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Abstract

In this paper we study the effects of magnetohydrodynamics (M H D)
fluid flow on a two dimensional boundary layer flow of a steady free
convection heat and mass transfer on an inclined plate in which the
angle of inclination is varied. The fluid is taken as viscous, incom-
pressible, electrically conducting. The mathematical formulation yields
a set of governing partial differential equations (PDFEs) under a set of
appropriate boundary conditions. The PDFE's are transformed into ordi-
nary differential equations (ODFEs) by some similarity transformation.
The ODFEs are solved using the shooting method with the fourth or-
der Runge-Kutta numerical method together with the Secant technique
of root finding to determine their solutions. Graphical representation
of the temperature, concentration and velocity fields and various other
pertinent parameters such as Schmidt number S¢, Grashof number Gr,
Eckert number Er for both mass and heat flow, and angle of inclination
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are presented and discussed. This study established that the flow field
and other quantities of physical interest are significantly influenced by
these parameters. In particular, it is found that the velocity increases
with an increase in the thermal and solutal Grashof numbers. The ve-
locity and concentration of the fluid decreases with an increase in the
Schmidt number.

Keywords: Buoyancy driven flow, Inclined plate, MHD, shooting tech-
nique, Runge-Kutta method, heat and mass transfer, viscous dissipation

1 Introduction

Convective fluid motion is defined as the collective motion of particles of a
fluid. There are two types of convection flow: forced convection and natural
or free convection. Forced convection occurs when an external driving force
causes the fluid to flow e.g. use of a fan, a pump or a blower. Free or natural
convection is a self sustained flow driven by buoyancy effects due to density
differences caused by temperature variation in fluid. The rate of heat transfer
() due to free convection is described by Newton’s law of cooling.

Q = hA(T,, — T) = hAAT (1.1)

where h is the convection heat transfer coefficient, A is the surface area of
plate, T, is the temperature of the plate wall, T, is the temperature of the
surrounding and AT is the temperature difference.

There are two types of forces which generally act on a fluid. Body and surface
forces. Body forces are proportional to the mass and hence density of the
fluid and surface forces which are proportional to the surface area of the fluid.
A good example of a body force is that due to gravity. If you consider a
fluid of volume v, mass m and density p flowing past a hot vertical plate, the
surrounding fluid will be called density p, say. The body force on fluid will be
mg where ¢ is gravity force. The net force on fluid will be (p — poo)vg. This is
the buoyancy force driving the flow. During convective motion, both heat and
mass of fluid are transferred. Convection heat transfer occurs at solid-liquid
interface, solid-gas interface, liquid-gas interface, liquid-liquid interface and so
on. Let us now derive a relationship between the temperature difference and
the density difference found in the buoyancy force. Consider free convection
flow bounded by a surface as shown in figure 1.1.

In this case T, > T, i.e. the plate wall temperature is greater than the
temperature inside the boundary layer. Now if a fluid flows past a solid, a
fluid layer is formed adjacent to the boundary of the solid. This layer is called
a boundary layer and strong viscous effects exist within this layer. It was first
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¥

Figure 1.1: Convection flow

identified by Blasius in 1954. The momentum equation in this layer is then
given by
Do Lo 1gpyty (1.2)
a  p p p
where ¥/ is the velocity given by ¢ = u(z,y, 2)i+v(z,y, 2) +w(x,y, z)k in which
uw(z,y, z),v(x,y, z) and w(zx,y, z) are the components of velocity in z, y and
z directions respectively, fgp = —pg is body force, P is the fluid pressure and
i is the dynamic viscosity of the fluid. Assuming steady 2-D incompressible

flow, the  component of the momentum equation is given by

ou ou  10P 0%u

where v = £ is the kinematic viscosity. Note that the pressure gradient inside
the boundary layer must balance the pressure gradient outside the boundary
layer i.e.

oP
( _) = —pg(outsidetheboundarylayer)
(933 inboundarylayer

so that 1.3 becomes
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Volumetric thermal expansion coefficient 3 is defined as

__L(o
= P<8T)P
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And in general,

B LAp 1/ poc—p
T AT p\T-T

from which we find
Ap = pes —p = Bp(T — T) (1.5)

using this expression in 1.4 we find

ou ou J%*u

Convection is a major mode of heat and mass transfer in fluids and plays an
important role in a wide range of engineering, scientific and industrial fields.
Heat transfer by natural convection is utilized in a number of engineering prac-
tices for example cooling of equipment. Cooling of electronic circuit boards in
computers is done by convection. To estimate surface temperatures of com-
ponents mounted on a card or board one may approximate the surface as a
flat plate. Convective heat and mass transfer is used in the design of heat
exchangers, pumps etc. In science, heat transfer by natural convection has a
bearing in the structure of the Earths atmosphere, its oceans and its mantle.
Convective cells in the atmosphere can be seen as clouds, with stronger convec-
tion resulting in thunderstorms. Due and fog formation are a common feature
on transparent surfaces. It creates a pattern that can cause blurred view over
it. This blur is sometimes associated with safety concerns in airplanes and
vehicles. This fogging or mist formation should be avoided by use of free con-
vection over a flat surface. In industrial applications, MHD heat and mass
transfer is used in metallurgical processes: cooling of many continuous strips
or filaments, by drawing them through an electrically conducting fluid subject
to a magnetic field, the rate of cooling can be controlled and final product
of desired characteristics can be achieved. Purification of molten metals from
non metallic inclusions by application of a magnetic field. Glass production,
furnace design are other examples.

Chen [5] performed an analysis to study the natural convection flow over a
permeable inclined surface with variable wall temperature and concentration.
The results show that the velocity is decreased in the presence of a magnetic
field. Increasing the angle of inclination decreases the effect of buoyancy force.
Heat transfer rate is increased when the Prandtl number is increased.

Finite difference Analysis of natural convection flow over a heated plate with
different inclination and stability analysis was considered by Bengum et al. [1]
and solved using Implicit finite difference method of Crank - Nicolson type.
Similarity Solutions for Hydromagnetic Free Convective Heat and Mass Trans-
fer Flow along a Semi-Infinite Permeable Inclined Flat Plate with Heat Gen-
eration and Thermophoresis was studied by Sattar et al. [10].
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Hydro magnetic incompressible viscous flow has many important engineering
applications such as magneto hydrodynamic power generators and the cooling
of reactors also its applications to problems in geophysics, astrophysics etc.
The study of magnetohydrodynamics (MHD) plays an important role in agri-
culture, engineering and petroleum industries. The problem of free convection
under the influence of a magnetic field has attracted the interest of many re-
searchers in view of its applications in geophysics and astrophysics.
Manyonge et al. [3] examined On the Steady MHD Poiseuille Flow Between
two Infinite Parallel Plates in an Inclined Magnetic Field where the governing
equations were solved analytically and expressions for the fluid velocity ob-
tained expressed in terms of Hartmann number.

Details of Effects of Variable Viscosity and Thermal Conductivity on MHD
free Convection and Mass transfer Flow over an Inclined Vertical Surface in
a Porous Medium with Heat Generation was investigated by S. Hazarika and
G.C Hazarika [17] where the systems of ODEs were solved numerically by
fourth order Runge-kutta method along with shooting technique.

On mhd heat and mass transfer over a moving vertical plate with a convective
surface boundary condition was investigated by Makinde [14]. The similarity
solution was used to transform the system of partial differential equations, de-
scribing the problem under consideration, into a boundary value problem of
coupled ordinary differential equations, and an efficient numerical technique is
implemented to solve the reduced system.

An analysis to study the effects of viscous dissipation and Joule heating on
MHD free convection flow past a semi-infinite vertical flat plate in the presence
of the combined effect of Hall and ion-slip currents for the case of power-law
variation of the wall temperature was presented by Emad and Mohamed [7].
The governing differential equations are transformed by introducing proper
non-similarity variables and solved numerically.

Singh [2] studied Mhd free convection and mass transfer flow with hall current,
viscous dissipation, joule heating and thermal diffusion.

Kinyanjui et al.[18] performed Buoyancy effects of thermal and mass diffusion
on mhd natural convection past finite vertical, porous at plate. The problem
has been solved for velocity, temperature and concentration profiles. The equa-
tions governing the flow are solved numerically using finite difference method
for various values of Grashof parameter ranging from 0 to —1. It was noted
that a decrease in Grashof parameter leads to an increase in primary, sec-
ondary, temperature and concentration profile.

Combined heat and mass transfer problems of importance in many processes
and have, therefore, received a considerable amount of attention in recent
years. In processes such as drying, evaporation at the surface of a water body,
energy transfer in a wet cooling tower and the flow in a desert cooler, heat and
mass transfer occur simultaneously. Possible applications of this type of flow
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can be found in many industries. For example, in the power industry, among
the methods of generating electric power is one in which electrical energy is
extracted directly from a moving conducting fluid. Alam et al [11], studied on
heat and mass transfer in MHD free convection flow over an inclined plate with
Hall current, the governing PDEs were transformed using similarity transfor-
mations and solved numerically using Runge-Kutta fourth-fifth order with the
help of symbolic software.

Singh [16], investigated heat and mass Transfer in MHD boundary layer flow
past an inclined plate with viscous dissipation in porous medium.

MHD Free Convective Heat and Mass Transfer Flow Past an Inclined Surface
with Heat Generation was studied by Satter et al. [12]. The governing partial
differential equations are reduced to a system of ordinary differential equations
by introducing similarity transformations. The non-linear similarity equations
are solved numerically by applying the Nachtsheim-Swigert shooting iteration
technique together with a sixth order Runge-Kutta integration scheme.
Gnaneswara [8] analyzed Scaling transformation for Heat and Mass transfer
effects on steady MHD free convection dissipative flow past an inclined porous
surface.

Sivasankaran et al. [19], analyzed lie group analysis of natural convection heat
and mass transfer in an inclined surface. It is found that the velocity increases
with an increase in the thermal and solutal Grashof numbers. The velocity and
concentration of the fluid decreases with an increase in the Schmidt number.
Numerous authors have studied MHD free convection flow with some extended
effects along a vertical or horizontal plates. However, MHD free convection flow
with some extended effects along an inclined plate has received inadequate at-
tention since in many natural convection flows, the thermal input occurs at a
surface that is itself curved or inclined with respect to the direction of the grav-
ity field, therefore, it is for this fact that this study considered heat and mass
transfer characteristics phenomenon on MHD free convection steady flow of
an incompressible, electrically conducting fluid over an inclined heated infinite
plate with varied inclination angle under the influence of an applied uniform
magnetic field and combined effect of double diffusive, where dissipation and
thermal diffusion taken into account with periodically varying surface tem-
perature, when the temperature of the plate oscillates periodically about a
constant mean temperature.

2 Mathematical Formulation

Let us consider steady two-dimensional laminar flow of a viscous, incompress-
ible, electrically conducting fluid moving past a fixed inclined semi-infinite
plate surface. The motion is in the presence of a uniform magnetic field of
intensity By applied normal to the plate surface. Assume the x axis of a
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Cartesian coordinate system (x,y) is directed along the plate and the y axis
is perpendicular to the plate surface. The origin of the coordinate system is
taken to be the leading edge of the plate. The acceleration due to gravity
g is taken to be acting vertically downwards. The plate surface is inclined
to the vertical direction by an angle v. The physical model and geometrical
coordinate system are as shown below.

Figure 2.1: Physical configuration & coordinate system

We assume that the fluid property variations due to temperature and chem-
ical species concentration are limited to fluid density. In addition, there is
no applied electric field and all of the Hall effects and Joule heating are ne-
glected. Since the magnetic Reynolds number is very small for most fluids used
in industrial applications, we assume that the induced magnetic field is negli-
gible[2]. Further, we shall neglect the Soret and Dufour effects as in [1] since
we assume that the fluid under consideration has very small concentration of
diffusing species in comparison to other chemical species and the concentra-
tion of species far from the plate wall, i.e. C, is infinitesimally small. Let u
and v be the velocity components in the z and y axes directions respectively.
Under the Boussinesqs approximation within the boundary layer, the steady,
laminar, two-dimensional boundary layer flow under consideration is governed
by the equations of continuity, momentum, energy and species concentration
respectively as follows:

ou  Ov
4= 2.1
ox * dy 0 (2.1)
du  Ou 0?u
ou L0l T-T
uax—l—vay Vay2 + g8( o) COs Y+
2
gf*(C — Cx) cosy — OCBOu (2.2)

or  or  9*T  u [Ou)\’
2
u@ + 11% = Dmﬂ (2.4)

ox dy 0y?
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where T is the temperature of the fluid in the boundary layer, T, is the tem-
perature of the uniform flow far away from the plate, § and $* are thermal
and concentration expansion coefficients respectively, v is the kinematic vis-
cosity, ¢ is the gravitational acceleration, C, - the species concentration in
the fluid far away from the plate, C, - specific heat at constant pressure, B
- the magnetic induction, « is thermal diffusivity, D,, is the chemical species
diffusivity coefficient, o is the electrical conductivity, p the fluid density, with
the boundary conditions;

u=0, T=T,, C=Cy for all y,t <0

u=0, T=Ty+ € (Ty — Ts)coswt, C=C, at
y=0,t>0
u—0, T—-T,, C—>Cyxasy—o0,t>0

where T, is the wall plate temperature and C, is the chemical species concen-
tration at the plate surface.

3 Method of Solution

The equations (2.2) to (2.4) are coupled, non linear partial differential equa-
tions and hence analytical solution is not possible. Therefore numerical tech-
nique is employed to obtain the required solution. Numerical computations
are greatly facilitated by non dimensionalization of the equations. Proceeding
with the analysis, we introduce the following similarity transformations and di-
mensionless variables which will convert the partial differential equations from
two independent variables (z,y) to a system of coupled, non linear ordinary
differential equations in a single variable (n) i.e. coordinate normal to the
plate.

We now introduce a two-dimensional stream function ¢ (x, y) defined by u = o

dy
and v = —g—f so that continuity equation is automatically satisfied. In order

to obtain a similarity solution of the problem we introduce the following non
dimensional variables:

=y 2, vlay) = Vil f ), w=Usf'(n),
1 VUOO , T — Too
v=o\ S (nf(ﬁ)—f),e(ﬁ):ﬁ,
o) = =S (3.1)
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where 7 is a similarity variable, 6(n) and ¢(n) are the dimensionless temper-
ature and concentration respectively, Uy, is the velocity of the fluid far away
from the plate. Now substituting equation (3.1) in equations (2.2)- (2.4) we
obtain:

1 1
"4 S ff 4 () + 0Gr cosy + ¢Gecosy = Mf' =0 (3.2)
1
0" + SPrf¢ + PrE(f') =0 (3.3)
1
¢’ + §Scf¢’ =0 (3.4)

where the prime symbol denotes differentiation with respect to n and

Gr = e , Gc= B
2 2
pr=l g Y 2B
v k
SC = D—m, o = p_C'p

in which Gr is the local thermal Grashof number, Gc¢ is the solutal or lo-
cal concentration Grashof number, Sc is the Schimdt number and Pr is the
Prandtl number, FE. is the Erkert number and « is the thermal diffusivity. The
corresponding initial and boundary conditions take the form :

u=0, #=0, C=0 for all y,t <0

u=0, =1+ €coswt, C=1at y=0,t>0
u—0, §—>0, C—0 asy—o0,t>0

where wt is phase angle.

4 Numerical Method

The similarity transformation converts the non-linear partial differential equa-
tions (2.2 - 2.4) into ordinary differential equations given by the set (3.2 3.4)
which are solved numerically using a shooting method, a technique that con-
verts the boundary value ordinary differential equations into a set of first order
initial value ordinary differential equations with Secant iteration. The result-
ing system is solved by the fourth-order Runge-Kutta method implemented in
Mathematica.
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5 Results and Discussion

As a result of the numerical calculations, the dimensionless velocity, tempera-
ture and concentration distributions for the flow under consideration are ob-
tained and their behaviour have been discussed for variations in the governing
parameters viz., the thermal Grashof number Gr , solutal Grashof number Ge ,
magnetic field parameter M, angle of inclination ~, Prandtl number Pr, Eckert
number Ec and Schmidt number Sc.

The influence of the thermal Grashof number on the velocity is presented in
figure 5.1. The thermal Grashof number Gr signifies the relative effect of the
thermal buoyancy force to the viscous hydrodynamic force in the boundary
layer. As expected, it is observed that there is a rise in the velocity due
to the enhancement of thermo buoyancy force. Here, the positive values of
Gr correspond to cooling of the plate. Also, as Gr increases, the fluid velocity
increases, reaching its peak value within the boundary layer and then decreases
monotonically to the free stream zero value far away from the plate surface
satisfying the far field boundary condition.

il

Figure 5.1: Velocity profiles for different values of Gr

It is interesting however to note that the velocity boundary layer thickness in-
creases while the thermal boundary layer thickness decreases with an increase
in the value of thermal Grashof number (Gr) figure 5.2.

EIG)

Figure 5.2: Temperature profiles for different values of Gr
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Ge=1.0,2.5,5.0,7.0,9.0

Figure 5.4: Temperature profiles for different values of Ge

Figure 5.3 presents typical velocity profiles in the boundary layer for various
values of the solutal Grashof number Ge, while all other parameters are kept
at some fixed values. The solutal Grashof number Gc defines the ratio of the
species buoyancy force to the viscous hydrodynamic force. As expected, the
fluid velocity

increases and the peak value is more distinctive due to increase in the species
buoyancy force. The velocity distribution attains a distinctive maximum value
in the vicinity of the plate and then decreases properly to approach the free
stream value. Moreover, an increase in the intensity of buoyancy forces (Ge),
causes a decrease in the fluid temperature leading to a decaying thermal bound-
ary layer thickness.

fin)

Figure 5.5: Velocity profiles for different values of M

For various values of the magnetic parameter M, the velocity profiles are plot-
ted in Figure 5.5. An increase in magnetic field parameter, M, is observed to
strongly reduce the velocity in the regime. Maximum velocity corresponds to



722 Opiyo Richard Otieno, Alfred W. Manyonge and Jacob K. Bitok

M = 0 i.e. electrically non conducting heat and mass transfer. Physically, it
is true due to the fact that the application of a transverse magnetic field to an
electrically conducting fluid gives rise to a body force known as a Lorentz hy-
dromagnetic drag which acts in the tangential direction. This force, —(M) [’
, impedes the flow and reduces velocities i.e. decreases the hydrodynamic
boundary layer thickness.

M=0250507510

aln)

Figure 5.6: Temperature profiles for different values of M

From figure 5.6, we see that the temperature profiles increase with the increase
of the magnetic field parameter. This result qualitatively agrees with the ex-
pectations, since the presence of a magnetic field in an electrically conducting
fluid introduces a force called the Lorentz force, which acts against the flow
and slow down its motion in the boundary layer region. This, in turn, reduces
the rate of heat convection in the flow i.e. which implies that the applied mag-
netic field tends to heat the fluid and thus reduces the heat transfer from the
wall which appears in increasing the flow temperature and thermal boundary
layer thickness also boosted with increasing M values.

g

Figure 5.7: Velocity profiles for different values of ~

Figure 5.7 shows the effect of angle of inclination to the vertical direction on
the velocity profiles. From this figure we observe that the velocity is decreased
by increasing the angle of inclination . The fluid has higher velocity when
the surface is vertical (7 = 0) than when inclined because of the fact that the
buoyancy effect decreases due to gravity components (gcos~), as the plate is
inclined.
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Figure 5.8: Temperature profiles for different ~

We observe in figure 5.8 that both the thermal and concentration boundary
layer thickness increase as the angle of inclination increases.

gl

Figure 5.9: Velocity profiles for different values of Pr

10 Pr=0025 071,30, 7.0
™,
\
\
\

Figure 5.10: Temperature profiles for different values of Pr

Figure 5.9 and 5.10 illustrate the velocity and temperature profiles for differ-
ent values of the Prandtl number Pr. The Prandtl number defines the ratio
of momentum diffusivity to thermal diffusivity. The numerical results show
that the effect of increasing values of Prandtl number results in a decreasing
velocity (Fig. 5.9). From figure 5.10, it is observed that an increase in the
Prandtl number results in a decrease of the thermal boundary layer thickness
and in general lower average temperature within the boundary layer. The
reason is that smaller values of Pr are equivalent to increasing the thermal
conductivities, and therefore heat is able to diffuse away from the heated plate
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more rapidly than for higher values of Pr. i.e. velocity for Pr = 0.71 is higher
than that of Pr = 7. Physically, it is possible because fluids with high Prandtl
number have high viscosity and hence move slowly.

Ec=001,0.2.05 07

fin)

a(m)

Figure 5.12: Temperature profiles for different values of Eckert (Ec)

The effect of the viscous dissipation parameter i.e., the Eckert number Ec on
the velocity and temperature are shown in Figs 5.11 and 5.12 respectively.
The Eckert number expresses the relationship between the kinetic energy of
the flow and the enthalpy. It embodies the conversion of kinetic energy into
internal energy by work done against the viscous fluid stresses. The positive
Eckert number implies cooling of the plate i.e., loss of heat from the plate to
the fluid. Hence, greater viscous dissipative heat causes a rise in the velocity
as well as temperature which is evidenced in the above figures.

The influences of the Schmidt number Sc on the velocity and concentration
profiles are plotted in Figure 5.13 and 5.14. The Schmidt number embodies the
ratio of the momentum to the mass diffusivity. The Schmidt number therefore
quantifies the relative effectiveness of momentum and mass transport by dif-
fusion in the hydrodynamic (velocity) and concentration (species) boundary
layers. As the Schmidt number increases the concentration decreases. This
causes the concentration buoyancy effects to decrease yielding a reduction in
the fluid velocity. The reductions in the velocity and concentration profiles
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Figure 5.13: Velocity profiles for different values of Schmidt (Sc) Number

Pin)

Figure 5.14: Concentration profiles for different values of Sc

are accompanied by simultaneous reductions in the velocity and concentration
boundary layers. It is worth to mention that for hydrogen (Sc¢ = 0.22) the
velocity profiles is much higher than that of other Se.

6 Conclusions

In many practical applications, the characteristics involved, such as the heat
transfer rate at the surface are vital since they influence the quality of the final
product. The present work, helps us in understanding numerically as well as
physically free convection flow in an inclined infinite flat plate in the presence
of MHD where viscous dissipation has been employed. The effect of inclination
and variation of other controlling physical parameters have been studied and
their effects presented. Thus, applications of effects of some parameters are
recommended for cooling and heating in industrial processes.

Based on the results the effects of increasing values of the physical parameters
which had significant effect on velocity, temperature and concentration profiles
were as follows;

e In natural convection flow velocity is sufficiently small, the Prandtl num-
ber has no significant effect on concentration. However, it is observed
that increase in Prandtl number (Pr) leads to a decrease in velocity and
temperature. This result is in conformity with the known and observed
facts that in liquid metals (Pr < 1) the heat diffuses faster as compared
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to the lubricant oils (Pr > 1).

We observed that the fluid (air) velocity decreases for an increase in
angle of inclination ~. The fluid has higher velocity when the surface
is vertical v = 0 than when inclined because the convective flow under
consideration takes place due to the interaction of gravity and density
differences and in the inclined position the effective gravity force is less
than what it is when the plate vertical. On the other hand, both the
temperature and concentration profiles increase with an increase of .

It is to be noted that an increase in the magnetic field has significant
effect on the velocity, temperature and concentration profiles. It leads to
a rise in temperature and concentration at a slow rate in comparison to
the velocity profiles. In the presence of the magnetic field, the velocity
boundary layer is thinner than the temperature and the concentration
boundary layer. So magnetic field can effectively be used to control the
flow characteristics and heat transfer.

From the numerical results, the positive values of thermal Grashof num-
ber Gr > 0 is utilised in our computations. This corresponds to the
cooling problem with respect to application. The cooling problem is of-
ten encountered in engineering applications for example in the cooling
of electronic components and nuclear reactors. It was found that when
thermal and solutal Grashof numbers were increased, the thermal and
concentration buoyancy effects were enhanced and thus, the fluid velocity
increased.

It was noticed that an increase in Eckert number enhanced the velocity
and temperature profiles but a decrease in concentration was observed
when Eckert number was increased.

An increase in Schmidt number results in lowering the concentration and
velocity while temperature of the fluid increases. Therefore, Schmidt
number has greater effect on concentration profiles than the velocity and
temperature profiles. So, we can dominate the rate of mass transfer with
the help of the Schmidt number.

Recommendations

e [t is therefore recommended that in applying the technique of inclination

to enhance cooling of materials in industrial processes, the range of the
cooling angle should be considered.
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e The Schmidt number which enhances mass diffusivity should be consid-

ered in processes involving fluid transportation.

e The viscous dissipation parameter had an integral effect in increasing the

temperature in the boundary layer and therefore should be considered in
the design of heating systems.

e An attempt should be made to solve this problem using other numerical

techniques and compare results.
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