥3
nj!

.

Proof. The result follows by summing over all nj and over all k in Equation (3.7).

Proposition 3.2.6. The number of 2-colourable plane Husimi graphs on n vertices and

k blocks such that the root of the graph has degree 2 and there are nj blocks of size j is

given by

2
n + 1

(
n + 1

k

)
k!

∏
j≥2

nj!
. (3.8)
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Proof. Let C(x) be the generating function for 2-colourable plane Husimi graphs

with root degree 2. The generating function is obtained by merging two such

graphs with root degree 1, which satisfies C(x) =
B(x)2

x
, where B(x) is the gen-

erating function of a 2-colourable plane Husimi graphs with root of degree 1 By

the Lagrange inversion formula, we obtain

[xn]C(x) = [xn]
B2(x)

x

= [xn+1]B2(x)

=
2

n + 1
[tn−1]

(
1 + ∑

i≥1
yi+1ti

)n+1

=
2

n + 1
[tn−1] ∑

k≥0

(
n + 1

k

)
(y2t + y3t2 + · · · )k

=
2

n + 1 ∑
k≥0

(
n + 1

k

)
∑

n2+n3+···=k
n2+2n3+···=n−1

k!yn2
2 yn3

3 ...
n2!n3! · · · .

Therefore, the number of the required plane Husimi graphs is

2
n + 1

(
n + 1

k

)
k!

∏
j≥2

nj!
.

Corollary 3.2.7. The number of 2-colourable plane Husimi graphs on n vertices with k

blocks, nj of which have size j is given by

3n − k + 1
n − k + 1

· 1
n

(
n
k

)
k!

∏
j≥2

nj!
. (3.9)
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Proof. We get the required formula by adding Equations (3.5) and (3.8), i.e.[
1
n

(
n
k

)
+

2
n + 1

(
n + 1

k

)]
k!

∏
j≥2

nj!

=

[
1
n

(
n
k

)
+

2
n − k + 1

(
n
k

)]
k!

∏
j≥2

nj!

=
n − k + 1 + 2n
n(n − k + 1)

(
n
k

)
k!

∏
j≥2

nj!

=
3n − k + 1
n − k + 1

· 1
n

(
n
k

)
k!

∏
j≥2

nj!
.

Summing over all nj in Equation (3.9), we find that there are

3n − k + 1
n − k + 1

· 1
n

(
n
k

)(
n − 2
k − 1

)
2-colourable plane Husimi graphs on n vertices with k blocks and thus the total

number of 2-colourable plane Husimi graphs on n vertices is

∑
k≥1

3n − k + 1
n − k + 1

· 1
n

(
n
k

)(
n − 2
k − 1

)
.

Using a similar argument, there are

∑
k≥1

3n − k + 1
n − k + 1

· 1
n

(
n
k

)(
n − 2
k − 1

)
and

∑
k≥1

3n − k + 1
n − k + 1

· 1
n

(
n
k

)(
n − 2
k − 1

)
2k−n2

2-colourable cacti and 2-colourable oriented cacti respectively on n vertices.

Corollary 3.2.8. The number of bicoloured plane Husimi graph on n vertices with k

blocks such that nj blocks are of size j is given by

3n − k + 1
n − k + 1

· 2
n

(
n
k

)
k!

∏
j≥2

nj!
. (3.10)
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Proof. There are two ways of colouring a block and one way for colouring the

remaining blocks. Thus, the required formula is twice Equation (3.9).

Corollary 3.2.9. The number of bicoloured plane Husimi graphs on n vertices with k

blocks is given by

3n − k + 1
n − k + 1

· 2
n

(
n
k

)(
n − 2
k − 1

)
.

Proof. We sum over all nj in Equation (3.10).

Also, there are

∑
k≥1

∑
n2+n3+···=k

n2+2n3+···=n−1

3n − k + 1
n − k + 1

· 2
n

(
n
k

)
k!

(n − k)! ∏
j≥3

nj!

and

∑
k≥1

∑
n2+n3+···=k

n2+2n3+···=n−1

3n − k + 1
n − k + 1

· 1
n

(
n
k

)
2k−n2+1 · k!

(n − k)! ∏
j≥3

nj!

bicoloured cacti and bicoloured oriented cacti respectively on n vertices.
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CHAPTER 4

ENUMERATION OF d-ARY

TREE-LIKE STRUCTURES

In this chapter, we present our results on d-ary tree-like structures. We obtain

closed formulas for the number of d-ary Husimi graphs, d-ary cacti and d-ary

oriented cacti according to number of vertices, blocks, block types, outdegree

sequence and number of leaves.

4.1 Enumeration by blocks and block types

We begin by getting the number of d-ary Husimi graphs on a given number of

vertices.

Theorem 4.1.1. If (n2, n3, . . .) is a sequence of positive integers satisfying the coherence

condition: n = ∑
j≥2

(j − 1)nj + 1, then the number dHGn(n2, n3, . . .) of d-ary Husimi
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graphs on n vertices having nj blocks of size j is

dHGn(n2, n3, . . .) =
1
n

(
dn
k

)
k!

∏
j≥2

nj!
(4.1)

where k is the total number of blocks.

Proof. Let x mark a vertex. Let D(x) be the generating function for d-ary Husimi

graphs. Let yi denote the number of vertices in every block. The generating

function D(x) satisfies the functional equation D(x) = x(1 + ∑i≥1yi+1Di)d. By

the Lagrange inversion formula (Theorem 1.1.2), we obtain

[xn]D(x) =
1
n
[tn−1]

(
1 + ∑

i≥2
yi+1ti

)dn

=
1
n
[tn−1] ∑

k≥0

(
dn
k

)(
∑
i≥1

yi+1ti

)k

=
1
n
[tn−1] ∑

k≥0

(
dn
k

)
(y2t + y3t2 + · · · )k

=
1
n ∑

k≥0

(
dn
k

)
∑

n2+n3+···=k
n2+2n3+···=n−1

k!yn2
2 yn3

3 · · ·
n2!n3! · · · .

(4.2)

Thus, the required formula is

1
n

(
dn
k

)
k!

∏
j≥2

nj!
.

Example 4.1.2. Consider a binary Husimi graph on 5 vertices with 2 blocks of

type (0, 2, 0, . . .) satisfying the coherence conditions. There are nine such graphs

as given in Figure 4.1.
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Figure 4.1: Binary Husimi graphs on 5 vertices with 2 blocks of type (0, 2, 0, . . .)

Corollary 4.1.3. The number of d-ary Husimi graphs on n vertices having k blocks is

given by

1
n

(
dn
k

)(
n − 2
k − 1

)
. (4.3)

Proof. From Equation (4.1), the required formula is given by

1
n

(
dn
k

)
∑

n2+n3+···=k
n2+2n3+···=n−1

k!
n2!n3! . . .

. (4.4)

By Lemma 3.1.1, we have

∑
n2+n3+···=k

n2+2n3+···=n−1

k!
n2!n3!...

=

(
n − 2
k − 1

)
. (4.5)

Substituting Equation (4.5) in Equation (4.4), we find that the number of d-ary

Husimi graphs on n vertices with k blocks is
1
n

(
dn
k

)(
n − 2
k − 1

)
. This completes

the proof.

Summing over all k in Equation (4.3), we find that there are a total of

1
n

(
(d + 1)n − 2

n − 1

)
(4.6)
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d-ary Husimi graphs on n vertices. Setting d = 1, we find that there are

1
n

(
2n − 2
n − 1

)
unary Husimi graphs in which every vertex has outdegree 1 or 0. This is another

manifestation of Catalan numbers. This formula also counts the number of plane

trees on n vertices.

Lemma 4.1.4. There is a bijection between the set of unary Husimi graphs on n vertices

and plane trees on n vertices.

Proof. To convert a unary Husimi graph on n vertices to a plane tree on n vertices

we remove the edges between any two adjacent vertices on the same level and

create edges between each internal vertex and its children. Conversely, by creat-

ing edges between vertices on the same level, we obtain a unary Husimi graph.

See Figure 4.2 for the bijection.

↔

Figure 4.2: Bijection between unary Husimi graph and plane tree

Corollary 4.1.5. If (n2, n3, . . .) is a sequence of positive integers satisfying the coherence

condition: n = ∑
j≥2

(j − 1)nj + 1, then the number dCn(n2, n3, . . .) of d-ary cacti on n

vertices having nj blocks of size j is

dCn(n2, n3, . . .) =
1
n

(
dn
k

)
k!

∏
j≥3

nj!
(4.7)

where k is the total number of blocks.

32



Proof. We can convert a complete graph to a cycle by deleting all the edges except

the boundary ones. So the required equation follows from Equation (4.1) i.e,

dCn(n3, n4, . . .)=dHGn(n3, n4, . . .).

Summing over all nj and k in Equation (4.7), we find the total number of d-ary

cacti on n vertices as

∑
k≥1

∑
n2+n3+···=k

n2+2n3+···=n−1

1
n

(
dn
k

)
k!

∏
j≥3

nj!
.

Since there are exactly two orientations for each block in a cactus, then there are

∑
k≥1

∑
n2+n3+···=k

n2+2n3+···=n−1

1
n

(
dn
k

)
2k−n2 · k!

∏
j≥3

nj!

d-ary oriented cacti (dOCn(n3, n4, . . .)) on n vertices.

4.2 Enumeration by number of leaves

Theorem 4.2.1. If (n2, n3, . . .) is a sequence of positive integers satisfying the coherence

condition: n = ∑
j≥2

(j − 1)nj + 1, then the number of d-ary Husimi graphs on n vertices

with ℓ leaves and having nj blocks of size j is given by

n−ℓ

∑
m=0

1
n

(
n
ℓ

)(
n − ℓ

m

)
(−1)n−ℓ−m

(
dm
k

)
k!

∏
j≥2

nj!
, (4.8)

where k is the number of blocks.

Proof. Let x (resp. u) mark a vertex (resp. leaf) in a d-ary Husimi graph. Also let

yi mark blocks of size i. Then the bivariate generating function for the number

of d-ary Husimi graphs with given number of vertices and leaves is given by
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D(x, u) = x(u + (1 + ∑i≥2yi+1Di)d − 1). We obtain the coefficients of xn and uℓ

in the generating function. By Lagrange inversion formula [19], we have

[xnuℓ]D(x, u) =
1
n
[uℓtn−1]

u +

(
1 + ∑

i≥1
yi+1ti

)d

− 1

n

=
1
n
[uℓtn−1]

n

∑
m=0

(
n
m

)
um

(1 + ∑
i≥1

yi+1ti

)d

− 1

n−m

=
1
n

(
n
ℓ

)
[tn−1]

(1 + ∑
i≥1

yi+1ti

)d

− 1

n−ℓ

=
1
n

(
n
ℓ

)
[tn−1]

n−ℓ

∑
m=0

(
n − ℓ

m

)(
1 + ∑

i≥1
yi+1ti

)dm

(−1)n−ℓ−m

=
1
n

(
n
ℓ

)
[tn−1]

n−ℓ

∑
m=0

(
n − ℓ

m

)
(−1)n−ℓ−m

dm

∑
k=0

(
dm
k

)(
∑
i≥1

yi+1ti

)k

=
1
n

(
n
ℓ

) n−ℓ

∑
m=0

(
n − ℓ

m

)
(−1)n−ℓ−m

dm

∑
k=0

(
dm
k

)
∑

n2+n3+···=k
n2+2n3+···=n−1

k!yn2
2 yn3

3 · · ·
n2!n3! · · · .

(4.9)

Thus the required formula is

n−ℓ

∑
m=0

1
n

(
n
ℓ

)(
n − ℓ

m

)
(−1)n−ℓ−m

(
dm
k

)
k!

∏
j≥2

nj!
,

which completes the proof

By summing over all nj in Equation (4.8), we obtain the following corollary:

Corollary 4.2.2. There are

1
n

(
n
ℓ

)(
n − 2
k − 1

) n−ℓ

∑
m=0

(
n − ℓ

m

)(
dm
k

)
(−1)n−ℓ−m

d-ary Husimi graphs on n vertices with k blocks and having ℓ leaves.
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Corollary 4.2.3. If (n2, n3, . . .) is a sequence of positive integers satisfying the coherence

condition: n = ∑
j≥2

(j− 1)nj + 1, then the number of d-ary cacti with ℓ leaves and having

nj blocks of size j is given by

n−ℓ

∑
m=0

1
n

(
n
ℓ

)(
n − ℓ

m

)(
dm
k

)
(−1)n−ℓ−m k!

∏
j≥3

nj!

where k is the total number of blocks.

Proof. The result follows by noting that there is exactly one way of converting a

d-ary Husimi graph to a d-ary cactus.

Corollary 4.2.4. If (n2, n3, . . .) is a sequence of positive integers satisfying the coherence

condition: n = ∑
j≥2

(j − 1)nj + 1, then the number of d-ary oriented cacti with ℓ leaves

and having nj blocks of size j is given by

n−ℓ

∑
m=0

1
n

(
n
ℓ

)(
n − ℓ

m

)(
dm
k

)
(−1)n−ℓ−m 2k−n2 .k!

∏
j≥2

nj!

where k is the total number of blocks.

Proof. The result follows by noting that there are exactly two orientations for

each block in a cactus.

4.3 Enumeration by outdegree sequence

We prove the following theorem:
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Theorem 4.3.1. The number of d-ary Husimi graphs on n vertices with k blocks such

that there are ri vertices of outdegree i is

1
n

(
n

r0, r1, . . . , rd

)(
n − 2
k − 1

)(
d
0

)r0
(

d
1

)r1
(

d
2

)r2

· · ·
(

d
d

)rd

(4.10)

if ∑d
i=0 iri = k.

Proof. We consider a plane Husimi graph on n vertices with k blocks such that

the maximum outdegree is d and that there are ri vertices of outdegree i. The

number of such graphs is given in Theorem 3.1.2. We can convert this graph to

the required d-ary Husimi graph by selecting the positions of the block children

for each vertex. If a vertex has j block children then there are (d
j) positions for the

block children in the d-ary Husimi graph. The result thus follows.

By summing over all ri satisfying the coherence conditions r0 + r1 + · · ·+ rd = n

and r1 + 2r2 + · · · = k we obtain the following corollary:

Corollary 4.3.2. There are

1
n

(
dn
k

)(
n − 2
k − 1

)

d-ary Husimi graphs on n vertices and k blocks.

Corollary 4.3.3. The number of binary Husimi graphs on n vertices such that there are

r0 vertices with no block child, r1 vertices with 1 block child and r2 children with 2 block

children is given by

2n+r1−2

n

(
n

r0, r1, r2

)
.
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Proof. The result follows from Equation (4.10) by setting d = 2 and summing

over all k, i.e., the desired result is

n−1

∑
k=1

1
n

(
n

r0, r1, r2

)(
n − 2
k − 1

)(
2
0

)r0
(

2
1

)r1
(

2
2

)r2

(4.11)

which we now simplify.

n−1

∑
k=1

1
n

(
n

r0, r1, r2

)(
n − 2
k − 1

)(
2
1

)r1

=
2r1

n

(
n

r0, r1, r2

) n−2

∑
i=0

(
n − 2

i

)
=

2r1

n

(
n

r0, r1, r2

)
2n−2

=
2n+r1−2

n

(
n

r0, r1, r2

)
.

The second last equality follows by binomial theorem.
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CHAPTER 5

CONCLUSION AND

RECOMMENDATIONS

5.1 Conclusion

In this work, plane Husimi graphs have been enumerated according to outdegree

sequence (Theorem 3.1.2), root degree (Lemma 3.1.5) and the number of vertices

with a given outdegree (Theorem 3.1.7). We have also enumerated bicoloured

plane tree-like structures with root of degree 1 in Proposition 3.2.1 and of root

degree 2 in Proposition 3.2.6. Finally, we have also introduced and enumerated

d-ary Husimi graphs according to block types in Theorem 4.1.1, number of blocks

(Corollary 4.1.3), number of leaves (Theorem 4.2.1), for which an equivalent re-

sult for plane Husimi graphs was obtained earlier by Okoth in [15]. Outdegree

sequence was also used as a parameter to enumerate d-ary Husimi graphs. The

result is obtained in Theorem 4.3.1.
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5.2 Recommendations

There are a number of ways in which this work can be extended. d-ary Husimi

graphs have not been enumerated according to degree of the root. It is therefore

recommended that a closed formula be obtained for the number of such graphs

given the root degree. Eu, Seo and Shin [7] enumerated plane trees according

to first children, non-first children and level. It would be therefore interesting

to obtain equivalent results for plane Husimi graphs and d-ary Husimi graphs.

Lastly, it is recommended that future work may involve obtaining the number

of coloured plane Husimi graphs if more than two colours are used. The same

can be extended to d-ary Husimi graphs. Forests of plane and d-ary tree-like

structures can also be enumerated.

39



REFERENCES

[1] A. Cayley, A theorem on trees, Quart. J. Math, 23 (1889) 376-378.

[2] F. Bergeron, G. Labelle and P. Leroux, Combinatorial species and tree-like struc-

tures, Encyclopaedia of Mathematics and its Applications, Cambridge University

Press, 1997.
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