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ABSTRACT
The quantum Rabi model (QRM), the simplest single-mode spin-boson model, was
initially simplified using rotating wave approximation (RWA), yielding the Jaynes-
Cummings (JC) model in rotating frame (RF). The QRM was later symmetrised into
its rotating JC and counter-rotating (CR) anti-Jaynes-Cummings (AJC) components,
yielding an exactly solvable AJC model in the counter-rotating frame (CRF). This work
presents the dynamics generated when a two-level atom (fermionic system) interacts with
a quantised electromagnetic field mode (bosonic system) in the AJC model. The evolution
of the atomic state during the AJC interaction with field mode initially and separately
in three basic non-classical states of light is considered. In each respective atom-field
interaction, we provided the corresponding extensively studied JC interaction as a com-
parison. We have shown that when the field mode is in an initial Fock state (idealised
light), Rabi oscillations during the AJC interaction occur in the reverse sense relative to
that during the JC interaction. In addition, quantum teleportation of a two-atom entan-
gled anti-symmetric state at unit fidelity indicates that maximally entangled atom-field
states generated in the AJC interaction are effective quantum channels, and the observed
long-lived entanglement during the AJC interaction specify that the atomic qubits ex-
hibit long coherence time vital for computational processes. What is more, two-qubit
controlled-NOT (C-NOT) gate operation and single qubit Walsh-Hadamard gate oper-
ation is demonstrated each giving standard outcomes as expected. In the former, the
target qubit is flipped when the control qubit is in an initial ground state |g⟩ and remain
unchanged when the control qubit is in an initial excited state |e⟩ while in the latter the
atomic basis states {|e⟩, |g⟩} were rotated into diagonal basis states {|+⟩, |−⟩}. When
the field mode in an initial coherent state is considered during the AJC interaction, fully
quantised atom-field interaction is realised since the field is dominantly sub-Poissonian.
Finally, when an initial squeezed coherent state is considered during the AJC interaction,
at all time intervals the atom-field quantum systems are entangled (mixed), i.e, at no
point did the quantum systems evolve to pure state, the degree of mixedness increased
with every increase in the squeeze parameter and ringing revivals at an expected col-
lapse phase are observed when higher values of squeeze parameter is applied. This thesis
work presents the first ever demonstration of quantum Rabi oscillations, entanglement
dynamics, successful quantum teleportation, photon statistics and effective quantum gate
operations in an AJC interaction between a two-level atom and a quantised electromag-
netic field mode. In contrast to the standard JC interaction which has generally been
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used in quantum information theory (QIT) and quantum computation, the AJC inter-
action provides the advantage of starting with both an atom and field mode each in an
initial ground state, i.e, an atom in spin-down state and field mode in vacuum state, a
property which is essentially unachievable in the JC interaction when an initial Fock state
is considered. We now recommend application of the AJC model in the emerging field
of quantum technology, which has a potential to revolutionise a wide range of industries
and applications, from finance and logistics to healthcare and energy. More specifically,
the results of this work in its present form, will be of immense contribution to QIT and
physical realisation of quantum computation.
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CHAPTER 1
INTRODUCTION

1.1 Background of the study
The quantum Rabi model (QRM) [1–3] describes a two-level system coupled to a single-
mode quantised light field. Despite its simplicity, the QRM exhibits rich physics and has
found applications in quantum optics [4], condensed matter physics [5], molecular physics
and superconducting circuit quantum electrodynamics (cQED) [6, 7].

The QRM is composed of a rotating wave component identified as the Jaynes-
Cummings (JC) model and a counter(anti)-rotating (CR) wave component identified as
the anti-Jaynes-Cummings (AJC) model.

Exact analytical solution of the JC model was obtained through diagonalisation with
the conserved excitation number operator as early as 1963 [8], while exact analytical
solution of the corresponding AJC model was obtained much later after discovery of the
conserved excitation number operator in 2017 [9–12].

It is important to note that both JC and AJC Hamiltonians are now expressible in
terms of the respective excitation number and qubit state transition operators which
now provide description of the dynamics through normalised non-orthogonal qubit state
vectors or orthornormal eigenstate vectors.

Exact solutions of the eigenvalue equation of the full QRM obtained in 2011 [3] and
in subsequent studies [13–15] take complicated forms which have made them too difficult
to develop the general time evolving states of QRM. Hence JC and AJC are studied
separately [9].

Recently it was discovered that JC and AJC are duality conjugates [16], with JC
describing red-sideband (RSB) and AJC describing blue-sideband (BSB) transitions

Noting that fundamental features namely; collapses and revivals in the atomic inversion
[17], generation of Schrödinger cat states of the quantised field [18, 19], transfer of atomic
coherence to the quantised field [20], vacuum-field Rabi oscillations in a cavity [21] and
many more have been extensively studied in the JC model in both theory and experiment
in quantum optics, we now focus attention on the AJC model which has not received
much attention over the years due to the assumed lack of a conserved excitation number
operator.

In the subsequent sections in this chapter we introduce mathematical concepts of this
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study, statement of the problem, objectives, justification and scope of this study.

1.2 Qubits

1.2.1 Single qubits

A qubit is a quantum system having two orthogonal states [22–25]. It is the quantum
analogue to the term bit in information theory and it can hold one bit by preparing it
either in a state |0⟩ or |1⟩. However, due to superposition principle in quantum mechanics,
a qubit can also be prepared in any superposition state of the form

|ψ⟩ = α|0⟩ + β|1⟩ (1.2.1)

where the qubit |ψ⟩ is defined in a two-dimensional state space C2 (Hilbert space1) and
|0⟩, |1⟩ are the orthonormal basis for the space. The parameters α,β are the qubit state
probability amplitudes, generally considered complex.

Noting that |ψ⟩ must be a unit vector the inner product gives normalisation relation

⟨ψ|ψ⟩ = 1 ⇒ |α|2 + |β|2 = 1 . (1.2.2)

The states can be represented by column vectors

|0⟩ =
(

1
0

)
; |1⟩ =

(
0
1

)
⇒ |ψ⟩ =

(
α

β

)
. (1.2.3)

In the Bloch sphere picture 2, Eq. (1.2.1) can be expressed as

|ψ⟩ = eiγ

{
cos
(
θ

2

)
|0⟩ + eiϕ sin

(
θ

2

)
|1⟩
}
. (1.2.4)

Here, the global phase factor eiγ in Eq. (1.2.4) has no observable effect [23] and is therefore
easily omitted.

A Bloch vector r⃗ is a vector in an arbitrary direction, which is defined in terms of the
1Associated to any isolated physical system is a complex vector space with inner product known as

a Hilbert space or the state space of the system. The system is described by its state vector, which is a
unit vector in the system’s state space [22]

2Named after the Physicist Felix Bloch [26]
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polar θ and azimuthal ϕ angles as [23]

r⃗ = (rx, ry, rz) = (cosϕ sin θ, sinϕ sin θ, cos θ) . (1.2.5)

ϕ

θ

ξ1

ξ2

ξ3|0⟩

|1⟩

|ψ⟩

Figure 1.1: The Bloch sphere representation of a qubit. The basis states |0⟩, |1⟩ are
located at the North and South poles. The various possible superpositions of the two can
then be converted to unique coordinates on the sphere.

As shown in Fig. 1.1, angle θ is the angle between the Bloch vector and the z-axis
while ϕ is the angle between the Bloch vector’s orthogonal projection on the equatorial
plane and the positive x-axis measured counter-clockwise. The state of a qubit is then
visualised as a point with polar coordinates θ and ϕ on a unit sphere.

1.3 The density operator (density matrix)
In order to relate unitary operations on a qubit state |ψ⟩ in Eq. (1.2.4) to rotations on
Bloch sphere, it is convenient to use the corresponding density operator ρ̂ , defined as

ρ̂ = |ψ⟩⟨ψ| = |ψ⟩ ⊗ ⟨ψ| (1.3.1)

where we note the Hermitian conjugation

⟨ψ| = |ψ⟩† . (1.3.2)

Substituting |ψ⟩ from Eq. (1.2.4) into Eq. (1.3.1) gives the form

ρ̂ = |ψ⟩ ⊗ ⟨ψ| =
(

cos( θ
2)

eiϕ sin( θ
2)

)
⊗
(

cos( θ
2) e−iϕ sin( θ

2)
)
. (1.3.3)
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By definition of outer product Eq. (1.3.3) takes the 2 × 2 matrix form

ρ̂ =
(

cos2( θ
2) e−iϕ cos( θ

2) sin( θ
2)

eiϕ cos( θ
2) sin( θ

2) sin2( θ
2)

)
(1.3.4)

and using standard trigonometric identities Eq. (1.3.4) gives the form

ρ̂ = 1
2

(
1 + cos θ cosϕ sin θ − i sinϕ sin θ

cosϕ sin θ + i sinϕ sin θ 1 − cos θ

)
. (1.3.5)

Regrouping Eq. (1.3.5) in terms of the Pauli basis {I, σx, σy, σz} defined as [22, 23]

I =
(

1 0
0 1

)
; σx =

(
0 1
1 0

)
;

σy =
(

0 −i
i 0

)
; σz =

(
1 0
0 −1

)
,

(1.3.6)

we obtain
ρ̂ = 1

2(I + σx cosϕ sin θ + σy sinϕ sin θ + σz cos θ) (1.3.7)

which we now express in the form

ρ̂ = 1
2(I + r⃗·σ⃗) (1.3.8)

where
σ⃗ = (σx, σy, σx) ≡ σxî+ σy ĵ + σzk̂ , (1.3.9)

is the Pauli matrix vector and r⃗ [27] is the unit Bloch vector defined in Eq. (1.2.5).

1.3.1 Properties of the density matrix

First, the density matrix is a Hermitian operator [25]

ρ̂ = ρ̂† . (1.3.10)
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Second, the density matrix is normalised, satisfying

tr(ρ̂) =
∑

i

pi tr(|ψi⟩⟨ψi|) =
∑

i

pi ⟨ψi|ψi⟩ =
∑

i

pi = 1 . (1.3.11)

Besides normalisation, the density matrix is positive semi-definite satisfying

ρ̂ ≥ 0 . (1.3.12)

This is established for an arbitrary quantum state |ϕ⟩ in the form

⟨ϕ|ρ̂|ϕ⟩ =
∑

i

pi |⟨ϕ|ψ⟩|2 ≥ 0 . (1.3.13)

Hermitian means that the density matrix can be diagonalised by some orthonormal basis
|λk⟩ as

ρ̂ =
∑

k

λk |λk⟩⟨λk| (1.3.14)

for certain eigenvalues λk.
The purity of the quantum state ρ̂ specified by eigenvalues λk is defined as [25]

tr(ρ̂2) =
∑

k

λk
2 ≤ 1 . (1.3.15)

The equality tr(ρ̂2) = 1 means ρ̂ is a pure state. In that case it can be written as
ρ̂ = |ψ⟩⟨ψ| so it will have one eigenvalue equal to one and all other eigenvalues equal
to zero. For a mixed state ρ̂ = pi |ψi⟩⟨ψi| the purity of the quantum state tr(ρ̂2) < 1
with

∑n
i=1 pi = 1. It has also been shown in [28] that purity parameter tr(ρ̂2) can be

determined using components rx, ry, rz of the Bloch vector r⃗ according to

tr(ρ̂2) = 1
2 (1 + r⃗ · r⃗) = 1

2
[
1 +

(
r2

x + r2
y + r2

z

)]
. (1.3.16)

1.4 Sub-Poissonian photon statistics
One of the best known nonclassical effects is the sub-Poissonian photon statistics of the
light field [29–32].

Following Mandel [29] we introduce the Q parameter in the Fock space Hf in the
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general form

Q = ⟨(△n̂)2⟩ − ⟨n̂⟩
⟨n̂⟩

; ∆n̂ =
√

⟨n̂2⟩ − ⟨n̂⟩2 , (1.4.1)

which characterises the departure from the Poissonian photon statistics. In Eq. (1.4.1)
⟨(∆n̂)2⟩ is the photon number variance, ⟨n̂⟩ is the mean photon number and n̂ is the
photon number operator.

We take note that the sign of the Mandel parameter determines the nature of deviation
of excitation statistics from the Poisson statistics. More precisely, the Mandel parameter
is positive (Q > 0) when the statistic is super-Poissonian, zero (Q = 0) when Poissonian
and negative (Q < 0) when sub-Poissonian with values ranging between 0 and -1 during
which the phenomenon of anti-bunching occurs [30] a clear manifestation of quantum
effect. In the Poissonian distribution (coherent state), the mean ⟨n̂⟩ and the variance
⟨(∆n̂)2⟩ of the distribution have the same value, super-Poissonian (classical) the variance
is higher than the mean and sub-Poissonian (non-classical) the variance is smaller than
the mean.

1.5 Non-classical states of light
The three basic non-classical states of light [28, 33, 34] are the Fock states, coherent states
and squeezed states. The last two are minimum uncertainty states (MUSs) i.e, states for
which the uncertainty relation for the variances of quadrature operators given by

〈
(△â1)2〉 〈(△â2)2〉 ≥ 1

16 (1.5.1)

holds. The quadrature operators â1 and â2 corresponding to creation (â†) and annihilation
(â) operators of the field mode are defined as

â1 = â+ â†

2 ; â2 = â− â†

2i . (1.5.2)

The states can be formally obtained by applying group theoretical methods by which one
can describe wide classes of non-classical states of light [35–38].

We present briefly the theory of Fock, coherent and squeezed states. In this Thesis,
time evolution of a two-level atom in the AJC, JC interaction mechanisms respectively
with the field mode initially in Fock state, coherent state and squeezed state is considered.
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1.5.1 Fock states

The photon number (Fock) state |n⟩ [28, 33, 34] is the eigenstate of the field Hamiltonian
defined in terms of the photon creation â† and annihilation operators â in the form

Ĥ = ℏω
(
â†â+ 1

2

)
(1.5.3)

Although the annihilation and creation operators do not themselves describe physical
variables, their normal ordered product n̂ = â†â is the excitation number operator that
describes the number of excitations n in a single-mode field |n⟩

n̂|n⟩ = n|n⟩ . (1.5.4)

The Fock states can be generated from the vacuum state |0⟩ of the field mode by
multiple actions of the creation operator â†

|n⟩ = (â†)n

√
n! |0⟩ . (1.5.5)

The number states describe a state of precisely defined energy, that is, of a precisely
given number of photons. Therefore the Mandel Q-parameter [29–32] for the Fock state
is equal to −1 [39], because the photon number distribution of the Fock state has zero
width. On the other hand, the Fock state does not describe a well-defined field, because
the mean field is zero for any value of n. Despite this, the mean square of the field is not
equal to zero, since it is one component of field mode energy. The Fock states have large
quadrature fluctuations and for any n > 0 they are superfluctuant and do not belong to
the class of the MUSs.

1.5.2 Coherent states

The coherent state introduced by Glauber [40] and Sudarshan [41] is defined as the eigen
state |α⟩ of the annihilation operator â of a quantised field mode and yields Poissonian
photon statistics. The main motivation behind their study being the correspondence
principle well articulated in [42] - quantum phenomena resembles classical phenomena in
high energy limit. They noted that the electron wavefunctions inside a hydrogen atom
did not have a classical analogue and so little was known about these wavefunctions.
But in quantum electrodynamics (QED) and quantum optics, the wavefunctions have to
be connected with classical electromagnetic (EM) oscillations. This connection was then
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established through introduction of the coherent state |α⟩ of quantised light.
For a single mode of quantised light, the coherent state is defined by

â|α⟩ = α|α⟩, (1.5.6a)

where the eigenvalue α is complex.
Expanding the coherent state in Fock basis

|α⟩ =
∞∑

n=0

cn|n⟩ (1.5.6b)

we easily get

â|α⟩ =
∞∑

n=1

cn

√
n|n− 1⟩

= α
∞∑

n=0

cn|n⟩, (1.5.6c)

from which we get the following recursion relation

cn

√
n = αcn−1. (1.5.6d)

The solution of Eq. (1.5.6d) gives

cn = αn

√
n!
cp. (1.5.6e)

The solution of cp in Eq. (1.5.6e) is found from normalisation

⟨α|α⟩ = 1 = |cp|2
∞∑

n=0

|α|2n

n! = |cp|2e|α|2 (1.5.6f)

so that we can now write the expansion

|α⟩ = e− |α|2
2

∞∑
n=0

|α|n√
n!

|n⟩ . (1.5.6g)

Coherent states are MUSs such that, (∆x̂)2(∆p̂)2 = ℏ2

4 where, x̂, p̂ are position and
momentum operators. Coherent states are overcomplete and nonorthogonal [25, 43].
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1.5.3 Squeezed states

Squeezed states, just like the coherent states, |α⟩, introduced in Sec. 1.5.2 are MUSs.
A generalised state, the squeezed state, can remain a MUS if one of the variances is
compressed (squeezed) at the expense of an expansion of the complementary variance
[28]. The modified variances are conveniently written as

⟨(△â1)2⟩ = 1
4e

−2r ; ⟨(△â2)2⟩ = 1
4e

2r (1.5.7)

where r, is the squeeze parameter.
The squeezed state, |α, ζ⟩, has the number state decomposition

|α, ζ⟩ = D̂(α)Ŝ(ζ)|0⟩ = 1√
cosh(r)

exp
[
−1

2 |α|2 − 1
2α

∗2eiθ tanh(r)
]

×
∞∑

n=0

[1
2e

iθ tanh(r)
]n

2

√
n!

Hn

[
γ
(
eiθ sinh(2r)

)− 1
2
]

⊗ |n⟩

(1.5.8a)

where, D̂(α) = exp(αâ† − α∗â), is the displacement operator, Ŝ(ζ) = exp
[1

2(ζ∗â− ζâ†)
]
,

is the squeeze operator, ζ, is the complex squeeze parameter [28, 44, 45] defined in the
form

ζ = r exp(iθ) ; 0 ≤ r < ∞ ; 0 ≤ θ ≤ 2π (1.5.8b)

and

γ = α cosh(r) + α∗eiθ sinh(r) . (1.5.8c)

The squeeze operator, Ŝ(ζ), is a kind of a two-photon generalisation of the displacement
operator, D̂(α). Evidently, â†2, â2, in the operator, Ŝ(ζ), implies that when the operator,
Ŝ(ζ), acts on a vacuum field, |0⟩, photons will be created and destroyed in pairs.

1.5.3.1 Averages of creation, annihilation and photon number operators

The action of the product of displacement and squeeze operators, D̂(α)Ŝ(ζ), on the
creation, â†, and separately annihilation, â, operators, determines the average of the
photon creation ⟨â†⟩, photon annihilation, ⟨â⟩, operators respectively and consequently
the average of the photon number operator, ⟨n̂⟩.

9



When, ζ = 0, the squeezed coherent state, |α, ζ⟩, in Eq. (1.5.8a) reduces to the single-
mode field coherent state, |α⟩, specified in Eq. (1.5.6g) and the displacement operator
effects the following transformations [28]

D̂†(α)âD̂(α) = â+ α ; D̂†(α)â†D̂(α) = â† + α∗ . (1.5.9a)

To derive the transformations, Ŝ†(ζ)âŜ(ζ) , Ŝ†(ζ)â†Ŝ(ζ), we apply the Baker-Housdorff
(BH) lemma [46]

eABe−A = B + [A,B] + 1
2! [A, [A,B]] + 1

3! [A, [A, [A,B]]] + ....., (1.5.9b)

while keeping in mind that, Ŝ†(ζ) = Ŝ(−ζ), and consider

A = 1
2
(
ζâ†2 − ζ∗â2) ; B = â , â† (1.5.9c)

to obtain

Ŝ†(ζ)âŜ(ζ) = â cosh(r) − â†eiθ sinh(r) ;
Ŝ†(ζ)â†Ŝ(ζ) = â† cosh(r) − âe−iθ sinh(r) . (1.5.9d)

The average of annihilation, creation operators are derived by applying the transfor-
mations in Eqs. (1.5.9a) and (1.5.9d) according to

⟨â⟩ = ⟨α, ζ|â|α, ζ⟩

= ⟨0|Ŝ†(ζ)D̂†(α)âD̂(α)Ŝ(ζ)|0⟩

= ⟨0|Ŝ†(ζ) [â+ α] Ŝ(ζ)|0⟩

= α

(1.5.9e)

and

⟨â†⟩ = ⟨α, ζ|â†|α, ζ⟩

= ⟨0|Ŝ†(ζ)D̂†(α)â†D̂(α)Ŝ(ζ)|0⟩

= ⟨0|Ŝ†(ζ)
[
â† + α∗] Ŝ(ζ)|0⟩

= α∗ . (1.5.9f)
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The average photon number for the squeezed state in Eq. (1.5.8a) now takes the final
form

⟨n̂⟩ = ⟨â†â⟩ = ⟨α, ζ|â†â|α, ζ⟩

= ⟨0|Ŝ†D̂†â†D̂D̂†âD̂Ŝ|0⟩

= ⟨0|Ŝ† (â† + α∗) (â+ α) Ŝ|0⟩

= ⟨0|Ŝ†â†ŜŜ†âŜ|0⟩ + |α|2

= |α|2 + sinh2(r) (1.5.9g)

such that |α|2, sinh2(r) are the respective coherent and squeeze contributions to the
average number of photons, ⟨n̂⟩, in a squeezed coherent state. Also note that if,
|α|2 ≫ sinh2(r), the coherent part of the state dominates the squeezed part.

1.5.3.2 Photon number distribution (P(n))

The photon number distribution, is the probability of finding n-photons in the field. It
is obtained from Eq. (1.5.8a) as the absolute square of its probability amplitude in the
form

P (n) = |⟨n|α, ζ⟩|2

=
(1

2 tanh(r))n

n! cosh(r) exp
[
−|α|2 − 1

2
(
α∗2ei θ + α2e−i θ

)
tanh(r)

]
×

∣∣∣Hn

[
γ
(
ei θ sinh(2s)

)− 1
2
] ∣∣∣2 , (1.5.10)

where it is evident that the distribution is dependent on the phase of α.

1.6 Evolution of quantum systems
The evolution of a closed quantum system is described by a unitary transformation [25].
That is, the state |ψ⟩ of the system at a time t1 is related to the state |ψ′⟩ of the system at
a time t2 by a unitary operator Û(t) which depends on times t1 and t2. The corresponding
equation is the Schrödinger equation

iℏ
∂

∂t
|ψ⟩ = Ĥ|ψ⟩ (1.6.1a)
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Ĥ is the Hamiltonian operator. Solving Eq. (1.6.1a), |ψ⟩ evolves with time according to

|ψ(t)⟩ = Û(t)|ψ(0)⟩ (1.6.1b)

where
Û(t) = e−i Ĥt

ℏ . (1.6.1c)

The time evolution operator Û(t) in Eq. (1.6.1c) must be unitary, meaning that it
preserves the norm of a state, hence Û †Û = 1.

1.7 Quantum gates

1.7.1 Single qubit gates

Quantum circuits are constructed from elementary gates [23, 47, 48], much like classical
circuits. The important quantum gates which act on single qubits are shown in Fig. 1.2.

X Y Z H S T

Figure 1.2: Important single qubit gates

In addition to the Pauli X, Y and Z gates in Eq. (1.3.6) we have the phase gate S and
the π

8 gate T, with unitary transforms

S =
(

1 0
0 i

)
; T =

(
1 0
0

√
i

)
(1.7.1)

which are obtained as S =
√
Z and T =

√
S , respectively. These gates are important

in fault tolerance quantum circuits. The Hadamard gate H also known as the Walsh-
Hadamard gate is a single qubit gate [22, 23, 48]. The Hadamard transformation is
defined as

H = X + Z√
2

= 1√
2

(
1 1
1 −1

)
(1.7.2)

where it transforms atomic (field) computational basis states, {|e⟩(|0⟩), |g⟩(|1⟩)} according
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to

H|e⟩ → |e⟩ + |g⟩√
2

= |+⟩ ; H|g⟩ → |e⟩ − |g⟩√
2

= |−⟩ ; |e⟩ =
(

1
0

)
; |g⟩ =

(
0
1

)

H|0⟩ → |0⟩ + |1⟩√
2

= |+⟩ ; H|1⟩ → |0⟩ − |1⟩√
2

= |−⟩ ; |0⟩ =
(

1
0

)
; |1⟩ =

(
0
1

)
.

(1.7.3)

into diagonal (Hadamard) basis states [49], {|+⟩, |−⟩}. Single qubit gates act upon single
qubits of the form in Eqs. (1.2.4) and (1.7.3).

In the Bloch Sphere representation, unitary operations on a single qubit act as rotations
of the Bloch vector Rx(θ), Ry(θ), Rz(θ) [23, 47]. These operations keep the radius of the
sphere constant hence the name rigid operations. In this sense, each point on a Bloch
sphere goes to another point on the sphere after undergoing a unitary operation. Thereby,
rotations about the x, y and z axes take the forms

Rx(θ) = e−i θ
2 σx = cos

(
θ

2

)
I − i sin

(
θ

2

)
σx =

(
cos( θ

2) −i sin( θ
2)

−i sin( θ
2) cos( θ

2)

)
;

Ry(θ) = e−i θ
2 σy = cos

(
θ

2

)
I − i sin

(
θ

2

)
σy =

(
cos( θ

2) −i sin( θ
2)

sin( θ
2) cos( θ

2)

)
;

Rz(θ) = e−i θ
2 σz = cos

(
θ

2

)
I − i sin

(
θ

2

)
σz =

(
e−i θ

2 0
0 ei θ

2

)
,

(1.7.4)

where σx, σy, σz are Pauli matrices and I the identity matrix defined in Eq. (1.3.6). More
generally, the rotation of the Bloch vector by θ around real unit vector n̂ = (nx, ny, nz)
is given by

Rn̂ = exp

(
−iθn̂· σ⃗2

)
= cos

(
θ

2

)
I − i sin

(
θ

2

)
(nxσx + nyσy + nzσz) (1.7.5)

where σ⃗ denotes the three-component vector of Pauli matrices called the Pauli matrix
vector defined in Eq. (1.3.9).

An important result, sometimes known as the Bloch’s theorem or the Bloch decompo-
sition, is that any single qubit gate, U, can be written as the product of three rotations
(and the overall scalar phase that is mostly irrelevant): for all U ∈ U(2),∃ α, β, γ such
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that U = eiαRz(β)Ry(γ)Rz(δ) [47, 48].

1.7.2 Two qubit gates

A two qubit gate which is a member of the universal gate set is the controlled-NOT
(C-NOT) gate. We define a quantum C-NOT gate as that which affects the unitary
operation on two qubits which in a chosen orthonormal basis in C2 gives the C-NOT
operation obtained as

|a⟩|b⟩ → |a⟩|a⊕ b⟩ (1.7.6)

where, |a⟩, is the control qubit, |b⟩, is the target qubit and, ⊕, indicates addition modulo
2 [22, 23, 50]. As an example, it flips the second qubit (target qubit) if the first qubit
(control qubit) is |1⟩ and when the control qubit is |0⟩, the target qubit remains unchanged
as shown in Fig. 1.3.

|1⟩ • |1⟩

|1⟩ |0⟩

|0⟩ • |0⟩

|1⟩ |1⟩

Figure 1.3: C-NOT gate operations

The C-NOT gate transforms superposition into entanglement, thus acting as a mea-
surement gate [22, 23, 50]; it is fundamental in performing algorithms in quantum com-
puters [51]. Transformation to a separable state (product state) is realised by applying
the C-NOT gate again. In this case, it is used to implement Bell (state) measurement on
the two qubits [52].

A useful operator representation of the C-NOT gate is

UC−NOT = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


(1.7.7)

which captures the coherent quantum nature of the C-NOT gate. In the quantum C-
NOT gate, the second operation is controlled on the basis state of the first qubit hence
the choice of the name ”controlled-NOT”.
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Another two qubit gate which is useful is the SWAP gate which interchanges two states
without entanglement [47, 48]

Us|ψ, ϕ⟩ = Us(|ψ⟩ ⊗ |ϕ⟩) = |ϕ, ψ⟩ . (1.7.8)

The operator representation of this gate in the basis, {|0⟩, |1⟩}, is

Us = |00⟩⟨00| + |01⟩⟨10| + |10⟩⟨01| + |11⟩⟨11| . (1.7.9)

The schematic diagram of the SWAP gate is shown in Fig. 1.4
|ψ1⟩ |ψ2⟩

|ψ2⟩ |ψ1⟩
Figure 1.4: SWAP gate operations

1.7.3 Three qubit gates

Three qubit gates can as well be defined. These are the Toffoli gate or the Controlled -
Controlled NOT (CCNOT) gate and the Fredkin gate or the Controlled SWAP (CSWAP)
gate [47, 48]. The CCNOT gate has two qubits as the control and a third qubit as the
target. In this case the target qubit is flipped only when both the control qubits are
|1⟩. This gate is reversible. The representation of the general CCNOT gate is shown in
Fig. 1.5

|x⟩ • |x⟩

|y⟩ • |y⟩

|z⟩ |x⊕ (y ∧ z)⟩

Figure 1.5: Toffoli gate operations

The operator representation of this gate in the basis, {|0⟩, |1⟩}, is

UCCNOT = (|00⟩⟨00| + |01⟩⟨01| + |10⟩⟨10|) ⊗ I + |11⟩⟨11| ⊗X (1.7.10)

where the operators act on the three qubits in the order in which the relation in
Eq. (1.7.10) is written.
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The CSWAP gate is a three qubit gate which interchanges two target qubits if the
control qubit is |1⟩. The diagramatic representation of the general CSWAP gate is shown
in Fig. 1.6

|ψ1⟩ • |ψ1⟩

|ψ2⟩ |ψ′
2⟩

|ψ3⟩ |ψ′
3⟩

Figure 1.6: Fredkin gate operations

Its explicit operator form is

UCSW AP = |0⟩⟨0| ⊗ I4 + |1⟩⟨1| ⊗ USW AP . (1.7.11)

1.8 Bipartite entanglement and Bell states
Entanglement, once described by Einstein as a “telepathically” working interaction [53,
54] and used to criticise quantum mechanics for its counter-intuitiveness [55], can today be
observed in experiments. In quantum computing, entanglement is a source of exponential
speed up of algorithms [56–58] and its existence is a necessary condition for teleportation
[59] and quantum cryptography [60–62].

The effect can take place between any two quantum objects. If the two objects are
entangled, their state is best described by one common wave function. Upon measurement
of one of the object’s properties the other one will show either the complimentary value
or the same value, depending on which Bell state [59] the system is in. The main point
is that the state of the second quantum object is exactly determined once the first has
been measured. In theory, entanglement does not weaken if the distance between the
two quantum objects increases but remains the same at arbitrary distance [63]. It was
shown by Bell [64], that the effect of entanglement is independent of the basis in which
the measurement is carried out. Thus, it became unavoidable to state that entanglement
is indeed a phenomenon, which can neither be explained by classical means nor limited
relativistically by the speed of light, c.

A special case of a measurement is a projective measurement in the Bell state basis
[23, 25, 64, 65]. Considering two states |ψ⟩1, |ψ⟩2 in separate remote locations defined as
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|ψ⟩1 = α1|0⟩ + β1|1⟩ ; |ψ⟩2 = α2|0⟩ + β2|1⟩ , (1.8.1a)

the combined state of the system, |Ψ⟩c, is determined according to

|Ψ⟩c = |ψ⟩1 ⊗ |ψ⟩2

= (α1α2|00⟩ + β1β2|11⟩) + (α1β2|01⟩ + β1α2|10⟩) . (1.8.1b)

Symmetrising and re-organising Eq. (1.8.1b), we obtain

|Ψ⟩c = 1
2 (α1α2 + β1β2) (|00⟩ + |11⟩) + 1

2 (α1α2 − β1β2) (|00⟩ − |11⟩)

+ 1
2 (α1β2 + β1α2) (|01⟩ + |10⟩) + 1

2 (α1β2 − β1α2) (|01⟩ − |10⟩)

= 1√
2

(α1α2 + β1β2) |Φ+⟩ + 1√
2

(α1α2 − β1β2) |Φ−⟩

+ 1√
2

(α1β2 + β1α2) |Ψ+⟩ + 1√
2

(β1α2 − α1β2) |Ψ−⟩ . (1.8.1c)

The combined system in Eq. (1.8.1c) is now in terms of four (maximally entangled) Bell
states |Ψ±⟩, |Φ±⟩, expressed in computational basis as

|Ψ+⟩ = 1√
2

(|10⟩ + |01⟩) ; |Ψ−⟩ = 1√
2

(|10⟩ − |01⟩) ;

|Φ+⟩ = 1√
2

(|00⟩ + |11⟩) ; |Φ−⟩ = 1√
2

(|00⟩ − |11⟩) . (1.8.1d)

In most experimental set-ups measurements are preferably done in the computational
basis {|0⟩, |1⟩}. Therefore, in order to perform a measurement in the Bell basis, the
basis states, {|Ψ+⟩, |Ψ−⟩, |Φ+⟩, |Φ−⟩}, must be mapped onto the computational basis
states of two qubits, {|00⟩, |01⟩, |10⟩, |11⟩}. This is achieved by first applying a C-NOT
(U12

C−NOT ) where qubit 1 is the control qubit and qubit 2 is the target qubit, and then
a Hadamard operation H to qubit 1. It is important to note that this operation works
in both directions, i.e., starting from computation basis states, applying a Hadamard
operation first and then the C-NOT gate, will generate Bell states.

In recent years it has been shown experimentally that the effects of entanglement are
transmitted at a speed at least of the order c·103 [66, 67]. In summary the actual transfer
of information is limited, since it can only happen by means of quantum teleportation
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[68].

1.8.1 Bell state projection

Projection of a state, |Λ⟩, onto another state, |Σ⟩, is defined as [22]

PΣ := ⟨Σ|Λ⟩|Σ⟩ (1.8.2)

where, PΣ, stands for projection onto |Σ⟩ and not probability. Further, the term, ⟨Σ|Λ⟩,
is an inner product between the two states, |Σ⟩, |Λ⟩. As an example, the projection into
Bell basis of the state, |Ψ⟩c, in Eq. (1.8.1c) onto, |Φ+⟩, also defined in Eq. (1.8.1d) is

⟨Φ+|Ψ⟩c = 1√
2

(α1α2 + β1β2)|Φ+⟩ ; ⟨Σ|Λ⟩ = 1√
2

(α1α2 + β1β2) . (1.8.3)

It is clear from Eq. (1.8.3) that the system, |Ψ⟩c, collapses (projected) onto the Bell
state basis, |Φ+⟩. Meaning that projection of a quantum state results from mea-
surement of a system’s observables (eigenstates). In this case, the Bell state basis,
{|Ψ+⟩, |Ψ−⟩, |Φ+⟩, |Φ−⟩}, for state, |Ψ⟩c.

1.8.2 Quantifying entangled states of two qubits

As stated in Sec. 1.8, for entangled states the subsystems are no longer independent. This
means that a measurement performed on one subsystem will result in a state reduction
in both subsystems with strongly correlated measurement results.

A quantitative discussion of entanglement is possible by defining entanglement mea-
sures. For a bipartite system, a criterion exists to determine whether or not a state is
separable, which relies on the behaviour of the partial transpose. The partial transpose
is defined by [69]

ρ̂P T = (σx ⊗ I) · ρ̂ . (1.8.4)

It has been shown that a mixed state, ρ̂, is entangled if and only if its partial transpose,
ρ̂P T , has a negative eigenvalue [70].

Using Schmidt decomposition [71], any pure state, |Ψab⟩, can be written as

|Ψab⟩ =
n∑

i=1

ci |αi⟩ ⊗ |βi⟩ (1.8.5)
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where, {αi}, and {βi}, are orthonormal basis of the subsystems a and b, respectively, and
the coefficients, {ci}, are positive, real numbers. An entanglement measure for such a
state is given by the entropy of one of the subsystems

E(Ψab) = S(tra|Ψab⟩⟨Ψab|) = S(trb|Ψab⟩⟨Ψab|) = −
n∑

i=1

c2
i log2 c

2
i ;

ρ̂a = trb (|Ψab⟩⟨Ψab|) ; ρ̂b = tra (|Ψab⟩⟨Ψab|) .

(1.8.6)

The entropies of the subsystems are defined through their respective reduced density
operators by

S(ρ̂j) = −tr(ρ̂j log2 ρ̂j) ; j : a(b) (1.8.7)

where in general
S(ρ̂) = −tr(ρ̂ log ρ̂) ; ρ̂ = |Ψab⟩⟨Ψab| (1.8.8)

is the von Neumann entropy [23, 28, 72–76]. It follows that 0 ⩽ S(ρ̂) ⩽ 1, where S(ρ̂) = 0
if and only if ρ̂ is a pure state and 0 ≤ E(Ψab) ≤ 1 where the limit 0 is achieved if the
pure state is a product (or separable) and 1 is achieved for maximally entangled states.

In addition, for pure states including mixed states where the Bloch vector
[27] in Eq. (1.2.5) assumes values |r⃗| ⩽ 1, the density operator well defined in
Eqs. (1.3.1), (1.3.3) - (1.3.5) and (1.3.8) has two eigenvalues, π1 = 1

2 [1 − |r⃗|],π2 =
1
2 [1 + |r⃗|], and so for each subsystem its easy to obtain the von Neumann entropy in
the form

S(ρ̂j) = −π1 log2 π1 − π2 log2 π2 ; j : a(b) . (1.8.9)

Whenever |r⃗| = 1 for pure states, we have S(ρ̂j) = 0.
The definition of the quantity, E(Ψab), is connected to the question of how many

singlet pairs of the type, |Ψ−⟩ = (|0a⟩|1b⟩ − |1a⟩|0b⟩), are necessary to create n copies of a
given bipartite state, |Ψab⟩. It has been shown that approximately nE(Ψab) singlet states
are necessary to perform this task [73].

Considering the result obtained for pure states, it is reasonable to estimate the number
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of singlets necessary to create n copies of ρ̂ as

n

N∑
i=1

pi E(Ψi) (1.8.10)

However the quantity,
∑
pi E (Ψi), is still not a good measure of entanglement, since

it depends on particular decomposition of ρ̂. This line of reasoning leads to the definition
of entanglement of formation [77]

Ef (ρ̂) = inf
∑

j

pjE(Ψj) (1.8.11)

Here the infimum of
∑
pj E (Ψj) over all possible decompositions of ρ̂ into pure states is

taken as an entanglement measure. The definition of entanglement of formation involves
an optimization problem to find the infimum, which in the case of higher dimensional
systems is an unsolved problem. However for bipartite systems an algebraic solution is
known, which allows calculation of entanglement of formation from the given density
matrix [77, 78]. More precisely, in the bipartite case, with two subsystems labeled a and
b, the concurrence is widely used in practical situations. For pure states of two spins, this
quantity can be written as

C(|ψab) = |⟨ψab|ψ̃ab⟩| (1.8.12)

where, |ψ̃ab⟩ ≡ σ̂⊗2
x |ψ∗

ab⟩, is referred to as the ‘spin-flipped’ state vector [77]. The con-
currence of a mixed two-qubit state , C(ρ̂ab), can be expressed in terms of the minimum
average pure-state concurrence, C(|ψab⟩), where the required minimum is taken over all
possible ways of decomposing the ensemble, ρ̂ab, into a mixture of pure states, |ψab⟩. The
concurrence of a general two-spin state is then [69]

C(ρab) = max{0, λ1 − λ2 − λ3 − λ4} (1.8.13)

where λi are real square roots of eigenvalues of the matrix ˆ̃ρab, ordered by decreasing size,
and are non-negative. The entanglement of formation, Ef (ρ̂ab), of a mixed bipartite state,
ρ̂ab, of a pair of two-level systems (qubits) is defined in the large number limit of identical
copies of the two-level system as the minimum number required to form the state, ρ̂ab,
by local operations and classical communication (LOCC) on this collection copies. This
quantity has the form of the binary entropy function, expressed in terms of concurrence
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[69, 77]

Ef (ρ̂ab) = h

{
1 +

√
1 − C2(ρ̂ab)

2

}
(1.8.14)

where
h(x) = −x log2 x− (1 − x) log2 (1 − x) . (1.8.15)

The square of concurrence of a state is often referred to as a tangle.
A practical entanglement measure quantifying bipartite-state entanglement in a few

important quantum system sizes is negativity. Negativity is defined in terms of the
transpose of the density matrix representation of the statistical operator, as follows [24,
69, 70]

N(ρ̂) = 1
2(∥ρ̂Ta∥ − 1) =

∣∣∣∣∣∑
i

λi

∣∣∣∣∣ (1.8.16)

where, ρ̂Ta , is the partial transpose of a given bipartite state, ρ̂ab, with respect to sub-
system, a, and, ∥·∥, is the trace-norm and i runs over the subset of negative eigenvalues
of this density matrix; the operator, ρ̂Ta(or ρ̂Tb), is positive if and only if the statistical
operator, ρ̂, is separable else entangled [70, 79, 80]. Negativity becomes, N(ρ̂ab) = 1

2 , for
a maximally entangled two-qubit state and, N(ρ̂ab) = 0, for any separable state. In this
sense, N(ρ̂ab), is the actual measure of negativity.

Another important and more practical mixed state entanglement quantifier is the log-
arithmic negativity [24, 69] which is based upon the negativity after partial transposition
[70, 79, 80]. The logarithmic negativity is defined as follows

EN(ρ̂ab) ≡ log2
∥∥ρ̂Tb

∥∥ (1.8.17)

where, ∥·∥, is the trace norm and, ρTb , is the partial transpose of a given bipartite state,
ρab, with respect to subsystem b. This measure is an entanglement monotone, that is,
it does not increase under LOCC, and in addition it is additive. The trace norm of the
partial transpose corresponds to the sum of modulus of its eigenvalues.

Logarithmic negativity can also be expressed as follows

EN(ρ̂ab) = −2
∑

i

λi (1.8.18)

where it is defined in terms of negative eigenvalues, λi, of the partial transpose of the
state, ρ̂ab . For a separable two-qubit state, ρ̂ab, we always obtain,

∥∥ρ̂Tb
∥∥ = 1, and for a
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maximally entangled two-qubit state,
∥∥ρ̂Tb

∥∥ = 2. Thus a maximally entangled state gives,
EN(ρ̂ab) = 1, whereas the separable state, EN(ρ̂ab) = 0. In general any entanglement
measure should be an entanglement monotone and should vanish for separable states.

In summary, since the trace norm of the partial transpose effectively expresses to what
extent ρ̂Tb fails to represent a physical state, it can be considered a quantitative version
of the partial transpose criterion.

Characterising quantum entanglement in all but even the simplest of cases, the bipar-
tite system of qubits, is challenging not to mention understanding the relevant experi-
mental quantities related to entanglement. It may not be necessary, however, to quantify
the entanglement of a state in order to quantify the quantum information processing sig-
nificance of a state. For example, Horodecki et.al [81] demonstrated that the maximum
teleportation fidelity for a general two qubit system is given by

Fρ̂ = 2fρ̂ + 1
3 (1.8.19a)

where fρ̂ is the fully entangled fraction in the form [75]

fρ̂ = max
|Ψ⟩

⟨Ψ|ρ̂|Ψ⟩ =
{
tr

√
ρ̂

1
2
expectedρ̂measuredρ̂

1
2
expected

}2

, (1.8.19b)

and is defined as the overlap between a mixed state, ρ̂, and a maximally entangled state,
|Ψ⟩, maximised over all |Ψ⟩. Unlike entanglement, the fully entangled fraction does not
have a clear experimental interpretation as the optimal ability to teleport but it is clear
that the degree to which fully entangled fraction is greater than a half (fρ̂ >

1
2 ; Fρ̂ >

2
3)

can be used to quantify the teleporting ability of a state over the best classical limit
(Fρ̂ = 2

3) defined for classical teleportation protocols.

1.9 Statement of the problem
The quantum Rabi model (QRM), the simplest model that describes the interaction be-
tween a two-level atom (fermionic system) and a quantised single mode of electromagnetic
radiation (bosonic system), could not be solved exactly under the assumption that the
counter(anti)-rotating terms (CRTs), âŝ−, â

†ŝ+, which simultaneously de-excite and ex-
cite atom-field states, do not conserve energy. The CRTs were dropped by a mathematical
method called RWA to solve the QRM, yielding an exactly solvable simplified form of the
QRM in the RF termed the JC model.

The QRM was recently re-organised into a two-component, JC Hamiltonian in
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the rotating frame (RF) and the anti-Jaynes-Cummings (AJC) Hamiltonian in the
counter(anti)-rotating frame (CRF), and the AJC Hamiltonian was solved exactly af-
ter discovery of the AJC conserved excitation number operator.

The JC Hamiltonian is now defined as the one that generates dynamics when the
atomic spin couples to the rotating positive frequency component of the field mode, al-
lowing algebraic operations to be performed using normal-operator-ordering, whereas the
AJC Hamiltonian generates dynamics when the atomic spin couples to the CR negative
frequency component of the field mode, allowing algebraic operations to be performed us-
ing anti-normal-operator ordering. The AJC and JC interactions can now be investigated
independently.

Noting that the JC model has been successful in accurately predicting a wide range of
experiments and has correctly described most observed effects when a two-level system
couples to a bosonic mode, we now focus attention on the AJC model and proceed here
to present a first time clear algebraic properties, dynamics and application in QIP (a
combination of QIT and quantum computation) of the AJC model when a two-level
atom interacts with a quantised field mode.

1.10 Objectives of the study
The objectives of this study are to;

1. demonstrate Rabi oscillations between stationary basic AJC qubit state vectors in
the AJC interaction mechanisms,

2. demonstrate time evolution of degree of entanglement (DEM) of a coupled time
evolving AJC qubit state vectors formed in the AJC interaction mechanism,

3. create maximally entangled AJC qubit states in the AJC interaction mechanism,

4. analyse time evolution of atomic population inversion, DEM and photon statistics
to provide a clear visualisation of the AJC processes and its non-classicality,

5. demonstrate teleportion of maximally entangled two-atom qubit state in the AJC
interaction mechanisms and

6. demonstrate how to realise a quantum C-NOT gate operation and a quantum
Hadamard gate operation in the AJC process.
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1.11 Justification of the study
Experiments in the full QRM conducted in the so called deep strong coupling (DSC) [82,
83] and Ultrastrong coupling (USC) regimes [6, 84, 85], respectively, have demonstrated
that the contribution of CRTs in atom-field interaction is significant, implying that RWA
is invalid. It is in these coupling regimes that the dynamics of the absolute ground state,
| g, 0⟩, and effects of the residual sum-frequency detuning, δ = 2ω, could be explained
[86].

In this study, the AJC Hamiltonian drives an initial atom-field ground state, | g, 0⟩,
into a time-evolving entangled state, based on the physical interpretation of the AJC
interaction [9, 10, 16] as that which couples a two-level system to the CR negative fre-
quency component of the field mode. Again, we remark that in [87, 88], the experiments
have revealed dynamical effects arising from interactions involving negative frequency
radiation.

It is now possible to visualise the key effects of the CRTs in the dynamics generated
by the AJC Hamiltonian, which is an exactly solvable form of the QRM in the CRF,
independent of the entire QRM generated dynamics. This model, AJC model, is the
cornerstone in this Thesis.

1.12 Significance of the study
We have presented a first-time dynamical analysis of an exactly solvable AJC model
which is nothing short of inspiring. Whereas the JC model as a building block of QRM
has been extensively studied for its fundamental interaction properties both in theory
and in experiments in quantum optics, this work emphasises that the energy conserving
AJC model as a building block of QRM, can be effectively applied in QIP.

Utilisation of quantum mechanics and quantum optics, accepted quantum information
theory (QIT) probing techniques of purity of states, degree of entanglement (DEM) and
fidelity, and quantum computation principles, we have established that there are obvious
parallels and positive differences in comparison to the extensively studied exactly solvable
JC model. By studying the AJC process independently it is now demonstrated that
indeed in this interaction starting from an absolute atom-field ground state, there exists
Rabi oscillations and you can easily create maximally entangled anti-symmetric atom-field
qubit states of profound interest in QIP due to their important properties. To mention,
the anti-symmetric qubit states are invariant under local unitary transformation, they
exhibit perfect correlation when simultaneous measurements of all particles in a commonly
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chosen measurement basis is applied and they can be generated in an iterative manner
by a sequence of C-NOT gates. In addition, totally anti-symmetric states can as well be
used in different tasks which are of interest for quantum communication. This include
quantum mechanical key sharing protocol, security of the quantum key sharing protocol,
protocol for quantum state sharing and comparison of two quantum states. All these
is because of high symmetry and peculiar correlation properties of the anti-symmetric
quantum states. We have shown that direct atom-field interaction in the JC process,
results in symmetric atom-field states for which correlations of quantum states during
measurement are not easily determined.

Further, according to DiVincenzo criteria [89], storing and processing quantum infor-
mation requires a scalable physical system (a system that is able to handle an increasing
number of qubits in a stable manner) with well-defined qubits, which can be initialised
to well-defined qubit state vectors, and have long lived quantum states in order to ensure
long coherence times during the computational process, i.e, much longer than the quan-
tum gate operation time. The necessity to coherently manipulate the stored quantum
information requires a set of universal gate operations between the qubits which must
be manipulated using controllable interactions of quantum systems. Finally, determin-
ing reliably the outcome of a quantum computation requires an efficient measurement
procedure.

With reference to the DiVincenzo criteria for storing and processing of quantum infor-
mation together with the problem statement well articulated in Sec. 1.9, we have discussed
QIP (a combination of QIT and quantum computation) in the AJC interaction with
particular emphasis on entanglement, realisation of efficient quantum C-NOT, Walsh-
Hadamard gate operations and quantum teleportation of an entangled two-atom state.
The precise and verifiable outcomes, demonstrates the accuracy with which each item is
arrived at with reference to the critera according to DiVincezo. The results of this work
will therefore provide significant contribution when applying qubit technologies (photonic
qubits, trapped ion qubits, cold atom qubits, nuclear magnetic resonance, quantum dot
qubits, defect based qubits, super-conducting qubits and topological qubits); in quan-
tum technologies (quantum communication, quantum computation, quantum simulation,
quantum sensing and quantum metrology); on the conceptual understanding of quantum
teleportation and how to easily realise anti-symmetric quantum channels Sec. 3.2.1 and
Sec. 3.2.2.3; on how to easily realise a long-lived qubit coherence time Sec. 3.2.2.2; how to
realise universal gate operation through controlled interaction Sec. 3.2.3 and Sec. 3.2.4;
on how to easily realise a fully quantised qubit field interaction in an open quantum sys-
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tem when a coherent field mode is considered Sec. 3.3 and Sec 3.4 and most importantly
entanglement. A major goal of QIS is to characterise and quantify quantum entangle-
ment and to formulate new ways in which it can be exploited and manipulated. This
we have explicitly presented in Secs. 4.1.2, 4.1.3, 4.1.4, 4.2 and 4.3. We take note here
that entanglement is a key resource that enables quantum communication protocols such
as quantum teleportation Sec. 4.1.2, superdense coding and quantum key distribution
(QKD).

1.13 Scope of the study
Whilst the effect of CRTs have been observed in experiments involving the full QRM
through application of USC/DSC coupling regimes, the approach taken here is funda-
mentally different. Indeed, we are studying atom-field interaction in an exactly solvable
AJC model where the coupling terms â†ŝ+, âŝ− simultaneously excite, de-excite atom,
field interacting quantum systems. The aim of this study, is to demonstrate that impor-
tant quantum features such as Rabi oscillations and photon anti-bunching exist during
this interaction; entanglement of atom-field states as a quantum phenomenon can be
realised; and applications in quantum computation (quantum gates) and quantum infor-
mation processing (teleportation) is feasilble using qubits that are generated during the
AJC interaction. The scope of this study is limited to application of standard methods in
quantum optics in analysis of Rabi oscillations between the interacting atom-field quan-
tum systems, entanglement of the atom-field quantum states, time evolution of degree
of entanglement, purity of states and photon anti-bunching in the exactly solvable AJC
model. Analytical description of the AJC model is left in its original form and applied
as it is.

For purposes of comparing the AJC dynamics to that of the well-known JC interaction,
we have provided the corresponding analysis during the JC interaction involving a two-
level atom and quantised light mode separately in Fock state, coherent state and squeezed
state in Appendices A, B and C respectively.
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CHAPTER 2
LITERATURE REVIEW

2.1 Studies of the Rabi model
The Quantum Rabi Model (QRM) [3, 9, 11, 12, 15] describes the most fundamental light-
matter interaction involving quantised light and quantised matter. It is different from the
semiclassical Rabi model (RM) [1], where light is treated classically. In its semiclassical
form, the RM was formulated to describe the effect of a rapidly varying weak magnetic
field on an oriented atom possessing nuclear spin. It was applied with success to explain
the challenging experimental data taken by R. Frisch and E. Segre’ [90].

The QRM is used to describe the dipolar coupling between a two-level system (typically
an atom assumed to have only two discrete states) and a bosonic field mode. Although it
plays a central role in the dynamics of a collection of quantum optics and condensed mat-
ter systems [91], such as cavity quantum electrodynamics (CQED) [92–94], quantum dots
[95–97], trapped ions [98–100], or circuit quantum electrodynamics (cQED) [101, 102],
only recently has analytical solution of the QRM in all coupling regimes been proposed
[3, 13–15, 103].

In most cases the QRM, ĤR = 1
2ℏω(â†â+ ââ†)+ℏω0ŝz +ℏλ(â+ â†)(ŝ+ + ŝ−), is further

simplified by making the rotating-wave approximation (RWA) where the coupling terms
that simultaneously excite, â†ŝ+, or de-excite, âŝ−, the atom and the field are neglected.
This quantum version of the RM determined by application of the RWA is known as the
Jaynes-Cummings (JC) model, Ĥ = ℏ(ωâ†â+ ω0ŝz + 2λ(âŝ+ + â†ŝ−)), [8]. Typically the
RWA is valid when the ratio between the coupling strength, λ, and the mode frequency,
ω, is small [104]. Its dynamics is integrable1 and splits the space of quantum states in
an infinite sequence of state doublets. The reason the JC model has been so successful is
not merely because it can be solved exactly, but how it accurately predicts a wide range
of experiments. Analytical solutions of this model have brought clarity and intuition to
several important problems and experimental results in modern physics. In this sense, the
JC model is able to correctly describe most observed effects where an effective two-level
system couples to a bosonic mode, be it in more natural systems as CQED [105–107]
or in simulated versions as trapped ions [100, 108] and cQED [101, 102, 109]. However,

1Integrable means that the time dependence of most of the interesting properties can be described by
explicit analytical expressions
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when the interaction grows in strength until the ultrastrong coupling (USC) [6, 84, 85]
and deep strong coupling (DSC) [82, 83] regimes, the RWA is no longer valid.

Experiments on the full QRM have made outstanding breakthroughs, determining
details of the dynamics into the USC and DSC regimes, however in both theoretical
and experimental advances information on the solvability of the AJC interaction has
received little or no attention. Recently Omolo, J.A. [9] reorganised the QRM and showed
that the AJC model has a conserved excitation number operator, N̂ , which generates
U(1) symmetry of the counter-rotating frame (CRF). In further developments of his
reorganisation [10–12] he presented explicitly how the effective AJC Hamiltonian, Ĥ,
generates dynamical evolution from the initial (absolute) ground state, |g, 0⟩, into a time
evolving entangled state in CRF. A similar observation was made independently in [104]
while discussing accessible regimes of the QRM. In [104], the author discussed briefly
that when the qubit frequency, ω0, and the mode frequency, ω, are of opposite sign such
an interaction will give rise to the AJC Hamiltonian as terms that rotate at frequencies,
|ω0 − ω|, can be neglected.

In this Thesis, we apply the reformulation developed in [9–12] to study and present a
clear visualisation of the AJC dynamics and possible applications in quantum information
processing (QIP) as a combination of QIT and quantum computation.

2.2 Entanglement and teleportation
Quantum entanglement is a fundamental resource in quantum information processing such
as quantum cryptography [61], quantum computation [57] and quantum teleportation [59].
For implementation of quantum computation and teleportation the main ingredient is the
conditional quantum dynamics, in which one subsystem undergoes a coherent evolution
depending on the state of another system.

Quantum teleportation, proposed by Bennett et al [59] and experimentally realised
by Bouwmeester et al [110] and Boschi et al [111], is a process to transmit an unknown
state to a remote location via a quantum channel aided by some classical communication.
Teleportation of entangled states have been suggested for different theoretical schemes;
Shi, et al [112] showed probabilistic teleportation of two-particle entangled state by pure
entangled three-particle state, Lee, H. W. [113] presented a set up for a direct, total
teleportation of a single-particle entangled state, Sibasish et al [114] investigated the
teleportation of the bipartite entangled states through mixture of Bell states, Lee, J.
[115] proposed a scheme for entanglement teleportation to incorporate multipartite en-
tanglement of four qubits as a quantum channel. Lu et al [116] proposed a scheme of
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teleporting a two-particle entangled state and Chimczak et al [117] proposed a scheme to
teleport an entangled -type three-level atoms via photons.

Recall that if two subsystems are entangled as presented in Sec. 1.8, the whole state
vector cannot be separated into a product of the states of the two subsystems. This means
that the two subsystems are no longer independent even if they are far spatially separated.
A measurement on one subsystem gives information about the other subsystem and pro-
vides possibilities of manipulating it [78]. The generation of entangled states for two or
more particles is fundamental to demonstrate quantum non-locality [118, 119]. In prior
work, two particle entangled states have been realised in both cavity quantum electrody-
namics and ion traps; Hagley et al [120] prepared pairs of atoms in an entangled state of
the Einstein-Podolsky-Rosen (EPR) type by exchange of a single photon between atoms
in a high Q cavity, Turchette et al [121] used conditional quantum logic transformations
to entangle and manipulate the qubits of two trapped ions, specified by Raman processes
and sideband transitions and Roos et al [122] reported on the programmed generation
of arbitrary Bell states of two atomic ions specified by sideband transitions. Recently
Omolo, J.A. [11, 12] used polariton and antipolariton qubit state transition operations
to entangle qubits which are useful in quantum teleportation as we shall demonstrate in
this Thesis. Further, the qubit state transition operators developed in [11, 12], effectively
carry out two qubit C-NOT and a single qubit Hadamard quantum logic gate operations,
a process useful in Bell state measurement which we shall demonstrate herein. In this
approach, despite clarity and ease of interpretation of the well defined qubit state transi-
tions, an excessively large dimensionless coupling ratio, λ

δ
, is necessary for experimental

realisation of the C-NOT gate, since achieving transitions between atomic basis states in
an almost resonant atom-field interaction is a prerequisite.

Haroche, S. and Wineland, D.J. in 2012 were jointly awarded a Nobel Prize in Physics
for ground-breaking experimental methods that enable measuring and manipulation of in-
dividual quantum systems [123]. Wineland, D. trapped electrically charged atoms (ions),
controlled and measured them with photons. Haroche, S., took the opposite approach:
he controlled and measured trapped photons by sending atoms through a trap.

In 2022 the Nobel Prize in Physics was announced for experiments with entangled
photons, establishing the violation of Bell inequalities and pioneering quantum informa-
tion science (QIS) [124]. Aspect, A., Clauser, J. and Zeilinger, A. emerged the winners.
Clauser, J., developed John Bell’s ideas, leading to a practical experiment. When he
took the measurements, they supported quantum mechanics by clearly violating a Bell
inequality. This means that quantum mechanics cannot be replaced by a theory that
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uses hidden variables. Some loopholes remained after Clauser’s experiment. Aspect, A.,
developed a setup that closed the important loophole. He was able to switch the mea-
surement settings after an entangled pair had left it’s source, so the setting that existed
when they were emitted could not affect the result. Using refined tools, Zeilinger, A.,
used the entangled quantum states, and demonstrated quantum teleportation.

2.3 Geometry of state spaces
The geometry of state spaces is an important subject in quantum theories [125–130]
that find applications in diverse branches of contemporary physics as dynamical control
of quantum systems [131–136] and quantum information [137], among others. Quantum
states cannot always be represented by vectors in a Hilbert space [125]. The most realistic
approach uses density operators to represent the state of a quantum system since it is
usually prepared in a statistical ensemble of pure states , better than in a given pure
state [138]. This situation provides an indication of the geometry involved since the
density operator is expressed as a convex combination of orthogonal projectors that map
the Hilbert space into a one-dimensional subspace. Using a geometric approach the
dynamics of the two-level pure states is reduced to rotations and reflections of the 2-
sphere (Bloch sphere) [135]. This condition is useful, as an example, to determine the
(classical) magnetic fields that must be applied to a spin-1/2 particle in order to control
the time-evolution of its quantum state [133, 134]. For instance the particle can be
compelled to evolve cyclically [133, 134] in a process that is known as evolution loop
[131].

Entanglement being the main ingredient in quantum information, quantum communi-
cation (that includes quantum teleportation and quantum crytography), quantum com-
puters and simulators, analysis of entangled states in a Hilbert space, using specific
entanglement measures and Bloch spheres has been done in [139–144]. Independently, n-
single qubit Bloch spheres with superimposed correlation axes to geometrically represent
each qubit in a bipartite and multipartite system or analysing atom-field interaction in
the semi-classical picture is considered. Though accurate, geometric analysis of entan-
glement and qubit state transitions may prove tedious, in particular, in [140, 141] the
entanglement measures they chose vanish not only for product states but also for some
entangled states, while in [139] in the case of quantised field, it was only possible to
represent bipartite entanglement geometrically in terms of the length of the Bloch vector
along the z-axis by tracing out the field system.

In this Thesis, the time-evolving atom-field bipartite qubit state vectors are represented
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as density operators and expressed in Pauli matrix basis, with the coefficients making up
the Bloch vector. We then applied the entanglement Bloch sphere approach articulated
in [145–147] to analyse separability and entanglement in the Bloch sphere picture of (defi-
nite) bipartite atom-field states through time evolution of the time-evolving Bloch vector.
We fully charaterised the set of separable and entangled states on a single Bloch sphere at
different parameter values of sum-frequency δ (AJC) and separately frequency detuning
δ (JC). The simplicity of this approach, makes it easy to geometrically analyse requisite
fundamental quantum mechanical features during the atom-field interaction. Recall that
the Bloch vector has a simple geometry of a vector inside a unit Bloch sphere, whose
magnitude indicates the state’s purity, and whose rotations are unitary transformations.

2.4 Quantum Hadamard and quantum controlled-NOT (C-
NOT) logic gates

In quantum computation as introduced in Sec. 1.7, quantum bits (qubits) [22, 23] are
the elementary information carriers. The quantum gates [22, 23, 148] defined therein can
manipulate arbitrary multi-partite quantum states [149] including arbitrary superposi-
tion of the computational basis states, which are frequently also entangled. Thus the
logic gates of quantum computation are considerably more varied than the logic gates
of classical computation. In addition, a quantum computer can solve problems exponen-
tially faster than any classical computer [57], since exploiting superposition principle and
entanglement allow the computer to manipulate and store more bits of information than
a classical computer.

We note here that the JC model has been applied extensively in implementing C-NOT
and Hadamard quantum gate operations which together form a universal set for quan-
tum computation [150–152]. Domokos et al [153] showed that using induced transitions
between dressed states, it is possible to implement a C-NOT gate in which a cavity con-
taining at most one photon is the control qubit and the atom is the target qubit. Later,
Vitali, D. et al [154] proposed a scheme of implementing a C-NOT gate between two
distinct but identical cavities, acting as control and target qubits respectively. By pass-
ing an atom prepared initially in ground state consecutively between the two cavities a
C-NOT (cavity → atom) and a C-NOT (atom → cavity) is realised with the respective
classical fields. Saif, F. et al [155] presented a study of quantum computing by engineer-
ing non-local quantum universal gates based on interaction of a two-level atom with two
modes of electromagnetic field in high Q superconducting cavity. The two-level atom
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acted as the control qubit and the two-mode electromagnetic field served as the target
qubit. In this Thesis, we demonstrate a theoretical approach of realising a quantum C-
NOT logic gate in the AJC model noting that the important discovery and proof of a
conserved excitation number operator of the AJC Hamiltonian [9] and the introduction of
the polariton qubit model confirm that the dynamics generated by the AJC Hamiltonian
is exactly solvable, as demonstrated in [9–12]. In this approach, we implement a quantum
C-NOT gate operation between two cavities defined in a two-dimensional Hilbert space
spanned by the state vectors, |v⟩1 = |1a, 0b⟩, and, |v⟩2 = |0a, 1b⟩. as target qubits. Here,
|v⟩1, expresses the presence of one photon in mode a, when there is no photon in mode
b, and, |v⟩2, indicates that mode a is in vacuum state and one photon is present in mode
b. The control qubit in this respect is a two-level atom. The important difference with
the approach used in [155] is the model, i.e., while the initial absolute atom-field ground
state, |g, 0⟩, in the AJC interaction is affected by atom-cavity coupling, the ground state,
|g, 0⟩, in the JC model [155] is not affected by atom-cavity coupling. A similar result
was determined independently in [12]. Further, with precise choice of interaction time in
the AJC qubit state transition operations defined in the AJC qubit sub-space spanned by
normalised but non-orthogonal basics qubit state vectors [11, 12], C-NOT gate operations
are realised between the two cavities.

Vitali, D. et al [154] showed that one qubit operations can be implemented on qubits
represented by two internal atomic states because it amounts to applying suitable Rabi
pulses. He demonstrated that the most practical solution on implementing one qubit
operations on two Fock states is sending the atoms through the cavity. If the atom inside
the cavity undergoes a π

2 pulse one realises a Hadamard-phase gate. Saif, F. et al [155]
also showed that it is possible to realise Hadamard operation by a controlled interaction
between a two-mode high Q electromagnetic cavity field and a two-level atom. In this
approach, the two-level atom is the control qubit, whereas the target qubit is made up
of two modes of cavity field. Precision of the gate operations is realised by accurate
selection of interaction times of the two-level atom with the cavity mode. In this Thesis,
we show that Hadamard operation in the AJC interaction is possible for a specified initial
atomic state by setting a specific sum frequency and photon number in the AJC qubit
state transition operation [11, 12], noting that the interaction components of the AJC
Hamiltonian generates state transitions.

32



2.5 Non-classicality of both field states and atomic states
Non-classicality of both field and atomic states [156–158] is a fundamental quantum fea-
ture and crucial resource, which is indispensable in quantum information tasks. For
optical fields, the Glauber coherent states and mixture of them [44] are conventionally
identified as classical states in quantum optics, while the Fock states, squeezed states,
cat states are regarded as non-classical ones [29, 159]. Similarly for atomic spin systems,
the atomic coherent states and their mixtures are conventionally regarded by some au-
thors as classical, while all other states are non-classical [160, 161]. Various measures and
witnesses of non-classicality for atomic systems have been proposed, including distance
based non-classicality [162, 163], non-classicality witness based on the atomic quadra-
ture measurements and expectations [164, 165] and non-classicality quantifier based on
Wigner-Yanase skew information [166].

In a broad sense, the notion of non-clssicality (quantumness) goes beyond the the
mentioned conventions above. Different research articles provide different interpretations
dependent on the context. From mathematical and physical point of view, the qubit (a
two-level system e.g. a two-level atom) is a quantum object fundamentally different from
the classical bit, and the non-classical (quantum) features in spin-1

2 states are a funda-
mental resource in quantum technologies. Consequently in this Thesis work, considering
the mathematical and physical interpretation of non-classicality of the atomic states, we
strictly regard a two-level atom as a fully quantum object and study the nature of the
field statistics by applying the Mandel Q-parameter [29, 159], to determine the extent in
which the field is sub-Poissonian. Remember that the Mandel Q-parameter measures the
deviation of photon statistics from the Poissonian statistics Q = 0. A positive value of the
Mandel Q-parameter Q > 0 specifies a classical field, i.e., bunched, while a negative value
of the Mandel Q-parameter Q < 0 specifies a fully quantised field, i.e, anti-bunched. If an
initial coherent and separately a squeezed coherent state is anti-bunched in the dynamics
generated by the AJC Hamiltonian when a two-level atom couples to a field mode, then
we quantify the interaction as non-classical, else, classical. This means, non-classicality
captures the quantum aspect of the qubit and field states during their interaction.
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CHAPTER 3
METHODOLOGY

3.1 The model
The quantum Rabi model of a quantised electromagnetic field mode interacting with a
two-level atom is generated by the Hamiltonian [9]

ĤR = 1
2ℏω(â†â+ ââ†) + ℏω0ŝz + ℏλ(â+ â†)(ŝ+ + ŝ−) (3.1.1)

noting that the free field mode Hamiltonian is expressed in normal and anti-normal or-
der form, 1

2ℏω(â†â + ââ†). Here, ω , â , â† are quantised field mode angular frequency,
annihilation and creation operators, while ω0, ŝz, ŝ+, ŝ− are atomic state transition an-
gular frequency and operators. The Rabi Hamiltonian in Eq. (3.1.1) is expressed in a
symmetrised two-component form [9, 11, 12]

ĤR = 1
2(Ĥ + Ĥ ) (3.1.2)

where, Ĥ, is the standard JC Hamiltonian interpreted as a polariton qubit Hamiltonian
expressed in the form [9]

Ĥ = ℏωN̂ + 2ℏλÂ− 1
2ℏω ; N̂ = â†â+ ŝ+ŝ−

Â = αŝz + âŝ+ + â†ŝ− ; α = ω0 − ω

2λ (3.1.3)

while, Ĥ, is the AJC Hamiltonian interpreted as an anti-polariton qubit Hamiltonian in
the form [9]

Ĥ = ℏωN̂ + 2ℏλÂ− 1
2ℏω ; N̂ = ââ† + ŝ−ŝ+ ;

Â = αŝz + âŝ− + â†ŝ+ ; α = ω0 + ω

2λ .

(3.1.4)

In Eqs. (3.1.3) and (3.1.4), N̂ , N̂ and Â, Â are the respective polariton and anti-polariton
qubit conserved excitation numbers and state transition operators.

In Sec. 3.2 we provide the general dynamics of the AJC model when a two-level atom
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interacts with a field-mode of frequency, −ω, in Fock state introduced in Sec. 1.5.1 of this
Thesis. To be exact, in Sec. 3.2.1 we present the method applied in this Thesis in analysis
of Rabi oscillations between basic stationary qubit state vectors in the Bloch sphere
picture during the AJC interactions and in Sec. 4.1.2 how to determine entanglement
properties, teleportation of maximally entangled two-atom states and dynamical evolution
of entanglement is proffered. Further, in Sec. 3.3 the method applied here in analysis
of interaction properties during the AJC interaction of a two-level atom and a field-
mode in an initial coherent state introduced in Sec. 1.5.2 is provided. More precisely,
we introduce explicitly purity of states and atomic population inversion in Sec. 3.3.1,
degree of entanglement in Sec. 3.3.2 and finally in Sec. 3.3.3, how to determine the nature
of photon statistics during the AJC atom-field interaction. We conclude in Sec. 3.4 by
presenting the approach adopted here in studying the dynamical properties during the
AJC process when a two-level atom interacts with a field mode initially in a squeezed
coherent state introduced in this work in Sec. 1.5.3. Just to highlight, in Sec. 3.4.1 how to
analyse photon statistics during the atom-field quantum systems interaction is presented
and we close in Sec. 3.4.2 by showing clear steps applied in this Thesis in studying photon
statistics, atomic population inversion and degree of entanglement.

3.2 AJC dynamics
Let us now consider the AJC dynamics. It was shown explicitly in [9] that in the AJC
interaction process, only an atom in an initial ground state, |g⟩, entering a field mode in
Fock state in an initial vacuum state, n = 0, couples to the anti-rotating (CR) negative
frequency field mode. An atom in an initial excited state, |e⟩, will not couple (λ = 0) to
the CR field mode in an initial vacuum state, n = 0, and will just propagate as a free
wave.

Recollecting that quantum gates are reversible, interaction of an atom in excited state,
|e⟩, with a single-photon field mode, |1⟩, during the AJC process will be requisite in the
implementation of a single qubit Walsh-Hadamard and two qubit C-NOT quantum gate
processes. We now consider the general case where the atom is initially in ground or
excited state |g⟩, |e⟩ and the field mode in number state, |n⟩, n = 0, 1, 2, 3, .... . The
initial atom-field qubit states are, |ψgn⟩ = |g, n⟩ ; |ψen⟩ = |e, n⟩. Applying separately
the state transition operator, Â, from Eq. (3.1.4) to the initial atom-field n-photon excited
state vector, |ψen⟩, and initial n-photon ground state vector, |ψgn⟩, the basic qubit state
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vectors satisfy the respective qubit state algebraic operations [12]

Â|ψen⟩ = Aen|ϕen⟩ ; Â|ϕen⟩ = Aen|ψen⟩,

Â|ψgn⟩ = Agn|ϕgn⟩ ; Â|ϕgn⟩ = Agn|ψgn⟩. (3.2.1)

In Eq. (3.2.1)

|ψen⟩ = |e, n⟩ ; |ψgn⟩ = |g, n⟩ (3.2.2)

are the initial uncoupled qubit state vectors while

|ϕen⟩ = cen|e, n⟩ + sen|g, n− 1⟩ ; |ϕgn⟩ = −cgn|g, n⟩ + sgn|e, n+ 1⟩

(3.2.3)

are the transition coupled qubit state vectors with dimensionless interaction parameters,
cen, cgn, sen, sgn, and Rabi frequencies, Ren, Rgn, defined as

cen = δ

2Ren

; sen = 2λ
√
n

Ren

; Ren = 2λAen ; Aen =

√
n+ δ

2

16λ2 ,

cgn = δ

2Rgn

; sgn = 2λ
√
n+ 1
Rgn

; Rgn = 2λAgn ; Agn =

√
(n+ 1) + δ

2

16λ2

(3.2.4)

where we have introduced sum frequency, δ = ω0 + ω, to redefine α in Eq. (3.1.4).
In the AJC qubit computational subspace spanned by normalised but non-orthogonal

basic qubit state vectors, |ψen⟩, |ϕen⟩, and, |ψgn⟩, |ϕgn⟩, respectively, the basic qubit
normalised state transition operators, ε̂e, ε̂g, and identity operators, Îe, Îg, are introduced
according to the definitions [12]

ε̂e = Â

Aen

; Îe = Â
2

A
2
en

⇒ Îe = ε̂
2
e ,

ε̂g = Â

Agn

; Îg = Â
2

A
2
gn

⇒ Îg = ε̂
2
g (3.2.5)
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with respective algebraic properties

eiφε̂e = cos(φ)Îe + i sin(φ)ε̂e ; e−iθε̂g = cos(θ)Îg − i sin(θ)ε̂g

(3.2.6)

which are useful in evaluating time evolution operators.
Substituting the operators ε̂e, Îe and ε̂g, Îg in Eq. (3.2.5) into Eq. (3.2.1) generates

the respective basic qubit state transition algebraic operations

ε̂e|ψen⟩ = |ϕen⟩ ; ε̂e|ϕen⟩ = |ψen⟩ ; Îe|ψen⟩ = |ψen⟩ ; Îe|ϕen⟩ = |ϕen⟩ ;
ε̂g|ψgn⟩ = |ϕgn⟩ ; ε̂|ϕgn⟩ = |ψgn⟩ ; Îg|ψgn⟩ = |ψgn⟩ ; Îg|ϕgn⟩ = |ϕgn⟩ .

(3.2.7)

The respective AJC qubit Hamiltonian, Ĥe, Ĥg, defined within the qubit computa-
tional subspace spanned by the respective basic qubit state vectors, |ψen⟩, |ϕen⟩, and,
|ψgn⟩, |ϕgn⟩, specified for initial atomic basis states, |e⟩, |g⟩, in n-photon field modes
respectively are then expressed in terms of the basic qubit normalised state transition
operators, ε̂e, ε̂g, and identity operators, Îe, Îg, in the forms [12]

Ĥe = ℏω
(
n+ 1

2

)
Îe + ℏRenε̂e ; Ĥg = ℏω

(
n+ 3

2

)
Îg + ℏRgnε̂g .

(3.2.8)

Considering now an atom in an initial ground state, |g⟩, in an n-photon field mode,
|n⟩, the initial atom-field state as presented earlier and in Eq. (3.2.2) is, |ψgn⟩ = |g, n⟩.
We use the form of the AJC Hamiltonian, Ĥg, in Eq. (3.2.8) to determine the general
time evolving state vector describing Rabi oscillations in the AJC dynamics in Sec. 3.2.1
below.

3.2.1 Rabi oscillations between the basic AJC qubit state vectors |ψgn⟩ and
|ϕgn⟩

The general dynamics generated by the AJC Hamiltonian, Ĥg, in Eq. (3.2.8) specified
for an initial atom-field qubit state, |g, n⟩, defining an atomic ground state in n-photon
field, is described by a time evolving AJC qubit state vector, |Ψgn(t)⟩, obtained from the
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time-dependent Schrödinger equation in the form [12]

|Ψgn(t)⟩ = Û g(t)|ψgn⟩ ; Û g(t) = e− i
ℏ Ĥgt (3.2.9)

where, Û g(t), is the time evolution operator. Substituting Ĥg from Eq. (3.2.8) into
Eq. (3.2.9) and applying appropriate algebraic properties [12], we use the algebraic prop-
erty relation, e−iθε̂g , on exponentiation of ε̂g given in Eq. (3.2.6) to express the time
evolution operator in its final form

Û g(t) = e−iωt(n+ 3
2 )
{

cos(Rgnt)Îg − i sin(Rgnt)ε̂g

}
, (3.2.10)

which we substitute into equation Eq. (3.2.9) and use the qubit state transition opera-
tions, ε̂g|ψgn⟩ = |ϕgn⟩ ; ε̂|ϕgn⟩ = |ψgn⟩ ; Îg|ψgn⟩ = |ψgn⟩ ; Îg|ϕgn⟩ = |ϕgn⟩, in
Eq. (3.2.7) to obtain the time-evolving AJC qubit state vector for an initial atomic ground
state in n-photon field in the form

|Ψgn(t)⟩ = e−iωt(n+ 3
2 )
{

cos(Rgnt)|ψgn⟩ − i sin(Rgnt)|ϕgn⟩
}
. (3.2.11)

This time evolving state vector describes Rabi oscillations between the basic qubit states,
|ψgn⟩ and |ϕgn⟩, at Rabi frequency, Rgn.

In order to determine the length of the AJC Bloch vector associated with the state
vector in Eq. (3.2.11), we introduce the density operator

ρ̂gn(t) = |Ψgn(t)⟩⟨Ψgn(t)| (3.2.12a)

which we expand to obtain

ρ̂gn(t) = cos2(Rgnt)|ψgn⟩⟨ψgn| + i

2 sin(2Rgnt)|ψgn⟩⟨ϕgn| − i

2 sin(2Rgnt)|ϕgn⟩⟨ψgn|

+ sin2(Rgnt)|ϕgn⟩⟨ϕgn| .

(3.2.12b)

Defining the coefficients of the projectors in Eq. (3.2.12b) as

ρ11
gn(t) = cos2(Rgnt) ; ρ12

gn(t) = i

2 sin(2Rgnt) ;

ρ21
gn(t) = − i

2 sin(2Rgnt) ; ρ22
gn(t) = sin2(Rgnt)

(3.2.12c)
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we interpret the coefficients in Eq. (3.2.12c) as elements of a 2 × 2 density matrix, ρ̂gn(t),
expressed in terms of standard Pauli operator matrices I, σx, σy and σz in Eq. (1.3.6) as

ρ̂gn(t) =
(
ρ11

gn(t) ρ12
gn(t)

ρ21
gn(t) ρ22

gn(t)

)
= 1

2
(
I + ρ⃗gn(t) · σ⃗

)
(3.2.12d)

where we recall from Sec. 1.3 σ⃗ = (σx, σy, σz) is the Pauli matrix vector and we have
introduced the time-evolving AJC Bloch vector, ρ⃗gn(t), obtained in the form

ρ⃗gn(t) =
(
ρx

gn(t), ρy
gn(t), ρz

gn(t)
)

(3.2.12e)

with components defined as

ρx
gn(t) = tr(ρ̂gn(t)σx) = tr

(
i
2 sin(2Rgnt) cos2(Rgnt)
sin2(Rgnt) − i

2 sin(2Rgnt)

)
= 0 ;

ρy
gn(t) = tr(ρ̂gn(t)σy) = tr

(
−1

2 sin(2Rgnt) −i cos2(Rgnt)
i sin2(Rgnt) −1

2 sin(2Rgnt)

)
= − sin(2Rgnt) ;

ρz
gn(t) = tr(ρ̂gn(t)σz) = tr

(
cos2(Rgnt) − i

2 sin(2Rgnt)
− i

2 sin(2Rgnt) − sin2(Rgnt)

)
= cos(2Rgnt) .

(3.2.12f)

The AJC Bloch vector in Eq. (3.2.12e) takes the explicit form

ρ⃗gn(t) =
(

0, − sin(2Rgnt), cos(2Rgnt)
)

(3.2.12g)

which has unit length obtained easily as

|⃗ρgn(t)| = 1 . (3.2.12h)

The property that the AJC Bloch vector, ρ⃗gn(t), is of unit length shows that the general
time evolving AJC state vector, |Ψgn(t)⟩, in Eq. (3.2.11) is a pure state.

The AJC Bloch vector, ρ⃗gn(t), in effect describes the geometric configuration of states
in the Bloch sphere picture, where we adopt class 4 Bloch-sphere entanglement of a
quantum rank-2 bipartite state, [145, 147] to bring a clear visualisation of this interaction
in comparison to the familiar JC interaction process in standard literature.
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3.2.2 Entanglement properties, teleportation of a two-atom singlet state
and dynamical evolution of entanglement generated in the AJC in-
teraction

In this section we show how to apply the von Neumann entropy measure in analysis of
entanglement properties and dynamical evolution of entanglement during this interaction.
We close by providing the algorithm adopted in carrying out teleportation similar to the
JC case in the literature, quantum C-NOT and Hadamard gates.

3.2.2.1 Entanglement properties of AJC qubit states

The von Neumann entropy introduced in Sec. (1.8.2) is a measure of entanglement in a
pure bipartite system of qubits similar to concurrence in the same section. We re-write
explicitly the von Neumann entropy of a quantum state, ρ̂ab, defined in Eq. (1.8.8) as

S(ρ̂ab) = −tr (ρ̂ab logd ρ̂ab) = −
∑

i

λi logd λi (3.2.13)

where the logarithm is taken to base d, d being the dimension of the Hilbert space
containing ρ̂ab and λis are the eigenvalues of ρ̂ab. As presented in Sec. 1.8.2, 0 ⩽ S(ρ̂ab) ⩽
1, where S(ρ̂ab) = 0 if and only if ρ̂ab is a pure state.

Further as stated in Sec. 1.8.2, the von Neumann entropy of the reduced density
matrices of a bipartite pure state, ρ̂ab = |ψab⟩⟨ψab|, is a good and convenient entanglement
measure, E(ρ̂ab), defined in Eq. (1.8.6). We re-write explicitly the entanglement measure
in Eq. (1.8.6) defined as the entropy of either of the quantum subsystem a, b as

E(ρ̂ab) = −tr(ρ̂a log2 ρ̂a) = −tr(ρ̂b log2 ρ̂b) = −
∑

i

ηi log2 ηi ;

ρ̂a = trb(ρ̂ab) ; ρ̂b = tra(ρ̂ab) ,
(3.2.14)

where for all states we have 0 ≤ E(ρ̂ab) ≤ 1 and ηis are the eigenvalues of ρ̂j, j : a(b).
Here the limit 0 is achieved in a pure state defined as a product |ψab⟩ = |ψa⟩ ⊗ |ψb⟩ and
1 is achieved for a maximally entangled states, noting in this case the reduced density
matrices are maximally mixed states.

The AJC stationary initial qubit state vector, |ψgn⟩, is defined in Eq. (3.2.2) in the
form (n = 0, 1, 2, ...)

|ψgn⟩ = |g, n⟩ = |g⟩ ⊗ |n⟩ . (3.2.2′)
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In order to quantify the AJC initial qubit state vector as pure or mixed, entangled
or product state we first determine the density operator ρ̂gn of |ψgn⟩ in Eq. (3.2.2) by
substituting |ψgn⟩ into Eq. (1.3.1) to obtain

ρ̂gn = |g, n⟩⟨g, n| . (3.2.15a)

We then determine the atom (a), field (f) reduced density operators ρ̂a(f) of ρ̂gn in
Eq. (3.2.15a) by tracing over the field (atom) states respectively to obtain

ρ̂a(f) = trf(a)(ρ̂gn) ⇒ ρ̂a = |g⟩⟨g| ; ρ̂f = |n⟩⟨n| . (3.2.15b)

To quantify the initial atom-field state as pure or mixed, we substitute Eq. (3.2.15b) into
Eq. (1.3.15) and separately Eq. (3.2.14). In this case, the pure initial state corresponds
to tr(ρ̂2

a(f)) = 1, E(ρ̂gn) = 0. Recall that in a bipartite system of qubits as presented
earlier in Sec. 1.3.1, for a quantum state ρ̂ab, tr(ρ̂2

a(b)) ⩽ 1 quantifies a quantum state as
pure or mixed. This means that for a pure state tr(ρ̂2

a(b)) = 1, E(ρ̂ab) = 0. That of a
mixed state conforms to tr(ρ̂2

a(b)) = 1
n
, 0 < E(ρ̂ab) < 1 where for a maximally mixed state

n = 2, E(ρ̂ab) = 1.
We then proceed to analyse entanglement properties of the AJC stationary transition

qubit state vectors |ϕgn⟩. The AJC stationary transition qubit state vector |ϕgn⟩ is defined
in Eq. (3.2.3). In order to quantify if it is a pure or mixed state we first determine its
density operator by substituting |ϕgn⟩ in Eq. (3.2.3) into Eq. (1.3.1). The density operator
takes the form

ρ̂gn = |ϕgn⟩⟨ϕgn|

= |cgn|2 |g, n⟩⟨g, n| − cgns
∗
gn|g, n⟩⟨e, n+ 1| − c∗

gnsgn|e, n+ 1⟩⟨g, n|

+ |sgn|2 |e, n+ 1⟩⟨e, n+ 1| . (3.2.16a)

The density operator in Eq. (3.2.16a) has an expanded basis
{|e, n⟩ , |e, n+ 1⟩ , |g, n⟩ , |g, n+ 1⟩}. We sum up the projectors (matrices)
|cgn|2 |g, n⟩⟨g, n| , −cgns

∗
gn|g, n⟩⟨e, n+1| , −c∗

gnsgn|e, n+1⟩⟨g, n| , |sgn|2 |e, n+1⟩⟨e, n+1|
where |cgn|2 , cgns

∗
gn , c

∗
gnsgn , |sgn|2 represent the respective probabilities in which the

transition stationary state |ϕgn⟩ is projected by the respective projectors in ρ̂gn.
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As an illustration, in the case of an initial vacuum field, |0⟩, the projector
|cgn|2|g, n⟩⟨g, n| in Eq. (3.2.16a) takes the form, |cg0|2|g, 0⟩⟨g, 0|, which we ex-
press as a matrix, by first obtaining the vector form of |g, 0⟩ through tensor
product, according to

|g⟩ ⊗ |0⟩ =
(

0
1

)
⊗

(
1
0

)
=


0
0
1
0


and proceed to evaluate the outer product

|cg0|2|g, 0⟩⟨g, 0| = |cg0|2


0
0
1
0


(

0 0 1 0
)

= |cg0|2


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


which is a 4 × 4 projector matrix.

The final matrix representation of ρ̂gn, specified in Eq. (3.2.16a), is then expressed in
the form

ρ̂gn =


0 0 0 0
0 |sgn|2 −c∗

gnsgn 0
0 −cgns

∗
gn |cgn|2 0

0 0 0 0

 (3.2.16b)

to evaluate its eigenvalues λi |i=1,2,3,4 determined at a value of sum frequency δ = δ + 2ω
(easily obtained according to; δ = ω0 + ω = ω0 + ω + (ω − ω) = δ + 2ω ; δ = ω0 − ω).
While noting the definitions of interaction parameters cgn, sgn and Rabi frequency Rgn

in Eq. (3.2.4) we obtain the eigenvalues

{λ1, λ2, λ3, λ4} =
{

(|cgn|2 + |sgn|2), 0, 0, 0
}

= {1, 0, 0, 0} ; |cgn|2 + |sgn|2 = 1 .
(3.2.16c)

We substitute the resulting eigenvalues λi |i=1,2,3,4 in Eq. (3.2.16c) into Eq. (3.2.13) to
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quantify purity of the stationary transition qubit state |ϕgn⟩ according to

S(ρ̂gn) = −λ1 log2 λ1 − λ2 log2 λ2 − λ3 log2 λ3 − λ4 log2 λ4

= −1 log2 1 − 0 log2 0 − 0 log2 0 − 0 log2 0
= 0 . (3.2.16d)

Recollecting that S(ρ̂gn) values should range in the closed interval [0,1], where 0 quantifies
a pure state and 1 a maximally mixed state, else if 0 < S(ρ̂gn) < 1 partially mixed, the
von Neumann entropy, S(ρ̂gn), in Eq. (3.2.16d) of the bipartite transition qubit state
assumes S(ρ̂gn) = 0, quantifying |ϕgn⟩ as a pure state.

Further as an additional measure, to quantify the stationary transition qubit state
|ϕgn⟩ as a product, entangled or maximally entangled we first determine the reduced
density operators ρ̂a(f) of the atom (field) states by tracing ρ̂gn in Eq. (3.2.16a) over the
field (atom) states respectively according to Eq. (3.2.15b)

ρ̂a(f) = trf(a)(ρ̂gn) (3.2.15b′)

to obtain

ρ̂a = trf (ρ̂gn) = |cgn|2|g⟩⟨g| trf |n⟩⟨n| − cgns
∗
gn|g⟩⟨e| trf |n⟩⟨n+ 1|

− c∗
gnsgn|e⟩⟨g| trf |n+ 1⟩⟨n| + |sgn|2|e⟩⟨e| trf |n+ 1⟩⟨n+ 1|

= |cgn|2|g⟩⟨g|⟨n|n⟩ − cgns
∗
gn|g⟩⟨e|⟨n+ 1|n⟩

− c∗
gnsgn|e⟩⟨g|⟨n|n+ 1⟩ + |sgn|2|e⟩⟨e|⟨n+ 1|n+ 1⟩

= |cgn|2|g⟩⟨g| + |sgn|2|e⟩⟨e| ; δij =

1, if i = j

0, if i ̸= j

=
(

|sgn|2 0
0 |cgn|2

)
. (3.2.17)
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Similarly the reduced density matrix of the field ρ̂f is obtained as follows

ρ̂f = tra(ρ̂gn) = |cgn|2|n⟩⟨n| tra|g⟩⟨g| − cgns
∗
gn|n⟩⟨n+ 1| tra|g⟩⟨e|

− c∗
gnsgn|n+ 1⟩⟨n| tra|e⟩⟨g| + |sgn|2|n+ 1⟩⟨n+ 1| tra|e⟩⟨e|

= |cgn|2|n⟩⟨n|⟨g|g⟩ − cgns
∗
gn|n⟩⟨n+ 1|⟨e|g⟩

− c∗
gnsgn|n+ 1⟩⟨n|⟨g|e⟩ + |sgn|2|n+ 1⟩⟨n+ 1|⟨e|e⟩

= |cgn|2|n⟩⟨n| + |sgn|2|n+ 1⟩⟨n+ 1| ; δij =

1, if i = j

0, if i ̸= j

=
(

|cgn|2 0
0 |sgn|2

)
. (3.2.18)

We then evaluate the eigenvalues (η1, η2) of the reduced density matrices ρ̂a, ρ̂f in
Eqs. (3.2.17) and (3.2.18) to obtain

{η1, η2} =
{

|cgn|2, |sgn|2
}

(3.2.19a)

and determine the quantum system entanglement degree E(ρ̂gn) defined in Eq. (3.2.14)
according to

E(ρ̂gn) = −η1 log2 η1 − η2 log2 η2

= −|cgn|2 log2 |cgn|2 − |sgn|2 log2 |sgn|2 . (3.2.19b)

The values of the quantum system entanglement degree, E(ρ̂gn), at different values of
sum frequency, δ, while noting the definitions of Rabi frequency, Rgn, and interaction
parameters, cgn, sgn, are in the range [0,1] as presented in Chapter 4.

In addition, noting that reduced density operators are mixed states, we quantify the
mixedness by determining the length of the Bloch vector along the z-axis according to

rz = tr(ρ̂a(f)σ̂z) . (3.2.20)

The length of the Bloch vector rz in Eq. (3.2.20) solved and provided in Chaphter. 4 is
found to be rz = 0 or in the range 0 < rz < 1 at different sum frequency δ values.

Recall that rz falls in the closed range [0,1], where 0 quantifies the stationary transition
qubit state |ϕgn⟩ as a maximally mixed state and 1 as a pure state else partially mixed
when 0 < rz < 1.
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In general E(ρ̂gn) = 0 quantifies the transition qubit state |ϕgn⟩ as a product state
corresponding to rz = 1, and E(ρ̂gn) = 1 as a maximally entangled state corresponding
to rz = 0 else as entangled 0 < E(ρ̂gn) < 1 corresponding to 0 < rz < 1.

3.2.2.2 Entanglement evolution in the AJC interaction mechanism

The general dynamics of AJC interaction is described by the general time evolving AJC
qubit state vector, |Ψgn(t)⟩, in Eq. (3.2.11). Substituting |Ψgn(t)⟩ from Eq. (3.2.11)
into Eq. (3.2.12a) and using the definitions of |ψgn⟩, |ϕgn⟩ in Eqs. (3.2.2) and (3.2.3),
respectively, the density operator takes the general form

ρ̂gn(t) =
{

cos2(Rgnt) + c2
gn sin2(Rgnt)

}
|g, n⟩⟨g, n|

+
{
i sgn cos(Rgnt) sin(Rgnt) − cgnsgn sin2(Rgnt)

}
|g, n⟩⟨e, n+ 1|

+
{

−i sgn cos(Rgnt) sin(Rgnt) − cgnsgn sin2(Rgnt)
}

|e, n+ 1⟩⟨g, n|

+
{
s2

gn sin2(Rgnt)
}

|e, n+ 1⟩⟨e, n+ 1| .

(3.2.21)

The reduced density operator of the atom is determined by tracing ρ̂gn(t) in Eq. (3.2.21)
over the field states, thus taking the form

ρ̂a(t) = trf (ρ̂gn(t)) = P g(t)|g⟩⟨g| + P e(t)|e⟩⟨e| (3.2.22)

after introducing the general time evolving atomic state probabilities, P g(t), P e(t), ob-
tained as

P g(t) = cos2(Rgnt) + c2
gn sin2(Rgnt) ; P e(t) = s2

gn sin2(Rgnt) (3.2.23)

where the dimensionless interaction parameters, cgn, sgn, are defined in Eq. (3.2.4) and
the Rabi frequency takes the form

Rgn = 1
2

√
16λ2(n+ 1) + δ

2
. (3.2.24)

The time evolving atomic ground state probability, P g(t), is the probability of finding an
atom in the atomic ground state, |g⟩, up to a normalisation factor while, P e(t), is the
probability for an atom to make a transition from the atomic ground state, |g⟩, to atomic
excited state, |e⟩, up to a normalisation factor.
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It is clear from Eq. (3.2.23) that at t = 0, the atom is in the atomic ground state |g⟩, i.e.,
P g(0) = 1 and P e(0) = 0. Whereas at t > 0, the atom will be in a coherent superposition
of ground |g⟩ and excited |e⟩ states with probability P g(t) and P e(t) respectively. This
means that in the presence of the n-photon field, the atom is driven from its ground state
|g⟩ to a superposition of excited |e⟩ and ground |g⟩ states and back again.

Expressing ρ̂a(t) in Eq. (3.2.22) in 2 × 2 matrix form

ρ̂a(t) =
(
P e(t) 0

0 P g(t)

)
(3.2.25)

we determine the quantum system entanglement degree E(t) defined in Eq. (3.2.14) as

E(t) = −tr

((
P e(t) 0

0 P g(t)

)(
log2 P e(t) 0

0 log2 P g(t)

))
(3.2.26)

which takes the final form

E(t) = −P e(t) log2 P e(t) − P g(t) log2 P g(t) . (3.2.27)

At different values of sum frequency δ = δ + 2ω and photon number n we plot E(t)
against time t. The evolution of E(t) is in the range [0,1]. Value 0 signifies disentangle-
ment, 1 maximum entanglement else if 0 < E(t) < 1 entangled. Plots are presented as
results in Chapter 4.

3.2.2.3 Teleportation in the AJC interaction

Application of the time evolving state vector in Eq. (3.2.11)

|Ψgn(t)⟩ = e−iωt(n+ 3
2 ) {cos(Rgnt)|ψgn⟩ − i sin(Rgnt)|ϕgn⟩

}
(3.2.11′)

at various values of sum frequency, δ, enables us to describe Rabi oscillations between
the initial qubit states, |ψgn⟩ = |g, n⟩, and transition qubit states, |ϕgn⟩ = −cgn|g, n⟩ +
sgn|e, n+ 1⟩, at Rabi frequencies, Rgn, in Eq. (3.2.4)

Rgn = 2λAgn ; Agn =

√
(n+ 1) + δ

2

16λ2 ; δ = δ + 2ω . (3.2.4′)
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In the process, we expect to obtain a maximally entangled transition anti-symmetric
atom-field qubit state (or singlet state) |Ψ−⟩. This state, just like the symmetric atom-
field Bell state |Φ+⟩ used in standard JC studies (presented in Sec. A.1.2.3 and [111, 112,
167, 168] as examples) is the teleportation channel and it is in Bob’s (receiver) possession.
If Alice (sender) wishes to send to Bob a maximally entangled two-atom anti-symmetric
state (singlet state) then the complete state of the system will take the form of Eq. (1.8.1b)
which in this case we write

|ψ⟩total = |Ψ−⟩a1,a2 ⊗ |Ψ−⟩b1,b2 . (3.2.28)

An observer, Charlie, receives qubits-a1 (b1 ) from Alice and Bob states respectively
and carries out Bell projection as defined in Eq. (1.8.2) in the form

PΣ := ⟨Σ|Λ⟩|Σ⟩ . (1.8.2′)

The results of Bell state measurement are sent to Bob (or Alice). If it takes the form

a1,b1⟨Ψ−|ψ⟩total = 1
2 |Ψ−⟩a2,b2 , (3.2.29)

no local rotations by Pauli operators in Eq. (1.3.6) are to be made. Alice and Bob now
share a Bell pair. Else if Charles measures and obtains

a1,b1⟨Φ+|ψ⟩total = −1
2 |Φ+⟩a2,b2 ;

a1,b1⟨Φ−|ψ⟩total = 1
2 |Φ−⟩a2,b2 ;

a1,b1⟨Ψ+|ψ⟩total = 1
2 |Ψ+⟩a2,b2 , (3.2.30)

local corrections given by Pauli operators, σ̂x, σ̂y, σ̂z, defined in Eq. (1.3.6) are performed
by Bob (or Alice) after Charlie has communicated the results of measurement according
to

−1
2
[
σ̂x(b2)|Φ−⟩a2,b2

]
= 1

2 |Ψ−⟩a2,b2 ;
1
2
[
i σ̂y(b2)|Φ+⟩a2,b2

]
= 1

2 |Ψ−⟩a2,b2 ;
1
2
[
σ̂z(b2)|Ψ+⟩a2,b2

]
= 1

2 |Ψ−⟩a2,b2 . (3.2.31)
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Applying the maximal teleportation fidelity, Eq. (1.8.19a)

Fρ̂ = 2fρ̂ + 1
3 (1.8.19a′)

where, fρ̂, is the fully entangled fraction defined earlier in Eq. (1.8.19b) in the form

fρ̂ = max
|Ψ⟩

⟨Ψ|ρ̂|Ψ⟩ =
{
tr

√
ρ̂

1
2
expectedρ̂measuredρ̂

1
2
expected

}2

, (1.8.19b′)

to the outcomes in Eqs. (3.2.29) and (3.2.31), each has a unit fidelity, a quarter chance
to occur.

3.2.3 Hadamard gate operation in the AJC interaction

The normalised qubit state transition operators in Eq. (3.2.5) are the Hadamard gate
operators for an atom in an initial excited, |e⟩, and ground, |g⟩, states respectively. We
re-write here their explicit forms as

ε̂g = Â

Agn

=
2
[
δŝz + 2λ(âŝ− + â†ŝ+)

]√
16λ2(n+ 1) + δ

2
; Agn = 1

4λ

√
16λ2(n+ 1) + δ

2 ;

ε̂e = Â

Aen

=
2
[
δŝz + 2λ(âŝ− + â†ŝ+)

]√
16nλ2 + δ

2
; Aen = 1

4λ

√
16nλ2 + δ

2 ;

α = δ

2λ ; Â = αŝz + âŝ− + â†ŝ+ ; â|n⟩ =
√
n|n− 1⟩ ;

â†|n⟩ =
√
n+ 1|n+ 1⟩ ; ŝ+ = ŝx + iŝy ; ŝ− = ŝx − iŝy ;

ŝ+|e⟩ = 0 ; ŝ−|e⟩ = |g⟩ ; ŝ+|g⟩ = |e⟩ ; ŝ−|g⟩ = 0 .
(3.2.32)

Defining an initial state vector, |e, n⟩, in which an atom in an excited state enters
a field mode in a number (Fock) state, |n⟩ ; n ≥ 1, in this particular interaction, by
application of ε̂e in Eq. (3.2.5) (or Eq. (3.2.32)) a qubit state transition as described
earlier in Eq. (3.2.7) takes the form

ε̂e|e, n⟩ = aen|e, n⟩ + ben|g, n− 1⟩ = |ϕen⟩ ; ε̂e|ϕen⟩ = |e, n⟩ . (3.2.33)

Here, aen, ben, are the normalisation parameters. Applying the definitions of interaction
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parameters, cen, sen, and Rabi frequency, Ren in Eq. (3.2.4), aen, ben are obtained in
respective explicit forms as

aen = δ

2Ren

= δ√
16nλ2 + δ

2
; ben = 2λ

√
n

Ren

= 4λ
√

n

16nλ2 + δ
2 .

(3.2.34)

Similarly, defining an initial state vector, |g, n⟩, in which an atom in an initial ground
state, |g⟩, is in a field mode in a number state, |n⟩ ; n ≥ 0, application of ε̂g in Eq. (3.2.5)
(or Eq. (3.2.32)) we obtain in this specific case the qubit state transition

ε̂g|g, n⟩ = −pgn|g, n⟩ + qgn|e, n+ 1⟩ = |ϕgn⟩ ; ε̂g|ϕgn⟩ = |g, n⟩ , (3.2.35)

where pgn, qgn are the normalisation parameters obtained in explicit forms

pgn = δ

2Rgn

= δ√
16λ2(n+ 1) + δ

2
; qgn = 2λ

√
n+ 1
Rgn

= 4λ
√

n+ 1
16λ2(n+ 1) + δ

2 ,

(3.2.36)

while taking note of the standard definitions of interaction parameters, cgn, sgn, and Rabi
frequency, Rgn in Eq. (3.2.4).

In Eqs. (3.2.33) and (3.2.35), |e, n⟩, |g, n⟩ and |ϕen⟩, |ϕgn⟩, are the AJC ini-
tial, transition qubit state vectors. Further, Eqs. (3.2.33) and (3.2.35) show clearly the
reversibility property of the gate operations. It is also clear that the initial atomic states,
|e⟩, |g⟩, are rotated to diagonal (Hadamard) basis states, |+⟩, in Eq. (3.2.33) and, |−⟩,
in Eq. (3.2.35). The computation basis, |e⟩, |g⟩, is the eigenbasis for the spin in the
z-direction, whereas the Hadamard basis, |+⟩, |−⟩, is the eigenbasis for the spin in the
x-direction [49] as explained earlier in Sec. 1.7.1.

Here, we specify Hadarmard rotations for initial atomic basis states, |g⟩, |e⟩, entering
field modes, n ≥ 0, n ≥ 1, respectively in general forms

|e⟩ → aen|e⟩ + ben|g⟩ = |+⟩ ; |g⟩ → qgn|e⟩ − pgn|g⟩ = |−⟩ . (3.2.37a)

In this respect, in an initial single-photon n = 1, vacuum n = 0 field modes respectively
and at sum frequency δ = 4λ, standard Hadarmard rotations defined in Eq. (1.7.3) are
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obtained, which we re-write in the form

|e⟩ → |e⟩ + |g⟩√
2

= |+⟩ ; |g⟩ → |e⟩ − |g⟩√
2

= |−⟩ . (3.2.37b)

3.2.4 C-NOT gate operation in AJC interaction

In order to realise a C-NOT gate operation in this case, we note that the state evolution
operator for an initial atomic ground state, |g⟩, in an n-photon field mode, |n⟩; n ≥ 0, in
the AJC interaction is generated by the time evolution operator in Eq. (3.2.9), which on
substituting the Hamiltonian Ĥg from Eq. (3.2.8) and dropping the factorisable global
phase factor e−iωt(n+ 3

2)Îg , defines the C-NOT gate operator in the AJC model e−iθε̂g in
the general form in Eq. (3.2.6) which we re-write here for ease of reference

e−iθε̂g = cos(θ)Îg − i sin(θ)ε̂g . (3.2.6′)

Similarly, for an initial atomic excited state, |e⟩, in a n-photon field mode, |n⟩; n ≥ 1, a
C-NOT gate operation in the AJC interaction is generated by the time evolution operator
[12]

Û e(t) = e−iωt(n+ 1
2)
(

cos(Rent)Îe − i sin(Rent)ε̂e

)
(3.2.38)

which on substituting the Hamiltonian Ĥe from Eq. (3.2.8) and dropping the global phase
factor e−iωt(n+ 1

2)Îe , defines the requisite C-NOT gate operator eiφε̂e defined in Eq. (3.2.6)
in complete final form

eiφε̂e = cos(φ)Îe + i sin(φ)ε̂e . (3.2.6′)

The C-NOT gate process consists of a two-level atom as the control qubit, which con-
stitutes a two-dimensional Hilbert space spanned by atomic excited, |e⟩, and ground, |g⟩,
states as basis vectors. Two non-degenerate polarised cavity modes, Ca, Cb, make the
target qubit. The target qubit is defined in two-dimensional Hilbert space spanned by
the state vector, |v⟩1 = |0a, 1b⟩, which indicates that mode a is in vacuum state and one
photon is present in mode b, and the state vector, |v⟩2 = |1a, 0b⟩, which expresses the
presence of one photon in mode a when there is no photon in mode b.

An important feature of this approach lies in the fact that after the control qubit
(atomic qubit) interacts with the respective cavity modes, Ca, Cb, they exit in the same
state despite altering the state of the respective successive cavity modes thus describing
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energy conservation. Further for it to work, there should never be more than a single
photon in a cavity field. This means that Fock states, |0⟩ and |1⟩, of the cavity modes,
are the two logical states. Therefore, the state transitions |g, n⟩ → |e, n + 1⟩ such that
n = 0, followed by |e, n⟩ → |g, n− 1⟩ such that n = 1 will experience Rabi oscillations at
Rabi frequencies Rgn, Ren. These Rabi oscillations will depend on the interaction time t
of the atom and the cavity modes.

In actual experiments, the magnitude of the atomic velocity va [28, 169–171] is deter-
mined by taking into account the length L of the cavity and the interaction time t such
that t = L

vatom
. Further, noting that in such set-ups the velocity can vary [120], we shall

evaluate the actual effect of the magnitude of atomic velocity by taking the coupling
parameter λ constant, i.e., the Rabi angles θ = Rgnt, φ = Rent will be depend on λ

and interaction time t. The final qubit state is then readily calculated considering the
definitions of the AJC qubit state algebraic transition operations in Eq. (3.2.7) and the
algebraic property on exponentiation of ε̂g, ε̂e defined in Eq. (3.2.6).

Considering that the atom undergoes a cycle of Rabi oscillation due to interaction
with cavity mode, accurate choice of interaction time will be important. In the process,
qubit state transitions consistent with Eq. (3.2.6) and qubit state operations defined in
Eq. (3.2.7) occur at specified interaction times. More precisely the target qubits made up
of electromagnetic field should be flipped when the control qubit is in an initial ground
state, |g⟩, and remain unchanged if the control qubit is in an initial excited state, |e⟩.

3.2.4.1 Success probability of the C-NOT gate operation

Consider the quantum circuit in Fig. 3.1 representing a schematic of a quantum com-
putation protocol for the C-NOT gate described in Sec. 3.2.4, including a measurement
process.

|g⟩ • R(α)

|1⟩ R(β)

Figure 3.1: Measurement of outcome of C-NOT gate operation

Here, an atom in ground state, |g⟩, enters a single-photon field mode, |1⟩, as an
example. The atom immediately evolves into a coherent superposition of excited, |e⟩,
and ground state, |g⟩, a rotation specified by the Walsh-Hadamard gate as presented in
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Eq. (3.2.37b)
|g⟩ → 1√

2
(|e⟩ − |g⟩) (3.2.37′)

and so the combined product state is of the form

1√
2

(|e⟩ − |g⟩) ⊗ |1⟩ = 1√
2
(
eiπ|g, 1⟩ + |e, 1⟩

)
. (3.2.39a)

The qubits then entangle according to

1√
2
(
eiπ|g, 0⟩ + |e, 1⟩

)
. (3.2.39b)

This is described by the the C-NOT gate operation in the quantum circuit, where it flips
the target qubit if and only if the control qubit is in an atomic ground state, |g⟩. Note that
the control qubits (atomic basis states |e⟩, |g⟩) after undergoing qubit state transitions
in the two successive cavity modes, Ca and Cb respectively as specified by Eqs. (3.2.6)
and (3.2.7), emerge in the same state |e⟩ or |g⟩. This explains why the qubits are in the
summarised final form of Eq. (3.2.39b) without going into the standard AJC process we
set out in Eqs. (3.2.6) and (3.2.7).

To measure the outcome of the gate operation we first apply unitary rotations in the
clockwise direction R(α), R(β) to the first and second qubits respectively in Eq. (3.2.39b)
defined in the form

R(α) =
(

cos(α) sin(α)
− sin(α) cos(α)

)
; R(β) =

(
cos(β) sin(β)

− sin(β) cos(β)

)
. (3.2.40)

The resulting state is determined according to

(R(α) ⊗R(β)) 1√
2

(|e, 1⟩ − |g, 0⟩)

= 1√
2

((
cos(α)

− sin(α)

)
⊗

(
sin(β)
cos(β)

)
−

(
sin(α)
cos(α)

)
⊗

(
cos(β)

− sin(β)

))

= 1√
2




cos(α) sin(β)
cos(α) cos(β)

− sin(α) sin(β)
− sin(α) cos(β)

−


sin(α) cos(β)

− sin(α) sin(β)
cos(α) cos(β)

− cos(α) sin(β)




(3.2.41a)
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which in the basis {|e, 0⟩, |e, 1⟩, |g, 0⟩, |g, 1⟩} after applying the trigonometric identities

sin(α) sin(β) = cos(α− β) − cos(α + β)
2

cos(α) cos(β) = cos(α + β) + cos(α− β)
2

sin(α) cos(β) = sin(α + β) + sin(α− β)
2

cos(α) sin(β) = sin(α + β) − sin(α− β)
2

(3.2.41b)

yields

1√
2

[− sin(α− β) |e, 0⟩ + cos(α− β) |e, 1⟩ − cos(α− β) |g, 0⟩ − sin(α− β) |g, 1⟩] .

(3.2.41c)

Defining the Rabi angle ϕ = R △ t = (α− β) we write Eq. (3.2.41c) in the form

1√
2

[− sin(ϕ) |e, 0⟩ + cos(ϕ) |e, 1⟩ − cos(ϕ) |g, 0⟩ − sin(ϕ) |g, 1⟩]

(3.2.41d)

Noting that (see Eq. (1.2.3)) |e⟩ =
(

1
0

)
; |g⟩ =

(
0
1

)
; |0⟩ =

(
1
0

)
; |1⟩ =(

0
1

)
, the probability of measuring |e, 0⟩ = 1

2 sin2(ϕ). Similarly, the probability of mea-

suring |g, 1⟩ = 1
2 sin2(ϕ). This means that the probability of the qubits collapsing to the

same qubit value is

P (|e, 0⟩ ∪ |g, 1⟩) = sin2(ϕ) , (3.2.42a)

and that of the qubits collapsing to different qubit values is

P (|e, 1⟩ ∪ |g, 0⟩) = cos2(ϕ) = 1 − sin2(ϕ) . (3.2.42b)

Now since we are applying a two cavity mode to actualise the C-NOT gate, we apply the
Bayes’ theorem [172] that relates two conditional probabilities defined as
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P (a|b) = P (b|a)P (a)
P (b) . (3.2.43)

Defining cavity modes, a, b the conditional probability that the event in mode b occurs
given that event a has occurred and are of the same qubit value is

P (a|b) = P (a ∩ b)
p(b) , (3.2.44a)

and the conditional probability that the event in mode a occurs given that event b has
occurred and are of the same qubit value is

P (b|a) = P (b ∩ a)
p(a) . (3.2.44b)

It is clear from the definitions of Eqs. (3.2.44a), (3.2.44b) and the understanding of Bayes’
theorem in Eq. (3.2.43) that

P (a ∩ b) = P (b ∩ a) = P (a|b)P (b) = P (b|a)P (a) . (3.2.44c)

We now evaluate probability of success of the C-NOT process when the qubits collapse
to the same qubit value according to

Ps = sin2(ϕa) sin2(ϕb) = sin2(ϕa)(1 − cos2(ϕb))
= sin2(ϕa) − sin2(ϕa) cos2(ϕb)
= 1 − cos2(ϕa) − sin2(ϕa) cos2(ϕb)
= 1 − (cos2(ϕa) + sin2(ϕa) cos2(ϕb)) .

(3.2.45)

Similarly, in the case of the qubits collapsing to different qubit values

Ps = cos2(ϕa) cos2(ϕb) = cos2(ϕa)(1 − sin2(ϕb))
= cos2(ϕa) − cos2(ϕa) sin2(ϕb)
= 1 − sin2(ϕa) − cos2(ϕa) sin2(ϕb)
= 1 − (sin2(ϕa) + cos2(ϕa) sin2(ϕb)) .

(3.2.46)
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In this Thesis, we shall apply either Eq. (3.2.45) or (3.2.46) to determine success proba-
bility of the C-NOT gate operation between two successive cavity modes Ca, Cb.

3.3 AJC dynamics with field mode in an initial coherent state
Let us consider the field initially in a coherent state as defined in Eq. (1.5.6g) which we
re-write here in a general form (t = 0)

|ψn⟩ = e− |α|2
2

∞∑
n=0

|α|n√
n!

|n⟩ (1.5.6g′)

where, α, is the coherent amplitude, and a generalised initial atomic state, |ψa⟩, prepared
in a superposition of excited, |e⟩, and ground, |g⟩, states in the form (t = 0)

|ψa⟩ = A |e⟩ +B |g⟩ ; A =
√
ζ ; B =

√
1 − ζ (3.3.1)

where the atom is initially in an excited states with probability ζ and ground state with
probability 1 − ζ. In Eq. (1.5.6g) (or Eq.(1.5.6g′)) the states |n⟩, n = 0, 1.2, 3, .... of the
mode are the photon number (Fock) states.

The initial atom-field state, |ψan⟩AJC , is obtained as a direct product of atom and the
field states according to

|ψan⟩AJC = |ψa⟩ ⊗ |ψn⟩ . (3.3.2)

Defining the mean photon number, |α|2, in the AJC interaction as

|α|2 = ⟨ââ†⟩t=0 = ⟨1 + â†â⟩t=0, (3.3.3)

the exact solutions to the Schrödinger equation [10] for the initial atom-field system in
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Eq. (3.3.2) in the AJC interaction, |Ψan(t)⟩, take explicit form (t > 0)

|Ψan(t)⟩ =
∞∑

n=0

e− α2
2

([
A
αn

√
n!

e−iωt(n+ 1
2)(cos(Rent) − icen sin(Rent)) −

i B
αn−1√
(n− 1)!

sgn−1 e
−iωt(n+ 1

2 ) sin(Rgn−1t)
]

|e⟩ +[
B
αn

√
n!

e−iωt(n+ 3
2 )(cos(Rgnt) + icgn sin(Rgnt)) +

i A
αn+1√
(n+ 1)!

e−iωt(n+ 3
2 ) sen+1 sin(Ren+1t)

]
|g⟩
)

⊗ |n⟩ .

(3.3.4)

The final forms of Eq. (3.3.4) has been arrived at through Schmidt decomposition defined
in Eq. (1.8.5) Sec. (1.8.2) and so the entanglement of the two interacting atom, field
quantum systems is readily apparent.

To describe the evolution of the atom alone we introduce the reduced density matrix
of the atom ρ̂a(t) by tracing ρ̂an(t) over the field states in the form

ρ̂a(t) = trf

(
|Ψan(t)⟩⟨Ψan(t)|

)
(3.3.5a)

where for an atom in an initial ground state, |g⟩, at any time t > 0 the state vector of
the system, |Ψgn(t)⟩, in the AJC processe takes the form (B = 1, A = 0)

|Ψgn(t)⟩ =
∞∑

n=0

e− α2
2

[(
− i

αn−1√
(n− 1)!

sgn−1e
−iωt(n+ 1

2 ) sin(Rgn−1t)
)

|e⟩ +

αn

√
n!
e−iωt(n+ 3

2 ) (cos(Rgnt) + i cgn sin(Rgn)
)

|g⟩
]

⊗ |n⟩ .

(3.3.5b)

Applying Eq. (3.3.5a), the AJC reduced atomic density operator, ρ̂g

a(t), determined
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from Eq. (3.3.5b) reduces to an explicit form

ρ̂
g

a(t) = e−α2
∞∑

n=0

[α2n

n!

(
cos2(Rgnt) + c2

gn sin2(Rgnt)
)

|g⟩⟨g|

+i α2n−1√
n!(n− 1)!

sgn−1e
−iωt sin(Rgn−1t)

(
cos(Rgnt) + icgn sin(Rgnt)

)
|g⟩⟨e|

−i α2n−1√
n!(n− 1)!

sgn−1e
iωt sin(Rgn−1t)

(
cos(Rgnt) − icgn sin(Rgnt)

)
|e⟩⟨g|

+ α2(n−1)

(n− 1)! s
2
gn−1 sin2(Rgn−1t)|e⟩⟨e|

]
= e−α2

∞∑
n=0

[
P gg|g⟩⟨g| + P ge|g⟩⟨e| + P eg|e⟩⟨g| + P ee|e⟩⟨e|

]
(3.3.5c)

with the Rabi frequency and interaction parameters in the AJC process defined as

Rgn = λ

2
√

4n+ 4 + (β + 2ξ)2 ; cgn = (β + 2ξ)√
4n+ 4 + (β + 2ξ)2

sgn =

√
4(n+ 1)

4n+ 4 + (β + 2ξ)2 ; δ = δ + 2ω ; ξ = ω

λ
; β = δ

λ
.

(3.3.5d)

3.3.1 Purity and atomic population inversion

We re-write the degree of purity defined in Eq. (1.3.16) in the form

tr(ρ̂2
j(t)) = 1

2
[
1 + (r2

x(t) + r2
y(t) + r2

z(t))
]

; j : a(f) (1.3.16′)

Recall that for pure states, tr(ρ̂2
a(f)(t)) = 1 in which the state-vector description of

each individual system is possible. On the other hand for a two-level system a maximally
mixed state corresponds to tr(ρ̂2

a(f)(t)) = 1
2 .

Defining the AJC time evolving Bloch vector, r⃗(t) = rx(t)̂i + ry(t)ĵ + rz(t)k̂, with
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components in the AJC process, rx(t), ry(t), rz(t), evaluated explicitly as

rx(t) = tr(ρ̂g

a(t)σ̂x) =
∞∑

n=0

e−α2 α2n−1√
n!(n− 1)!

[
2sgn−1 sin(Rgn−1t) cos(Rgnt) sin(ωt)

−2sgn−1cgn sin(Rgn−1t) sin(Rgnt) cos(ωt)
]

ry(t) = tr(ρ̂g

a(t)σ̂y) =
∞∑

n=0

e−α2 α2n−1√
n!(n− 1)!

[
2sgn−1 sin(Rgn−1t) cos(Rgnt) cos(ωt)

+2sgn−1cgn sin(Rgn−1t) sin(Rgnt) sin(ωt)
]

rz(t) = tr(ρ̂g

a(t)σ̂z) =
∞∑

n=0

e−α2
[ α2(n−1)

(n− 1)!s
2
gn−1 sin2(Rgn−1t) − α2n

n!

(
cos2(Rgnt)

+c2
gn sin2(Rgnt)

)]
,

(3.3.6)

we plot the degree of purity, tr(ρ̂2
a(t)), considering the definition of interaction parameters

and Rabi frequency in Eq. (3.3.5d).
In order to discuss the collapses and revival phenomenon, in relation to degree of entan-

glement, Sa(t), and purity of states, tr(ρ̂2
a(t)), we introduce atomic population inversion,

W (t), [34] defined as the difference between the excited and ground state probabilities
according to

W (t) = tr
(
σ̂zρ̂a(t)

)
= e−α2

tr

[(
1 0
0 −1

)(∑∞
n=0 P ee(t)

∑∞
n=0 P eg(t)∑∞

n=0 P ge(t)
∑∞

n=0 P gg(t)

)]

= e−α2
∞∑

n=0

(
P ee(t) − P gg(t)

)
, (3.3.7a)

which takes the exact form as the z-component, rz(t), in Eq. (3.3.6) of the AJC time
evolving Bloch vector, r⃗.

In addition since the AJC interaction is permanently detuned, the revival time, τR, of
atomic population inversion is determined as established in [173] as

τR ≃ π√
δ

2

4λ2 + (|α|2 + 1) −
√

δ
2

4λ2 + |α|2
; δ = δ + 2ω . (3.3.7b)
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3.3.2 Entropy of Entanglement

Consideing the atomic subsystem, we apply the von Neumann entropy in Eq. (1.8.9)
which we now define in terms of the length of the time evolving AJC Bloch vector, r⃗(t),
in complete form

Sa(t) = −π1 log2 π1 − π2 log2 π2 ; π1 = 1
2
[
1 + |⃗r(t)|

]
; π2 = 1

2
[
1 − |⃗r(t)|

]
.

(3.3.8)

We then compute with ease the eigenvalues, π1, π2, considering the definitions of the AJC
Bloch vector components in Eq. (3.3.6); interaction parameters and Rabi frequency in
Eq. (3.3.5d). At various values of sum frequency, δ = δ + 2ω, and field intensity, |α|2,
during the AJC process, we plot and analyse the dynamics of the von Neumann entropy
for the atomic subsystem, Sa(t), in Eq. (3.3.8) in relation to atomic population inversion
(Rabi oscillations), W (t), and purity of states, tr(ρ̂2

a(t)).

3.3.3 Photon statistics

In this section we present the approach adopted in analysis of the nature of photons
during the AJC interaction processes.

3.3.3.1 Mean photon number

The initial average photon number [174], |α|2 is defined in Eq.(3.3.3). As time advances
(t > 0) the average photon number takes the form

⟨ââ†⟩t = tr
[
ρ̂f (t) (ââ†)

]
= tr

[
ρ̂f (t)

(
1 + â†â

)]
.

(3.3.9)

The time evolving reduced density operators of the field, ρ̂g

f (t), in the AJC interaction is
determined from Eq. (3.3.5b) by tracing ρ̂gn(t) over the atomic states according to

ρ̂
g

f (t) = tra(ρ̂gn(t)) ; ρ̂gn(t) = |Ψgn(t)⟩⟨Ψgn(t)|
(3.3.10a)
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to obtain

ρ̂
g

f (t) = e−α2
∞∑

n=0

[α2n

n!

(
cos2(Rgnt) + c2

gn sin2(Rgnt)
)

+ α2(n−1)

(n− 1)! s
2
gn−1 sin2(Rgn−1t)

]
⊗ |n⟩⟨n| . (3.3.10b)

3.3.3.2 Mandel parameter

The Mandel Parameter defined in Eq. (1.4.1) is fundamental in characterising the quan-
tum statistical properties of a system. We re-write it here in the form

Q = ⟨(∆η̂)2⟩
⟨η̂⟩

− 1 = ⟨η̂2⟩ − ⟨η̂⟩2

⟨η̂⟩
− 1 ; ∆η̂ =

√
⟨η̂2⟩ − ⟨η̂⟩2 (3.3.11)

where, ⟨(∆η̂)2⟩, is the photon number variance, ⟨η̂⟩, is the mean photon number and,
η̂ = ââ†, is anti-normal order operator of the number of particles (excitations).

Defining the mean square photon number (t > 0)

⟨(ââ†)2⟩t = tr
[
ρ̂f (t)

(
1 + â†â

)2
]

(3.3.12)

and considering the definition of the reduced density operator of the field in Eq. (3.3.10b)
which we express in a compact form

ρ̂
g

f (t) = Jgn(t) ⊗ |n⟩⟨n| ;

Jgn(t) = e−α2
∞∑

n=0

[α2n

n!

(
cos2(Rgnt) + c2

gn sin2(Rgnt)
)

+ α2(n−1)

(n− 1)! s
2
gn−1 sin2(Rgn−1t)

]
;

â|n⟩ =
√
n|n− 1⟩ ; â†|n⟩ =

√
n+ 1|n+ 1⟩ , (3.3.13)

the mean photon number defined in Eq. (3.3.9), mean square photon number defined in
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Eq. (3.3.12) and hence the Mandel Q-parameter in Eq. (3.3.11) reduce to the forms

⟨η̂⟩ = tr
[
ρ̂

g

f (t)(1 + â†â)
]

= Jgn(t)⟨n|(1 + â†â)|n⟩ = (1 + n) Jgn(t) ;

⟨η̂2⟩ = tr
[
ρ̂

g

f (1 + â†â)2
]

= Jgn(t)⟨n|(1 + â†â)2|n⟩ = (1 + n)2 Jgn(t) ;

Q(t) = (1 + n)2Jgn(t) − [(1 + n)Jgn(t)]2

(1 + n)Jgn(t)
− 1 = (1 + n)(1 − Jgn(t)) − 1 ,

(3.3.14)

after substituting the reduced field density operator in Eq. (3.3.10b) (or Eq. (3.3.13)).
We then plot the time evolution of Q(t) in Eq. (3.3.14) for various values of sum

frequency, δ = δ + 2ω, and field intensity, |α|2, noting the definitions of interaction
parameters and Rabi frequency defined in Eq. (3.3.5d), and proceed to analyse the time
evolution of Q(t) during the AJC interaction, with focus on whether the nature of photons
display Poissonian (coherent), super-Possonian (classical) or sub-Poissonian (nonclassical)
statistics. For Poissonian Q(t) = 0, super-Poissonian Q(t) > 0 and sub-Poissonian Q(t) <
0.

3.4 AJC dynamics with field mode in an initial squeezed co-
herent state

Let us now consider when a field mode in an initial coherent squeezed state |α, ς⟩ defined
in Eq. (1.5.8a) is considered, which we re-write here in a general form

|α, ς⟩ = Sn |n⟩ ;

Sn = 1√
cosh(r)

exp
[
−1

2 |α|2 − 1
2α

∗2eiθ tanh(r)
]

×
∞∑

n=0

[1
2e

iθ tanh(r)
]n

2

√
n!

Hn

[
γ
(
eiθ sinh(2r)

)− 1
2
]

(3.4.1a)

where r, ς is the squeeze, complex squeeze parameter in the form

ς = r exp(iθ) ; 0 ≤ r < ∞ ; 0 ≤ θ ≤ 2π , (3.4.1b)
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α the coherent amplitude and

γ = α cosh(r) + α∗eiθ sinh(r) . (3.4.1c)

We define the average photon number, ⟨ââ†⟩, for the squeezed state in Eq. (3.4.1a) in
the form

|α|2 + sinh2(r) (3.4.2)

such that if |α|2 ≫ sinh2(r), the coherent part of the state dominates the squeezed part.
The probability of finding n-photons P (n) in the field during the AJC processes takes

a general form

P (n) = |⟨n|α, ς⟩|2

=
(1

2 tanh(r))n

n! cosh(r) exp
[
−|α|2 − 1

2
(
α∗2ei θ + α2e−i θ

)
tanh(r)

]
×

∣∣∣Hn

[
γ
(
ei θ sinh(2r)

)− 1
2
] ∣∣∣2 . (3.4.3)

If at t = 0, the atom is in a superposition of excited, |e⟩, and, |g⟩, state as defined in
Eq. (3.3.1) and the field in an initial squeezed coherent state as defined in Eq. (3.4.1a) we
easily obtain the initial atom-field state according to Eq. (3.3.2). When B = 1, A = 0,
we determine as an example in the case of an atom in an initial ground state, |g⟩, the
AJC initial atom-field qubit state vector in the form

|ψgn⟩AJC = |ψg⟩ ⊗ |α, ς⟩ (3.4.4)

to obtain

|ψgn⟩AJC =
∞∑

n=0

Sn |g, n⟩ . (3.4.5)

Here, we shall consider an initial squeezed coherent state with θ = 0, and so ς = r, α
are real. This implies that the generalised squeezed coherent state, |α, ς⟩, is now mapped
onto |α, r⟩.

The exact solution |Ψgn(t)⟩ to the Schrödinger equation [10] for the AJC initial atom-
field system in Eq. (3.4.5) takes the explicit form (t > 0)
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|Ψgn(t)⟩ = e− i
ℏ Ĥgt |g, n⟩ =

∞∑
n=0

[
e−iω(n+ 3

2)t Sn

(
cos(Rgnt)

+icgn sin(Rgnt)
)

|g⟩ − ie−iω(n+ 1
2)t Sn−1 sgn−1 sin(Rgn−1)|e⟩

]
⊗ |n⟩ ;

Rgn = λ

2
√

4n+ 4 + (β + 2ξ)2 ; cgn = (β + 2ξ)√
4n+ 4 + (β + 2ξ)2

sgn =

√
4(n+ 1)

4n+ 4 + (β + 2ξ)2 ; δ = δ + 2ω ; ξ = ω

λ
; β = δ

λ
.

(3.4.6)

The final form of Eq. (3.3.5d) has been arrived at through Schmidt decomposition [28]
and so the two interacting atom, field quantum systems are entangled.

3.4.1 Photon statistics

We shall examine the nature of photon statistics during the AJC interaction by applying
the Mandel Q-parameter defined in Eq. (3.3.11). The initial average photon number is of
the form of Eq. (3.4.5). At any t > 0, the mean, mean square photon number evolve in
time according to Eqs. (3.3.9), (3.3.12).

The time evolving reduced density operator of the field ρ̂g

f (t) during the AJC interac-
tion determined from Eq. (3.3.5d) is obtained explicitly as

ρ̂
g

f (t) = tra(|Ψgn(t)⟩⟨Ψgn(t)|) =
∞∑

n=0

[
S

2
n

(
cos2(Rgnt) + c2

gn sin2(Rgnt)
)

+S2
n−1 s

2
gn−1 sin2(Rgn−1t)

]
⊗ |n⟩⟨n| . (3.4.7)

With the reduced field density operator in Eq. (3.4.7), mean, mean square photon
number defined in Eqs. (3.3.9), (3.3.12) we easily evaluate Q(t) in Eq. (3.3.11) in the
following; Re-writing ρ̂

g

f (t) in Eq. (3.4.7) and noting the actions of the annihilation,
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creation operatiors â, â† on the number state, |n⟩, in the forms

ρ̂
g

f (t) = Zgn(t) ⊗ |n⟩⟨n| ;

Zgn(t) =
∞∑

n=0

[
S

2
n

(
cos2(Rgnt) + c2

gn sin2(Rgnt)
)

+S2
n−1 s

2
gn−1 sin2(Rgn−1t)

]
;

â|n⟩ =
√
n|n− 1⟩ ; â†|n⟩ =

√
n+ 1|n+ 1⟩ , (3.4.8)

the mean photon number defined in Eq. (3.3.9), mean square photon number defined in
Eq. (3.3.12) and hence the Mandel Q-parameter in Eq. (3.3.11) reduce into the respective
forms

⟨η̂⟩ = tr
[
ρ̂

g

f (t)(1 + â†â)
]

= Zgn(t)⟨n|(1 + â†â)|n⟩ = (1 + n) Zgn(t) ;

⟨η̂2⟩ = tr
[
ρ̂

g

f (1 + â†â)2
]

= Zgn(t)⟨n|(1 + â†â)2|n⟩ = (1 + n)2 Zgn(t) ;

Q(t) = (1 + n)2Zgn(t) − [(1 + n)Zgn(t)]2

(1 + n)Zgn(t)
− 1 = (1 + n)(1 − Zgn(t)) − 1 ,

(3.4.9)

after substituting the reduced field density operator in Eq. (3.4.7) (or Eq. (3.4.8)).
At different values of r parameter. We then plot time evolution of the Mandel Q-

parameter Q(τ) (where τ = λt is the scaled time) for an initial atomic ground state, |g⟩,
in an initial squeezed coherent state while noting the definitions of interaction parameters
and Rabi frequency defined in Eq. (3.4.6). For super-Poissonian photon statistics Q(t) >
0, sub-Poissonian Q(t) < 0 and Poissonian Q(t) = 0.

3.4.2 Evolution of atomic population inversion and entropy of entangle-
ment

To describe the evolution of the atom alone we introduce the reduced density matrices
of the atom by tracing the AJC density operator ρ̂gn(t) over the field states determined
from Eq. (3.4.6) according to

ρ̂
g

a(t) = trf

(
|Ψgn(t)⟩⟨Ψgn(t)|

)
(3.4.10a)
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taking explicit form

ρ̂
g

a(t) =
∞∑

n=0

[
S

2
n

(
cos2(Rgnt) + c2

gn sin2(Rgnt)
)

|g⟩⟨g|

+i Sn Sn−1 sgn−1e
−iωt sin(Rgn−1t)

(
cos(Rgnt) + icgn sin(Rgnt)

)
|g⟩⟨e|

−i Sn Sn−1 sgn−1e
iωt sin(Rgn−1t)

(
cos(Rgnt) − icgn sin(Rgnt)

)
|e⟩⟨g|

+S2
n−1 s

2
gn−1 sin2(Rgn−1t)|e⟩⟨e|

]
=

∞∑
n=0

[
P gg|g⟩⟨g| + P ge|g⟩⟨e| + P eg|e⟩⟨g| + P ee|e⟩⟨e|

]
.

(3.4.10b)

We then define the time evolving Bloch vector in the AJC interaction process,
r⃗(t) = rx(t)̂i+ry(t)ĵ+rz(t)k̂, with components obtained as rx(t) = tr

(
σ̂xρ̂

g

a(t)
)
, ry(t) =

tr
(
σ̂yρ̂

g

a(t)
)
, rz(t) = tr

(
σ̂zρ̂

g

a(t)
)

taking respective explicit forms

rx(t) =
∞∑

n=0

[
Sn Sn−1

(
2sgn−1 sin(Rgn−1t) cos(Rgnt) sin(ωt) − 2sgn−1cgn

sin(Rgn−1t) sin(Rgnt) cos(ωt)
)]

;

ry(t) =
∞∑

n=0

[
Sn Sn−1

(
2sgn−1 sin(Rgn−1t) cos(Rgnt) cos(ωt) + 2sgn−1cgn

sin(Rgn−1t) sin(Rgnt) sin(ωt)
)]

;

rz(t) =
∞∑

n=0

[
S

2
n−1 s

2
gn−1 sin2(Rgn−1t) − S

2
n

(
cos2(Rgnt) + c2

gn sin2(Rgnt)
)]

.

(3.4.11)

We shall use the time evolving Bloch vector components in Eq. (3.4.11) to evaluate
time evolution of atomic population inversion, W (t), and the time evolution of the von
Neumann entropy, Sa(t), (as a measure of DEM).

The atomic population inversion, W (t), [34] is defined as the difference between the
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excited and ground state probabilities

W (t) = tr
(
σ̂zρ̂a(t)

)
= tr

[(
1 0
0 −1

)(∑∞
n=0 P ee(t)

∑∞
n=0 P eg(t)∑∞

n=0 P ge(t)
∑∞

n=0 P gg(t)

)]

=
∞∑

n=0

(
P ee(t) − P gg(t)

)
, (3.4.12a)

which is of the exact form as the z-component rz(t) in Eq. (3.4.11) of the time evolving
AJC Bloch vector.

As presented in Eq. (3.3.7b), the revival time, τR, of atomic population inversion,
W (t), is determined as established in [173] in the form

τR ≃ π√
δ

2

4λ2 + (|α|2 + 1) −
√

δ
2

4λ2 + |α|2
; δ = δ + 2ω (3.4.12b)

since the AJC process is permanently detuned even at resonance, δ = 0, i.e., δ = 2ω.
Using the definitions of rz(t) in Eq. (3.4.11), we plot W (t) during the AJC processes.

The atomic population inversion W (t) evolves in time in the range [-1, 1].
In order to discuss the collapses and revival phenomenon in relation to degree of

entanglement we again apply the von Neumann entropy Sa(t) in Eq. (3.3.8) (or (1.8.9))
defined in terms of the length of the time evolving AJC Bloch vector r⃗(t). We again
evaluate the eigenvalues π1, π2 considering the definition of the time evolving AJC Bloch
vector components in Eq. (3.4.11).

Plots of Sa(t) at different values of squeeze parameter r are then easily plotted. The
DEM Sa(t) evolves in time in the range [0,1], i.e, Sa(t) = 0 quantifies disentanglement and
consequently the atom, field quantum systems evolve to pure state, Sa(t) = 1 maximum
entanglement consequently maximally mixed atom-field states else if 0 < Sa(t) < 1
entangled and so partially mixed atom-field states.
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CHAPTER 4
RESULTS

In this chapter, we present the results of the AJC interaction generated by the AJC
Hamiltonian, Ĥ, in Eq. (3.1.4) and compare step-wise with the extensively studied JC
interaction generated by the JC Hamiltonian, Ĥ, in Eq. (3.1.3) including relevant cited
references as provided in the appendices. To be exact, in Sec. 4.1 we present findings of
the AJC interactions when a two-level atom interacts with a quantised field mode in Fock
state, in Sec. 4.2 results of the AJC interactions when a field mode in an initial coherent
state is considered and in Sec. 4.3 results of the AJC interactions when a field mode in
an initial squeezed coherent state is considered.

4.1 AJC dynamics and application in QIP

4.1.1 Rabi oscillations

We begin by remarking that the QRM defined in Eq. (3.1.1) has two dynamical frames,
specifically, the rotating frame (RF) and the counter(anti)-rotating frame (CRF). Dynam-
ics in the RF is governed by the JC interaction mechanism and through a U(1) symmetry
transformation generated by the JC excitation number operator, N̂ , in Eq. (3.1.3), the
QRM Hamiltonian in Eq. (3.1.1) is approximated by an effective JC Hamiltonian, Ĥ,
in Eq. (3.1.3) in a rotating wave approximation (RWA). In the RWA [15, 27, 175], the
coupling strength, λ, is much weaker than the mode frequency, ω, i.e., λ ⩽ |ω|. In this
circumstances, if the qubit is close to resonance, | ω0 | − | ω |≃ 0, and | ω0 +ω |⩾| ω0 −ω |
holds, the RWA can be applied. This implies neglecting terms that rotate at frequency
ω0+ω, leading to the JC model. On the other hand, dynamics in the CRF is controlled by
the AJC interaction mechanism through a U(1) symmetry transformation generated by
the conserved AJC excitation number, N̂ , defined in Eq. (3.1.4). The QRM Hamiltonian
is approximated by an effective AJC Hamiltonian, Ĥ, in Eq. (3.1.4) in the counter(anti)
rotating wave approximation (CRWA) according to | ω0 −ω |⩾| ω0 +ω |. Here, we neglect
terms that rotate at frequencies ω0 − ω, leading to the AJC Hamiltonian in Eq. (3.1.4).

In order to expound on the aforementioned, theoretical and experimental designs of the
full QRM dynamics has the CRF interpreted in the USC and DSC regimes [15, 175] during
which the RWA is no longer valid (breaksdown) and so the CRT cannot be neglected.
This is not the framework considered in this Thesis. Here, the exactly solvable AJC model
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is studied independently and not in the full QRM. In the forthcoming, the dimensionless
coupling parameter ratio λ

ω
, does not apply as discussed in the USC and DSC cases

[15, 175], in the sense that it does not affect the dynamical evolution described by the
time evolving state vector, |Ψgn(t)⟩, but only the fundamental dynamical features as we
discuss in the following.

In the specific example starting with an atom in the ground state, |g⟩, and the field
mode in the vacuum state, |0⟩, the basic qubit state vectors |ψg0⟩ and |ϕg0⟩, together with
the corresponding entanglement parameters, are obtained by setting n = 0 in Eqs. (3.2.2) -
(3.2.4) in the form

|ψg0⟩ = |g, 0⟩ ; |ϕg0⟩ = −cg0|g, 0⟩ + sg0|e, 1⟩ ;

cg0 = δ

2Rg0
; sg0 = 2λ

Rg0
; Rg0 = 1

2

√
16λ2 + δ

2 ;

|g, 0⟩ = |g⟩ ⊗ |0⟩ ; |e, 1⟩ = |e⟩ ⊗ |1⟩ . (4.1.1)

The corresponding AJC Hamiltonian in Eq. (3.2.8) becomes (n = 0)

Ĥg = 3
2ℏωÎg + ℏRg0ε̂g . (4.1.2)

The time-evolving AJC state vector in Eq. (3.2.11) takes the form (n = 0)

|Ψg0(t)⟩ = e−i 3
2 ωt
{

cos(Rg0t)|ψg0⟩ − i sin(Rg0t)|ϕg0⟩
}

(4.1.3)

which describes Rabi oscillations at Rabi frequency, Rg0, between the initial separable
qubit state vector, |ψg0⟩, and the entangled transition qubit state vector, |ϕg0⟩.

The Rabi oscillation process is best described by the corresponding AJC Bloch vector
which follows from Eq. (3.2.12g) in the form (n = 0)

ρ⃗g0(t) =
(
0,− sin(2Rg0t), cos(2Rg0t)

)
. (4.1.4)
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(a) AJC (b) JC

Figure 4.1: Rabi oscillations in the AJC interaction mechanism. Fig. 4.1(a): The Rabi
oscillations for values of sum frequencies are shown by red (δ = 5λ; δ = λ), black (δ = 7λ;
δ = 3λ) and blue (δ = 4λ; δ = ω0 − ω = 0). Fig. 4.1(b) [Rabi oscillations in the JC
interaction extracted from Fig. A.1]: Blue circle is at resonance with frequency detuning
δ = ω0 − ω = 0, red circle is for δ = λ and black circle δ = 3λ

The time evolution of this AJC Bloch vector in Fig. 4.1(a) reveals that the Rabi
oscillations between the basic qubit state vectors |ψg0⟩, |ϕg0⟩ in the AJC process, describe
circles on which the states are distributed on the Bloch sphere.

In Fig. 4.1(a) we have plotted the AJC Rabi oscillation process with respective Rabi
frequencies Rg0 determined according to Eq. (4.1.1) for various values of sum frequency
δ = ω0 + ω. We have provided a comparison with plots of the corresponding JC process
in Fig. 4.1(b) extracted from Fig. A.1 in Sec. A.2.1.

To facilitate the desired comparison of the AJC Rabi oscillation process with the
standard JC Rabi oscillation process plotted in Fig. 4.1(b), we substitute the redefinition
δ = ω0 + ω = δ + 2ω to express the Rabi frequency Rg0 in Eq. (4.1.1) in the form

Rg0 = 1
2
√

16λ2 + (δ + 2ω)2 . (4.1.5)

We have arbitrarily chosen the field mode frequency ω = 2λ (λ = 0.5ω) such that for both
AJC and JC processes in Figs. 4.1(a) and 4.1(b) (including plots in Fig. A.1) we vary
only the detuning frequency δ = ω0 − ω. The resonance case δ = 0 in the JC interaction
now means δ = 2ω = 4λ in the AJC interaction.

For purposes of comparison, considering only three arbitrary values of frequency de-
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tuning δ = λ , 3λ , 0 and noting that λ and δ are both in units of frequency (s−1) we
easily determine Rg0 in Eq. (4.1.5). We also use the general time evolving AJC state
vector in Eq. (4.1.3),

|Ψg0(t)⟩ = e−i 3
2 ωt
{

cos(Rg0t)|ψg0⟩ − i sin(Rg0t)|ϕg0⟩
}

(4.1.3′)

with Rg0 as defined in Eq. (4.1.5) at values of δ = 4λ (δ = 0), 5λ (δ = λ), 7λ (δ = 3λ) to
determine the coupled qubit state vectors |ψg0⟩ , |ϕg0⟩ in Eq. (4.1.1) by setting Rg0t = π

2 ,
describing half cycle of Rabi oscillation as presented in Eqs. (4.1.6a) - (4.1.6c). In each
case, we have an accumulated global phase factor which does not affect measurement
results, but we have maintained them here in Eqs. (4.1.6a) - (4.1.6c) to explain the con-
tinuous time evolution over one cycle.

δ = λ ; δ = 5λ : |g, 0⟩ → e−iπ 79
82

{
− 5√

41
|g, 0⟩ + 4√

41
|e, 1⟩

}
→ e−iπ 79

41 |g, 0⟩

(4.1.6a)

δ = 3λ ; δ = 7λ : |g, 0⟩ → e−iπ 113
130

{
− 7√

65
|g, 0⟩ + 4√

65
|e, 1⟩

}
→ e−iπ 113

65 |g, 0⟩

(4.1.6b)

δ = 0 ; δ = 4λ : |g, 0⟩ → e−iπ

{
− 1√

2
|g, 0⟩ + 1√

2
|e, 1⟩

}
→ e−iπ2|g, 0⟩ (4.1.6c)

The AJC Rabi oscillations for frequency detuning cases δ = λ , 3λ , 0 are plotted as
red, black and blue circles in Fig. 4.1(a), while the corresponding plots in the JC process
are provided in Fig. 4.1(b)[or Fig. A.1] as a comparison. Here, Fig. 4.1(a) is a Bloch
sphere entanglement [145] that corresponds to a 2-dimensional subspace of C2 ⊗ C2

Span{|g, 0⟩ , −cg0|g, 0⟩ + sg0|e, 1⟩} with cg0 = δ
2Rg0

and sg0 = 2λ
Rg0

while Fig. 4.1(b) [or
Fig. A.1] corresponds to a 2-dimensional subspace of C2 ⊗ C2

Span{|e, 0⟩ , ce0|e, 0⟩ + se0|g, 1⟩} with ce0 = δ
2Re0

and se0 = 2λ
Re0

.
In Fig. 4.1 we observe:

(i) that due to the larger sum frequency δ = δ + 2ω in the AJC interaction process
as compared to the detuning frequency δ in the JC interaction process, the Rabi
oscillation circles in the much faster AJC process are much smaller compared to
the corresponding Rabi oscillation circles in the slower JC interaction process in
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Fig. 4.1(b). This effect is in agreement with the assumption usually adopted to drop
the AJC interaction components in the rotating wave approximation (RWA), noting
that the fast oscillating AJC process averages out over time. We have demonstrated
the physical property that the size of the Rabi oscillations curves decreases with
increasing Rabi oscillation frequency by plotting the AJC oscillation curves for a
considerably larger Rabi frequency Rg0 where we have set the field mode frequency
ω = 10λ(λ = 0.1ω) in Fig. 4.2. It is clear in Fig. 4.2 that for this higher value of the
Rabi frequency Rg0 the Rabi oscillation curves almost converge to a point-like form

Figure 4.2: Rabi oscillations in AJC interaction mechanism. The Rabi oscillations for
values of sum frequencies are shown by red (δ = 21λ ; δ = λ) and black (δ = 23λ ; δ =
3λ).

(ii) that Rabi oscillations in the AJC interaction process as demonstrated in Fig. 4.1(a)
occur in the left hemisphere of the Bloch sphere while in the JC interaction pro-
cess the oscillations occur in the right hemisphere as demonstrated in Fig. 4.1(b).
This demonstrates an important physical property that the AJC interaction process
occurs in the reverse sense relative to the JC interaction process;

(iii) an interesting feature that appears at resonance specified by δ = 0. While in the
JC model plotted in Fig 4.1(b) the Rabi oscillation at resonance δ = 0 (blue circle)
lies precisely on the yz-plane normal to the equatorial plane, the corresponding AJC
Rabi oscillation (blue circle in Fig. 4.1(a)) is at an axis away from the yz-plane
about the south pole of the Bloch sphere. This feature is due to the fact that the
sum frequency δ = 2ω takes a non-zero value under resonance δ = 0 such that the
AJC oscillations maintain their original forms even under resonance.
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We note that the qubit state transitions described by the Bloch vector in the AJC
process (Fig. 4.1(a)) are blue sideband transitions characterised by the sum frequency
δ = ω0 + ω = δ+ 2ω according to the definition of the Rabi frequency Rg0 in Eq. (4.1.5).

4.1.2 Entanglement analysis of basic qubit state vectors |ψg0⟩ and |ϕg0⟩ and
teleportation in the AJC model

In this section we analyse the entanglement properties of the qubit state vectors, telepor-
tation and the dynamical evolution of entanglement generated in the AJC interaction.

4.1.2.1 Entanglement properties

Let us start by considering the entanglement properties of the initial state |ψg0⟩ which
according to the definition in Eq. (4.1.1) is a separable pure state. The density operator
of the qubit state vector |ψg0⟩ = |g, 0⟩ is obtained as

ρ̂g0 = |g, 0⟩⟨g, 0| . (4.1.7a)

Using the definition |g, 0⟩ = |g⟩ ⊗ |0⟩, we take the partial trace of ρ̂g0 in Eq. (4.1.7a) with
respect to the field mode and atom states respectively, to obtain the respective atom and
field reduced density operators ρ̂a, ρ̂f in the form (subscripts a ≡ atom and f ≡ field)

ρ̂a = trf (ρ̂g0) = |g⟩⟨g| ; ρ̂f = tra(ρ̂g0) = |0⟩⟨0| ; |g⟩ =
(

0
1

)
; |0⟩ =

(
1
0

)
(4.1.7b)

which take explicit 2 × 2 matrix forms

ρ̂a =
(

0 0
0 1

)
; ρ̂f =

(
1 0
0 0

)
. (4.1.7c)

The trace of ρ̂a, ρ̂2
a and ρ̂f , ρ̂2

f of the matrices in Eq. (4.1.7c) are

tr(ρ̂a) = tr(ρ̂2
a) = tr

(
0 0
0 1

)
= 1 ; tr(ρ̂f ) = tr(ρ̂2

f ) = tr

(
1 0
0 0

)
= 1 .

(4.1.7d)
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The unit trace determined in Eq. (4.1.7d) proves that the initial qubit state vector |ψg0⟩ =
|g, 0⟩ is a pure state (see Sec. 1.3.1).

Next, we substitute the matrix form of ρ̂a and ρ̂f from Eq. (4.1.7c) into Eq. (3.2.14)
according to

S(ρ̂a) = −tr(ρ̂a log2 ρ̂a)

= −tr

[(
1 0
0 0

)
log2

(
1 0
0 0

)]
= −tr

[(
log2(1) log2(0)

0 0

)]
= 0 ;

S(ρ̂f ) = −tr(ρ̂f log2 ρ̂f )

= −tr

[(
0 0
0 1

)
log2

(
0 0
0 1

)]
= −tr

[(
0 0

log2(0) log2(1)

)]
= 0 .

⇒ E(ρ̂g0) = S(ρ̂a) = S(ρ̂f ) = 0 . (4.1.7e)

The equal von Neumann entanglement entropies in Eq. (4.1.7e) together with the property
in Eq. (4.1.7d) quantifies the initial qubit state vector |ψg0⟩ = |g, 0⟩ as a pure separable
state, agreeing with the definition in Eq. (4.1.1).

We proceed to determine the entanglement properties of the (transition) qubit state
vector |ϕg0⟩ defined in Eq. (4.1.1). For parameter values δ = λ , δ = 5λ we ignore the
phase factor in Eq. (4.1.6a), to write the transition qubit state vector in the form

δ = λ ; δ = 5λ : |ϕg0⟩ = − 5√
41

|g, 0⟩ + 4√
41

|e, 1⟩ , (4.1.8a)

where again we note that λ, δ, δ are of units of frequency, per second (s−1), hence the
representation δ = λ , δ = 5λ is adopted in evaluation of the Rabi frequency Rg0 and
interaction parameters cg0, sg0 in Eqs. (4.1.1) and (4.1.5).

The corresponding density operator of the state in Eq. (4.1.8a) is

ρ̂g0 = 25
41 |g, 0⟩⟨g, 0| − 20

41 |g, 0⟩⟨e, 1| − 20
41 |e, 1⟩⟨g, 0| + 16

41 |e, 1⟩⟨e, 1| (4.1.8b)

which takes the explicit 4 × 4 matrix form

ρ̂g0 = 1
41


0 0 0 0
0 16 −20 0
0 −20 25 0
0 0 0 0

 (4.1.8c)
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with eigenvalues λ1 = 1, λ2 = 0, λ3 = 0, λ4 = 0. Applying Eq. (3.2.13), its von Neumann
entropy

S(ρ̂g0) = −1 log2 1 − 0 log2 0 − 0 log2 0 − 0 log2 0
= 0 (4.1.8d)

quantifying the state |ϕg0⟩ in Eq. (4.1.8a) as a bipartite pure state.
Taking the partial trace of ρ̂g0 in Eq. (4.1.8b) with respect to the field mode and atom

states respectively, we obtain the respective atom and field reduced density operators
ρ̂a, ρ̂f together with their squares in the form

ρ̂a = trf (ρ̂g0) = 25
41 |g⟩⟨g| + 16

41 |e⟩⟨e| = 1
41

(
16 0
0 25

)
;

⇒ ρ̂
2
a = 625

1681 |g⟩⟨g| + 256
1681 |e⟩⟨e| = 1

1681

(
256 0
0 625

)
;

ρ̂f = tra(ρ̂g0) = 25
41 |0⟩⟨0| + 16

41 |1⟩⟨1| = 1
41

(
25 0
0 16

)
;

⇒ ρ̂
2
f = 625

1681 |0⟩⟨0| + 256
1681 |1⟩⟨1| = 1

1681

(
625 0
0 256

)
.

(4.1.8e)

The trace of ρ̂2
a and ρ̂

2
f in Eq. (4.1.8e) gives

tr(ρ̂2
a) = tr(ρ̂2

f ) = 881
1681 < 1 (4.1.8f)

demonstrating that ρ̂a and ρ̂f are mixed states, satisfying the general property tr(ρ̂2
a(f)) <

1 for a mixed state ρ̂a(f) as defined in Eq. (1.3.15).
To quantify the mixedness we determine the length of the Bloch vector along the z-axis

as follows
rz = tr(ρ̂aσ̂z) = tr(ρ̂f σ̂z) = 9

41 (4.1.8g)

which shows that the reduced density operators ρ̂a, ρ̂f are non-maximally mixed states.
The eigenvalues (λ1, λ2) of ρ̂a and ρ̂f are

(16
41 ,

25
41

)
and

(25
41 ,

16
41

)
respectively, which on
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substituting into Eq. (3.2.14), gives equal von Neumann entanglement entropies

E(ρ̂g0) = S(ρ̂a) = S(ρ̂f ) = −16
41 log2

(
16
41

)
− 25

41 log2

(
25
41

)
= 0.964957 (4.1.8h)

Taking the properties in Eqs. (4.1.8d), (4.1.8f) - (4.1.8h) together clearly characterises the
qubit state |ϕg0⟩ in Eq. (4.1.8a) as an entangled bipartite pure state. However, since
S(ρ̂a) = S(ρ̂f ) < 1 the state is not maximally entangled. Similarly, the transition qubit
state vector |ϕg0⟩ = − 7√

65 |g, 0⟩ + 4√
65 |e, 1⟩ obtained for δ = 3λ, δ = 7λ in Eq. (4.1.6b) is

an entangled bipartite pure state, but not maximally entangled.
Finally, we consider the resonance case δ = 0, characterised by δ = 4λ in the AJC

model. Ignoring the phase factor in Eq. (4.1.6c) the transition qubit state vector |ϕg0⟩
takes the form

δ = 0 ; δ = 4λ : |ϕg0⟩ = − 1√
2

|g, 0⟩ + 1√
2

|e, 1⟩ . (4.1.9a)

The corresponding density operator of the state in Eq. (4.1.9a) is

ρ̂g0 = 1
2 |g, 0⟩⟨g, 0| − 1

2 |g, 0⟩⟨e, 1| − 1
2 |e, 1⟩⟨g, 0| + 1

2 |e, 1⟩⟨e, 1| (4.1.9b)

which takes the explicit 4 × 4 matrix form

ρ̂g0 = 1
2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 (4.1.9c)

with eigenvalues λ1 = 1 , λ2 = 0 , λ3 = 0 , λ4 = 0. Applying Eq. (3.2.13) its von Neumann
entropy

S(ρ̂g0) = 0 (4.1.9d)

quantifying the state in Eq. (4.1.9a) as a bipartite pure state.
Taking the partial trace of ρ̂g0 in Eq. (4.1.9b) with respect to the field mode and atom

states respectively, we obtain the respective atom and field reduced density operators
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ρ̂a, ρ̂f together with their squares in the form

ρ̂a = trf (ρ̂g0) = 1
2 |g⟩⟨g| + 1

2 |e⟩⟨e| ; ρ̂
2
a = 1

4 |g⟩⟨g| + 1
4 |e⟩⟨e|

ρ̂f = tra(ρ̂g0) = 1
2 |0⟩⟨0| + 1

2 |1⟩⟨1| ; ρ̂
2
f = 1

4 |0⟩⟨0| + 1
4 |1⟩⟨1|

(4.1.9e)

The trace of ρ̂2
a and ρ̂

2
f in Eq. (4.1.9e) is

tr(ρ̂2
a) = tr(ρ̂2

f ) = 1
2 < 1 (4.1.9f)

which reveals that the reduced density operators ρ̂a, ρ̂f are mixed states. To quantify the
mixedness, we determine the length of the Bloch vector along the z-axis as follows

rz = tr(ρ̂aσ̂z) = tr(ρ̂f σ̂z) = 0 (4.1.9g)

showing that the reduced density operators ρ̂a and ρ̂f are maximally mixed states.
The eigenvalues (λ1, λ2) of ρ̂a and ρ̂f are (1

2 ,
1
2) respectively which on substituting into

Eq. (3.2.14), gives equal von Neumann entanglement entropies

E(ρ̂g0) = S(ρ̂a) = S(ρ̂f ) = −1
2 log2

(
1
2

)
− 1

2 log2

(
1
2

)
= 1 (4.1.9h)

The unit entropy determined in Eq. (4.1.9h) together with the properties in Eqs. (4.1.9d) -
(4.1.9g) quantifies the transition qubit state determined at resonance δ = 0 in Eq. (4.1.9a)
(or Eq. (4.1.6c)) as a maximally entangled bipartite pure state. Due to this maximal en-
tanglement property, we shall use the resonance transition qubit state |ϕg0⟩ in Eq. (4.1.9a)
to implement teleportation by an entanglement swapping protocol in Sec. 4.1.2.2 below.

Similar proof of entanglement of the AJC qubit states is easily achieved for all possible
values of sum frequency parameter δ = ω0 +ω, confirming that in the initial vacuum-field
AJC interaction, reversible transitions occur only between a pure initial separable qubit
state vector |ψg0⟩ and a pure entangled qubit state vector |ϕg0⟩.

This property of Rabi oscillations between an initial separable state and an entangled
transition qubit state occurs in the general AJC interaction described by the general time
evolving state vector |Ψgn(t)⟩ in Eq. (3.2.11).

It is of importance at this stage to mention about the qubit state transitions of an
initial atom-field ground state |g, 0⟩ in the JC interaction, i.e., an atom in ground state |g⟩
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in an initial vacuum field |0⟩. To clarify, let us consider the definition of the time evolving
qubit state vector |Ψgn(t)⟩, Rabi frequency Rgn and interaction parameters cgn, sgn in the
JC interaction defined for an initial atomic ground state in an n-photon field mode in the
forms [12]

|Ψgn(t)⟩ = e−iωt(n− 1
2) (cos(Rgnt)|ψgn⟩ − i sin(Rgnt)|ϕgn⟩) ; Rgn = 2λAgn ;

Agn =
√
n+ δ2

16λ2 ; cgn = δ

2Rgn

; sgn = 2λ
√
n

Rgn

;

|ψgn⟩ = |g, n⟩ ; |ϕgn⟩ = −cgn|g, n⟩ + sgn|e, n− 1⟩ , (4.1.10)

to describe the transitions between the stationary basic qubit state vectors |ψgn⟩ and |ϕgn⟩
during time evolution of |Ψgn(t)⟩ in Eq. (4.1.10). As an example, letting δ = 0, λ; Rg0t =
π
2 ; ω = 2λ we easily obtain

δ = 0 : |Ψg0(t = ∞)⟩ = 0 ; Rg0 = 0 ; t = ∞ ,

δ = λ : |g, 0⟩ → ei 3π
2 |g, 0⟩ → ei3π|g, 0⟩ . (4.1.11)

We observe in the first case, δ = 0, a closed state in the upper JC spectrum [10] while in
the latter, δ = λ, a clear free-evolution, i.e, the atom remains permanently in the atomic
ground state |g⟩ since it does not couple to the rotating field mode in vacuum state.
Remember, the variation in the global phase has no physical meaning, indicating that
the initial and transition states (at δ = λ) in Eq. (4.1.11) effectively present the same
physical system |g, 0⟩.

These two cases provide the inherent difficulty in analysing the full QRM dynamics
since the effective JC Hamiltonian cannot generate dynamical evolution when the atom is
initially in ground state and in a vacuum field mode |g, 0⟩, giving rise to the implementa-
tion of larger coupling regimes, the USC and DSC regimes. In these coupling regimes, the
contribution of the counter(anti)-rotating (CRT) terms becomes salient and the dynamics
of |g, 0⟩ can be studied.

This fundamental result in Eq. (4.1.11) provides the justification of this study in the
Fock space, where the dynamical evolution of the JC model in an initial vacuum field
is fully demonstrated and specified strictly with the physical description of the effective
JC Hamiltonian as that which drives the effective initial JC state vector |e, 0⟩ to a time
evolving entangled bipartite atom-field state. The AJC Hamiltonian on the other hand
is that which drives the initial state vector |g, 0⟩ to a time evolving entangled state as we
have demonstrated. The reason why JC and AJC models are studied separately.
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4.1.2.2 Teleportation in the AJC interaction mechanism

We now consider teleportation of entanglement, a process that uses entanglement swap-
ping protocol as introduced in Sec. 3.2.2.3. Here, the state we want to teleport is a
two-atom maximally entangled state in which we have assigned subscripts to distinguish
the atomic qubit states in the form [176]

|φ⟩12 = 1√
2

(|e⟩1|g⟩2 − |g⟩1|e⟩2) (4.1.12)

and it is in Alice’s possession. In another location Bob is in possession of a maximally
entangled qubit state |ϕg0⟩ generated in the AJC interaction in Eq. (4.1.6c) and expressed
here as

δ = 0 : |ϕg0⟩ ≡ |Φ⟩3x = − 1√
2

|g⟩3|0⟩x + 1√
2

|e⟩3|1⟩x (4.1.13)

where we have also assigned subscripts to the qubits in Eq. (4.1.13) to clearly distinguish
them. More precisely the arbitrarily chosen subscript 3 specifies atomic qubits and x
identifies field mode qubits that defines the maximally entangled state |Φ⟩3x in possession
of the receiver (Bob).

An observer, Charlie, receives qubit-1 (in the state |φ⟩12, Eq. (4.1.12)) from Alice and
qubit-x (in the state |Φ⟩3x, Eq. (4.1.13)) from Bob. The entire state of the system

|χ⟩ = |φ⟩12 ⊗ |Φ⟩3x (4.1.14a)

which on substituting |φ⟩12 and |Φ⟩3x from Eqs. (4.1.12), (4.1.13) and reorganizing takes
the form

|χ⟩ = 1
2

[
|Ψ+⟩1x

(
|e⟩3|g⟩2 + |g⟩3|e⟩2√

2

)
+ |Ψ−⟩1x

(
|e⟩3|g⟩2 − |g⟩3|e⟩2√

2

)
− |Φ−⟩1x

(
|g⟩3|g⟩2 − |e⟩3|e⟩2√

2

)
− |Φ+⟩1x

(
|g⟩3|g⟩2 + |e⟩3|e⟩2√

2

)]
(4.1.14b)
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after introducing the emerging Bell states obtained as

|Ψ+⟩1x = |e⟩1|1⟩x + |g⟩1|0⟩x√
2

; |Ψ−⟩1x = |e⟩1|1⟩x − |g⟩1|0⟩x√
2

|Φ−⟩1x = |e⟩1|0⟩x − |g⟩1|1⟩x√
2

; |Φ+⟩1x = |e⟩1|0⟩x + |g⟩1|1⟩x√
2

(4.1.14c)

Charlie performs Bell state projection between qubit-1 and qubit-x in Eq. (4.1.14c) (Bell
state measurement (BSM)) and communicates his results to Bob which we have presented
in Sec. 4.1.2.2.1 below.

4.1.2.2.1 Bell state measurement
Using |χ⟩ from Eq. (4.1.14b) and applying Eq. (1.8.2)

PΣ := ⟨Σ|Λ⟩|Σ⟩ (1.8.2′)

we obtain a Bell state projection outcome communicated to Bob in the form

1x⟨Ψ−|χ⟩ = 1
2

(
|e⟩3|g⟩2 − |g⟩3|e⟩2√

2

)
= 1

2 |Ψ−⟩32 (4.1.15a)

The Bell state |Ψ−⟩32 in Eq. (4.1.15a) is in the form of Alice’s qubit in Eq. (4.1.12). Alice
and Bob now have a Bell pair between qubit-2 and qubit-3. Similarly the other three Bell
projections take the forms

1x⟨Ψ+|χ⟩ = 1
2

(
|e⟩3|g⟩2 + |g⟩3|e⟩2√

2

)
= 1

2 |Ψ+⟩32 (4.1.15b)

1x⟨Φ−|χ⟩ = 1
2

(
|e⟩3|e⟩2 − |g⟩3|g⟩2√

2

)
= 1

2 |Φ−⟩32 (4.1.15c)

1x⟨Φ+|χ⟩ = −1
2

(
|e⟩3|e⟩2 + |g⟩3|g⟩2√

2

)
= −1

2 |Φ+⟩32 (4.1.15d)

For these case of Bell state projections in Eqs. (4.1.15b), (4.1.15c) and (4.1.15d) it will
be necessary for Bob to perform local corrections to qubit-3 by Pauli operators
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Table 4.1: Table showing how Bob applies an appropriate gate to his qubit based on BSM
from Charlie during the AJC teleportation process.

|φ⟩12 |ψ⟩32 UNITARY OPERATION
1√
2(|e⟩1|g⟩2 − |g⟩1|e⟩2) 1√

2(−|g⟩3|g⟩2 + |e⟩3|e⟩2) −σ̂x(atom3) ⊗ Î(atom2)
1√
2(−|g⟩3|g⟩2 − |e⟩3|e⟩2) −iσ̂y(atom3) ⊗ Î(atom2)
1√
2(|e⟩3|g⟩2 + |g⟩3|e⟩2) σ̂z(atom3) ⊗ Î(atom2)

Table A.1: Table showing how Bob applies an appropriate gate to his qubit
based on BSM from Charlie during the JC teleportation process.

|κ⟩12 |ϵ⟩32 UNITARY OPERATION
1√
2(|e⟩1|e⟩2 + |g⟩1|g⟩2) 1√

2(|g⟩3|e⟩2 + |e⟩3|g⟩2) σ̂x(atom3) ⊗ Î(atom2)
1√
2(|g⟩3|e⟩2 − |e⟩3|g⟩2) iσ̂y(atom3) ⊗ Î(atom2)

1√
2(|e⟩3|e⟩2 − |g⟩3|g⟩2) σ̂z(atom3) ⊗ Î(atom2)

as shown in Tab. 4.1. We also see that the probability of measuring states |ψ⟩32 in
Eqs. (4.1.15a)-(4.1.15d) in Charlie’s lab is p = 1

4 similar to that of |ϵ⟩32 in the JC process
in Tab. A.1 as determined in A.2.2.2. In general, by application of the entanglement
swapping protocol (teleportation of entanglement), qubit-2 belonging to Alice and qubit-
3 belonging to Bob despite never having interacted before became entangled. Further,
we see that a maximally entangled anti-symmetric atom-field transition state |ϕg0⟩ (in
Eq. (4.1.6c)) easily generated in the AJC interaction, can be used in quantum information
processing (QIP) protocols like entanglement swapping (teleportation of entanglement)
which we have demonstrated in this work. Anti-symmetric quantum states [177] have an
advantage over symmetric quantum states as their special features are particularly useful
for implementing quantum mechanical key sharing protocol [61], quantum state sharing
protocols and for comparing quantum states [178]. We note that it is not possible to
generate such an entangled anti-symmetric state in the JC interaction starting with the
atom initially in the ground state and the field mode in the vacuum state [12]. Recall that
the JC interaction produces a meaningful physical effect, namely, spontaneous emission
only when the atom is initially in the excited state |e⟩ and the field mode in the vacuum
state |0⟩.

The emerging Bell states in Eq. (4.1.14c) and those determined after successful telepor-
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tation, i.e., |Φ±⟩1x(32), |Ψ±⟩1x(32) are maximally entangled two qubit states. The Bell states
|Φ±⟩1x(32) and |Ψ+⟩1x(32) are symmetric in the sense that if we exchange the subsystems
1 ↔ x (3 ↔ 2) they remain the same, i.e, |Φ±⟩1x(32) = |Φ±⟩x1(23), |Ψ+⟩1x(32) = |Ψ+⟩x1(23).
Conversely the Bell states |Ψ−⟩1x(32) are anti-symmetric in the sense that if the permu-
tation of the subsystems are changed the anti-symmetric Bell states obtain a minus sign,
i.e, |Ψ−⟩1x(32) = −|Ψ−⟩x1(23).

Let us compare Bob’s actions in Tab. 4.1 to that in Tab. A.1. To do this let us first
express −iσ̂y gate in Tab. 4.1 and iσ̂y in Tab. A.1 in terms of σ̂x, σ̂z gates.

The anti-commutator of the Pauli matrices σ̂z, σ̂x is determined according to

{σ̂z, σ̂x} = σ̂zσ̂x + σ̂xσ̂z

=
(

1 0
0 −1

)(
0 1
1 0

)
+
(

0 1
1 0

)(
1 0
0 −1

)
= 0

(4.1.16a)

and the commutator of the Pauli matrices σ̂z, σ̂x is obtained as follows

[σ̂z, σ̂x] = σ̂zσ̂x − σ̂xσ̂z

=
(

1 0
0 −1

)(
0 1
1 0

)
−

(
0 1
1 0

)(
1 0
0 −1

)
= 2

(
0 1

−1 0

)
= 2i

(
0 −i
i 0

)
= 2iσ̂y.

(4.1.16b)

We can now express the anti-commutator relation in Eq. (4.1.16a) in the form

σ̂xσ̂z = −σ̂zσ̂x (4.1.16c)

and substitute in the commutator relation in Eq. (4.1.16b) to obtain

iσ̂y = σ̂zσ̂x . (4.1.16d)

Similarly, expressing the anti-commutator relation in Eq. (4.1.16a) in the form

σ̂zσ̂x = −σ̂xσ̂z (4.1.16e)
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and substituting in Eq. (4.1.16b) we get

−iσ̂y = σ̂xσ̂z . (4.1.16f)

As an addition, in Tab. 4.1, Bob applies a gate operation of −σ̂x to qubit-3 in |ψ⟩32,
which we can write in the form

−σ̂x = eiπσ̂x ; −1 = eiπ . (4.1.17)

With reference to Tab. 4.1, Eqs. (4.1.16a) - (4.1.16f) and Eq. (4.1.17), the following
sequence of quantum gates is applied by Bob to qubit-3 in |ψ⟩32 to map |ψ⟩32 onto |φ⟩12

during the AJC process;

a)

1√
2

(−|g⟩3|g⟩2 − |e⟩3|e⟩2)
[σ̂xσ̂z ]atom 3

⊗
Îatom 2−−−−−−−−−−−−−→ 1√

2
(|e⟩3|g⟩2 − |g⟩3|e⟩2) ,

(4.1.18a)

i.e, −iσ̂y is equivalent to Bob applying σ̂z gate followed by σ̂x gate to qubit-3 in |ψ⟩32

in that order. Remember Îatom 2 means doing nothing to qubit-2 in |ψ⟩32.

Looking closely at the JC process in Tab. A.1, iσ̂y which is the same as applying σ̂x

then σ̂z gates in that sequence to qubit-3 in |ϵ⟩32

1√
2

(|g⟩3|e⟩2 − |e⟩3|g⟩2)
[σ̂z σ̂x]atom 3

⊗
Îatom 2−−−−−−−−−−−−−→ 1√

2
(|e⟩3|e⟩2 + |g⟩3|g⟩2)

(4.1.18b)

maps the state 1√
2 (|g⟩3|e⟩2 − |e⟩3|g⟩2) onto the symmetric Bell state |Φ+⟩32 =

1√
2 (|e⟩3|e⟩2 + |g⟩3|g⟩2). Here the order of gate operation is inverted relative to that

during the local correction process to the received qubit in the AJC teleportation
network.

Notice that a phase change π to the subsystem, qubit-3, in Eq. (4.1.18b) of the final
corrected qubit state |Φ+⟩32 = 1√

2 (|e⟩3|e⟩2 + |g⟩3|g⟩2) followed by the gate operation
defined in Eq. (4.1.18b) but taken in reverse order, i.e, σ̂x followed by σ̂z to qubit-3,
defines the local correction process in Eq. (4.1.18a) to qubit-3 by Bob during the
AJC teleportation of a two-atom entangled anti-symmetric state. A clear reverse
measurement operation on Bob’s qubit in the JC teleportation correction process
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relative to the AJC case.

b)

1√
2

(−|g⟩3|g⟩2 + |e⟩3|e⟩2)
[eiπσ̂x]atom 3

⊗
Îatom 2−−−−−−−−−−−−−−→ 1√

2
(|e⟩3|g⟩2 − |g⟩3|e⟩2) .

(4.1.18c)

This local correction means −σ̂x is analogous to Bob applying σ̂x gate followed by a
phase change of π (see the phase factor eiπ) to qubit-3 in |ψ⟩32 in that order, noting
that the relative phase induced in this superposition is physically important, i.e.,

1√
2 (|e⟩3|g⟩2 + eiπ|g⟩3|e⟩2) = 1√

2 (|e⟩3|g⟩2 − |g⟩3|e⟩2) ̸= 1√
2 (|e⟩3|g⟩2 + |g⟩3|e⟩2). One

more time, Îatom 2 does not change the state of qubit-2 in |ψ⟩32, i.e, no action to
qubit-2 in |ψ⟩32.

The JC process in Tab. A.1 provides a local correction by Bob to the subsystem’s
qubit-3 in the form

1√
2

(|g⟩3|e⟩2 + |e⟩3|g⟩2)
[σ̂x]atom 3

⊗
Îatom 2−−−−−−−−−−−−→ 1√

2
(|e⟩3|e⟩2 + |g⟩3|g⟩2) .

(4.1.18d)

Fixating on Eq. (4.1.18d), spot that a phase change π on subsystem, |g⟩3, of the
final symmetric qubit state |Φ+⟩ = 1√

2 (|e⟩3|e⟩2 + |g⟩3|g⟩2) will transform the fi-
nal qubit state in Eq. (4.1.18d) to the original symmetric qubit state |Φ−⟩ =

1√
2 (|e⟩3|e⟩2 − |g⟩3|g⟩2) in Eq. (4.1.18c). In addition, if this is followed by apply-

ing a phase change of π after measuring σ̂x on subsystem, qubit-3, will result into
the final anti-symmetric qubit state |Ψ−⟩ = 1√

2 (|e⟩3|g⟩2 − |g⟩3|e⟩2) in Eq. (4.1.18c).
In this sense, the correction of qubit-3 in Bob’s possession in the AJC teleportation
process can be viewed as the inverse of the correction by Bob in JC teleportation
process.

c)

1√
2

(|e⟩3|g⟩2 + |g⟩3|e⟩2)
[σ̂z ]atom 3

⊗
Îatom 2−−−−−−−−−−−−→ 1√

2
(|e⟩3|g⟩2 − |g⟩3|e⟩2) .

(4.1.18e)

means that Bob applies σ̂z gate to qubit-3 and involutory operator Îatom 2 for no
action to qubit-2 both in |ψ⟩32 Tab. 4.1.
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The local correction by Bob in Tab. A.1 is defined according to

1√
2

(|e⟩3|e⟩2 − |g⟩3|g⟩2)
[σ̂z ]atom 3

⊗
Îatom 2−−−−−−−−−−−−→ 1√

2
(|e⟩3|e⟩2 + |g⟩3|g⟩2) .

(4.1.18f)

Here also, Bob applies σ̂z gate to qubit-3 and involutory operator Îatom 2 for no
action to qubit-2 in 1√

2 (|e⟩3|e⟩2 − |g⟩3|g⟩2).

Since the z-basis is the computational basis or the standard basis, i.e,
{|g, 0⟩, |e, 1⟩}AJC , {|e, 0⟩, |g, 1⟩}JC and is the only basis in which the aforementioned
AJC, JC measurements are performed, explains the distinct forms of Eqs. (4.1.18e)
and (4.1.18f) that express measurements of σ̂z on subsystem qubit-3 for the states
as defined.

4.1.2.2.2 Maximal teleportation fidelity

From Tab. 4.1

ρ̂expected = |φ12⟩⟨φ12|

= 1
2

[
(|e1⟩|g2⟩ − |g1⟩|e2⟩)(⟨e1|⟨g2| − ⟨g1|⟨e2|)

]
= 1

2

[
|e1, g2⟩⟨e1, g2| − |e1, g2⟩⟨g1, e2| − |g1, e2⟩⟨e1, g2| + |g1, e2⟩⟨g1, e2|

]

= 1
2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


(4.1.19)
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ρ̂measured = |ψ32⟩⟨ψ32|

= 1
2

[
(|e3⟩|g2⟩ − |g3⟩|e2⟩)(⟨e3|⟨g2| − ⟨g3|⟨e2|)

]
= 1

2

[
|e3, g2⟩⟨e3, g2| − |e3, g2⟩⟨g3, e2| − |g3, e2⟩⟨e3, g2| + |g3, e2⟩⟨g3, e2|

]

= 1
2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


(4.1.20)

Substituting the results in Eq. (4.1.19) and Eq. (4.1.20) into the fully entangled fraction
Eq. (1.8.19b)

fρ̂ = max
|Ψ⟩

⟨Ψ|ρ̂|Ψ⟩ =
{
tr

√
ρ̂

1
2
expectedρ̂measuredρ̂

1
2
expected

}2

, (1.8.19b′)

we obtain

fρ̂ =

tr


0 0 0 0
0 1

2 −1
2 0

0 −1
2

1
2 0

0 0 0 0




2

= 1 . (4.1.21)

Substituting the value of the fully entangled fraction in Eq. (4.1.21) into Eq. (1.8.19a)

Fρ̂ = 2fρ̂ + 1
3 (1.8.19a′)

we get

Fρ̂ = 2(1) + 1
3 = 1 (4.1.22)

a maximal teleportation fidelity of unity, showing that the state was fully recovered, i.e
Alice’s qubit in Eq. (4.1.12) was successfully teleported to Bob. We obtain an equal
outcome to all the other measured states. We have thus achieved qunatum teleportation
using a maximally entangled qubit state generated in an AJC interaction, using the case
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where the atom and field are initially in the absolute ground state |g⟩, |0⟩ as an example,
noting that the classical limit of teleportation fidelity [65] is 0.75.

4.1.3 Evolution of entanglement in the AJC process

Utilising the definitions of the dimensionless parameters cgn, sgn and the Rabi fre-
quency Rgn in Eqs. (3.2.4) , (3.2.24), we evaluate the atomic state probabilities P g(t) =
cos2(Rgnt) + c2

gn sin2(Rgnt), P e(t) = s2
gn sin2(Rgnt) in Eq. (3.2.23) and plot the quantum

system entanglement degree E(τ) = −P e(t) log2 P e(t) − P g(t) log2 P g(t) in Eq. (3.2.27)
against scaled time τ = λt for arbitrarily chosen values of sum frequency δ =
2λ , 4λ, 5λ, 6λ, 7λ, 8λ and photon number n = 0, 1, 2, 3, 6 in Figs. 4.3 - 4.6 below.
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τ

0.2

0.4

0.6

0.8

1.0

E(τ)

n=0 ; δ
-
=4λ

n=0 ; δ
-
=5λ

n=0 ; δ
-
=7λ

(a) AJC
0.2 0.4 0.6 0.8 1.0 1.2 1.4

τ
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0.4

0.6

0.8

1.0

C(τ)

n=0;δ=0

(b) JC

Figure 4.3: Degree of entanglement:Fig. (4.3(a)) DEM (E(τ)) against scaled time for sum
frequency δ = 4λ, 5λ and 7λ when n = 0 while in Fig. (4.3(b)) [Fig. A.2 Appendix A]
DEM (C(τ)) against scaled time τ at resonance δ = 0 when n = 0.
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Figure 4.4: Degree of entanglement against scaled time for sum frequency δ = 2λ when
n = 1 and n = 2
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Figure 4.5: Time evolution of DEM at increasing sum frequency δ when the photon
number n set constant and its effect on the degree of purity tr(ρ̂2

a(t)). Fig. (4.5(a)), time
evolution of E(τ) at n = 1 ; δ = 6λ, 8λ while Fig. (4.5(b)) is the corresponding time
evolution of purity tr(ρ̂2

a(t)) at n = 1 ; δ = 6λ, 8λ in the AJC process
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Figure 4.6: Time evolution of DEM at increasing photon number n when the sum
frequency detuning δ set constant and its effect on the degree of purity tr(ρ̂2

a(t)).
Fig. (4.6(a)), time evolution of E(τ) at n = 1, 2, 3, 6 ; δ = 8λ while Fig. (4.6(b)) is
the corresponding time evolution of purity tr(ρ̂2

a(t)) at n = 1, 2, 3, 6 ; δ = 8λ in the AJC
process

The graphs in Figs. 4.3(a) - 4.6 show the effect of photon number n and sum frequency
δ = ω0+ω on the dynamical behavior of quantum entanglement measured by the von Neu-
mann entropy E(τ) (min E(τ) = 0 ; max E(τ) = 1). In the four figures, the phenomenon
of entanglement sudden birth (ESB) and sudden death (ESD) is observed during the
time evolution of entanglement similar to that observed in the JC model in Appendix. A
and as obtained in [179–181]. In ESB there is an observed creation of entanglement
where the initially un-entangled qubits are entangled after a very short time interval. For
fairly low values of photon numbers n and sum frequency δ as demonstrated in Fig. 4.4
for δ = 2λ plotted when n = 1, n = 2, the degree of entanglement rises sharply to a
maximum value of unity (E(τ)max) at an entangled state, stays at the maximum level
for a reasonably short duration, decreases to a local minimum, then rises back to the
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maximum value before falling sharply to zero (E(τ)min) at the separable state. The local
minimum disappears for larger values of sum frequency δ ≥ 6λ at low photon number n
and re-emerge at high photon number n ≥ 4 (see Fig. 4.5(a) and Fig. 4.6(a)) as examples.
However, in comparison to the resonance case δ = 0 in the JC model in Fig. A.2 and
[181] we notice a long-lived entanglement at E(τ)max = 1 in the cases of δ = 4λ plotted
when n = 0 in Fig. 4.3(a), δ = 6λ plotted when n = 1 in Fig. 4.5(a) and δ = 8λ plotted
when n = 3 in Fig. 4.6(a) quantifying maximum entanglement before returning momen-
tarily to a separable state. Agreeing precisely with the entanglement analysis example
in Sec. 4.1.2.1, is the long-lived entanglement at E(τ)max = 1 in Fig. 4.3(a) determined
for parameter values δ = 4λ and n = 0. This is an important property since one of the
Divincenzo criteria [89] set for efficient storage and processing of quantum information, is
that long lived quantum states is a requirement in order to ensure long coherence times
during computational process (quantum gate operations).

Further, in the JC model, the dynamics of C(τ) as shown in Figs. A.2 - A.5 and
[179–181] has local minimums only when detuning is set at off-resonance δ ̸= 0 apart
from special cases of maximum entanglement characterised by a long-lived entanglement
at C(τ) = 1 like in the case of δ = 4λ when n = 0 in Fig. A.3. The process of ESB and
ESD then repeats periodically, consistent with Rabi oscillations between the qubit states.

In Fig. 4.3(a), it is clear that vacuum-field Rabi oscillations in the AJC interaction
mechanism occur when an atom initially in ground state |g⟩ is in a vacuum-field n = 0
in contrast to the JC interaction mechanism as shown in Figs. A.2 and A.3, where they
only occur when an atom in an initial excited state |e⟩ enters a vacuum-field n = 0.

An interesting entanglement property is observed in Fig. 4.3(a) and 4.5(a) where an
increase in sum-frequency δ results into a decrease in DEM measured by E(τ) at the same
time increasing the frequency of oscillation of E(τ) similar to the JC case Fig. A.6(a) and
in [182]. Plots of time evolution of purity tr(ρ̂2

a(τ)) in Fig. 4.5(b) confirms that the
reduction in E(τ) is a consequence of the quantum system tending to pure state when
the effect of sum frequency δ is considered for small number of photons n similar to that
discussed earlier in the JC examples in Fig. A.6 and [182]. We observe here, that the DEM
can be increased by increasing the photon number n as demonstrated here in Fig. 4.6(a).
Consequently, as shown in Fig. 4.6(b) the system tends to a maximally mixed state just
like the JC case Fig. A.7 and in [180–182].

Although we have briefly mentioned earlier that sum frequency δ results into an in-
crease in frequency of oscillation of E(τ) we probe further its effect in detail with regard
to the dynamics of E(τ). In Fig. 4.3(a) we set δ = 4λ, 5λ and 7λ when n = 0. As
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discussed, it is clear from Fig. 4.3(a) that the frequency of oscillation of E(τ) increases
with an increase in sum frequency δ = ω0 +ω. As a comparison to the JC model discussed
in Appendix. A, when detuning δ = ω0 − ω is set at off resonance δ ̸= 0 results into a
decrease in the frequency of oscillation of C(τ) as visualised in Fig. A.3 in comparison
to the resonance case δ = 0 Figs. A.2 . In Fig. A.4 at resonance δ = 0 when n = 1 the
period of C(τ) is shorter than at δ = λ when n = 1 in Fig. A.5. This phenomenon of
reduction in frequency of oscillation of DEM in the JC model at off-resonance detuning,
is also demonstrated clearly in [180–182].

Finally, in Fig. 4.4 and 4.6(a) sum-frequencies are kept constant at δ = 2λ and δ = 8λ
respectively and photon number n is varied in each case. We clearly see that the frequency
of oscillation of E(τ) increases with an increase in photon number n. This phenomenon
in which the frequency of oscillation of DEM increases with an increase in photon number
n is also observed in the JC model in Figs. A.4, A.5 and obtained in [180, 181].

4.1.4 Quantum C-NOT gate operations in the AJC interaction mechanism

It is important to note that in the AJC interaction [12], for a process starting from the
state |e, n⟩ where an atom in excited state |e⟩ enters a n-photon field mode, the excited
atom emits a positive energy photon, triggering the CR negative frequency field mode to
absorb a negative energy photon causing a transition |e, n⟩ → |g, n− 1⟩ ; n ≥ 1. On the
other hand, a process starting from the state |g, n⟩ where an atom in ground state |g⟩ is
in a n-photon field mode, the CR negative frequency field mode emits a negative energy
photon, triggering the atom to absorb a positive energy photon, causing the transition
|g, n⟩ → |e, n+ 1⟩ ; n ≥ 0.

Now, with reference to the AJC qubit state transition operators in Eq. (3.2.7) and the
algebraic property on exponentiation of ε̂g defined in Eq. (3.2.6) which is the principal
the AJC C-NOT gate operator in the case of an atom in an initial ground state |g⟩, let us
first consider when an atom initially in ground state |g⟩ enters an electromagnetic cavity
with mode a in vacuum state and a single photon in mode b. As stated earlier, this mode
of interaction is possible because in the AJC interaction mechanism, an atom in an initial
ground state |g⟩ couples to the CR negative frequency component of the field mode in
an initial vacuum state |0⟩, spontaneously emitting a negative energy photon, thereby
triggering Rabi oscillations at frequency Rg0 between the atom (control qubit) and field
mode (target qubit).

During the AJC interaction, we consider a case in which there should never be more
than a single photon in the cavity field and so, the respective qubit state transitions will be
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of the forms |g, 0⟩ → |e, 1⟩, |e, 1⟩ → |g, 0⟩. In addition, the atom-field coupling constant
λ should be far much greater than the sum-frequency δ = ω0 + ω, i.e., (λ ≫ δ) so that
the dimensionless coupling ratio λ

δ
becomes very large (NB: In view of the USC regime,

the ratio λ
δ

is called the perturbative parameter and is defined within the perturbative
region [183] of the USC regime where the contribution of CR terms become important.
This ratio, however, does not apply here in this sense.).

In this respect, while the initial atomic ground state |g⟩ is in the cavity initially in
vacuum state |0⟩, the field and the atom evolve according to

e−iθε̂g |g, 0a⟩ = cos(θ) 1
A

2
g0

(αŝz + âŝ− + â†ŝ+)2 |g, 0a⟩

−i sin(θ) 1
Ag0

(αŝz + âŝ− + â†ŝ+) |g, 0a⟩ ;

n = 0 ; â|n⟩ =
√
n|n− 1⟩ ; â†|n⟩ =

√
n+ 1|n+ 1⟩ ;

ŝ+ = ŝx + iŝy ; ŝ− = ŝx − iŝy ;
ŝ+|e⟩ = 0 ; ŝ−|e⟩ = |g⟩ ; ŝ+|g⟩ = |e⟩ ; ŝ−|g⟩ = 0

Â = αŝz + âŝ− + â†ŝ+ ; Agn =
√

(n+ 1) + α

4

α = δ

2λ ; ε̂g = Â

Agn

; Îg = ε̂
2
g (4.1.23)

which on applying the field mode operators â†, â, the atomic state transition operators
ŝ+, ŝ− in Eq. (4.1.23) and the parameter settings λ ≫ δ for a field mode in an initial
vacuum state n = 0 we obtain from Eq. (3.2.4)

Agn =

√
(n+ 1) + δ

2

16λ2 (3.2.4′)

Ag0 ∼=
√

1 + 0 ∼= 1 ; δ
2

16λ2
∼= 0 ; λ ≫ δ (4.1.24)

and Eq. (4.1.23) takes the reduced form

e−iθε̂|g, 0a⟩ = cos(θ)|g, 0a⟩ − i sin(θ)|e, 1a⟩ . (4.1.25)

The qubit state transitions is now driven by positive and negative energy photon
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absorption-emission process. It should be noted that if this condition was not met, in a
completely off-resonant interaction the field mode frequency ω and the atomic transition
frequency ω0 would have been sufficiently detuned and so there would have been no
transition between atomic basis states |g⟩ and |e⟩ during the interaction.

As stated in Sec. 3.2.4, the choice of atomic velocity is important in order to ensure that
an atom in a cavity mode undergoes a Rabi oscillation cycle specified in an interaction
time t. This means, if chosen so that in a time t, Rg0t = π, we obtain

t = π

Rg0
(4.1.26)

which is equal to half Rabi oscillation time. It therefore follows that the driving field is
modulated according to

θ = Rg0t = 2λAg0t = π. (4.1.27)

Now since Ag0 ∼= 1, the driving field modulation in Eq. (4.1.27) takes the final form

θ = 2λt = π ⇒ θ = λt = π

2 , (4.1.28)

and the evolution in Eq. (4.1.23) reduces to

|g, 0a⟩ → e−i π
2 |e, 1a⟩ (4.1.29)

We observe that the atom interacted with mode a and completed half of the Rabi oscil-
lation, as a result, it contributed a photon to mode a by triggering the CR field to emit a
negative energy photon and consequently evolved to excited state |e⟩ by absorbing a posi-
tive energy photon. At this point it is important to note that there is a clear simultaneous
excitation of both the atom and field states, as expected in the AJC interaction.

After the interaction time, the atom now in excited state |e⟩ enters mode b containing
a single photon in state |1⟩b. The interaction with mode b is obtained using Eqs. (3.2.7)
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and (3.2.6) in the form

eiαε̂e
(
e−i π

2 |e, 1b⟩
)

→ e−i π
2

[
cos(α) 1

A
2
e1

(αŝz + âŝ− + â†ŝ+)2|e, 1b⟩ +

i sin(α) 1
Ae1

(αŝz + âŝ− + â†ŝ+)|e, 1b⟩
]

;

n = 0 ;
ŝ+|e⟩ = 0 ; ŝ−|e⟩ = |g⟩ ; ŝ+|g⟩ = |e⟩ ; ŝ−|g⟩ = 0

Â = αŝz + âŝ− + â†ŝ+ ; Aen =
√
n+ α

4

α = δ

2λ ; ε̂e = Â

Aen

; Îg = ε̂
2
e (4.1.30)

to obtain

e−i π
2 |e, 1b⟩ = e−i π

2 [cos(α)|e, 1b⟩ + i sin(α)|g, 0b⟩] (4.1.31)

after applying the field mode operators â†, â, the atomic state transition operators ŝ+, ŝ−

in Eq. (4.1.23) and the condition λ ≫ δ.
With the set condition λ ≫ δ, the Rabi frequency parameter Aen in Eq. (3.2.4) (or

Eq. (4.1.30))

Aen =

√
n+ δ

2

16λ2 (3.2.4′) ,

in the case of an atom in an initial excited state |e⟩ interacting with an initial single-
photon field mode |1⟩ in the AJC process will assume a value

Ae1 ∼=
√

1 + 0 ∼= 1 ; δ
2

16λ2
∼= 0 . (4.1.32)

Here, Eq. (4.1.31) defines qubit state transitions driven by positive and negative photon
emission-absorption process, a converse of that observed in Eq. (4.1.25).

In order to define the driving field modulation α in mode b, let the total interaction
time be t′ = 2t, such that t is equal to half Rabi oscillation times in modes a and b
respectively, obtained as

t = π

Rg0
= π

Re1
. (4.1.33)
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It follows that the total interaction time t′ will take the form

t′ = π

R g0
+ π

Re1
= π(Rg0 +Re1)

Rg0Re1
= 2t . (4.1.34)

Re-organising Eq. (4.1.34) we obtain(
Rg0Re1

Rg0 +Re1

)
t = π

2 (4.1.35a)

and define the resultant interaction time in mode b in the form

t = π

2

(
Rg0 +Re1

Rg0Re1

)
. (4.1.35b)

We can write Eq. (4.1.35a) in a compact form

α = Rt = π

2 ; R =
(

Rg0Re1

Rg0 +Re1

)
(4.1.36)

after introducing a resultant Rabi frequency R as defined in Eq. (4.1.36).
Considering again an interaction where λ ≫ δ, the Rabi frequency parameters Ag0, Ae1

as presented in Eqs. (4.1.24) and (4.1.32), will be of respective equal values Ag0 = Ae1 ∼= 1.
We determine the Rabi frequencies Rg0, Re1 according to [12]

Rg0 = 2λAg0 = 2λ ; Re1 = 2λAe1 = 2λ. (4.1.37)

Substituting Rg0, Re1 in Eq. (4.1.37) into Eq. (4.1.36) we obtain

α = (2λ)2

4λ t = π

2 . (4.1.38)

The driving field modulation in Eq. (4.1.36) reduces to

α = λt = π

2 (4.1.39)

and the form of Eq. (4.1.31) results into an evolution

e−i π
2 |e, 1b⟩ → |g, 0b⟩ . (4.1.40)

The results in Eq. (4.1.40) shows that the atom evolves to ground state by emitting a
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positive energy photon, causing the CR field to absorbs a negative energy photon initially
in mode b, a simultaneous de-excitation of the atom and field states, as expected in the
AJC process. The atom clearly performs a swapping of the electromagnetic field between
the two field modes by controlled interaction.

When the atom in ground state |g⟩, enters the electromagnetic cavity with mode b in
vacuum state and a single-photon in mode a in that order, qubit state transitions take the
same form as in Eqs. (4.1.29) and (4.1.40). That is, there will be simultaneous excitation
of atom and field states during the qubit state transition |g, 0b⟩ → e−i π

2 |e, 1b⟩ followed
by a qubit state transition that results into simultaneous de-excitation of qubit states
e−i π

2 |e, 1a⟩ → |g, 0a⟩. This shows a clear swapping of the electromagnetic field between
the two field modes a, b by controlled interaction when the atom is initially in the ground
state |g⟩.

When the atom in excited state |e⟩ enters mode a in vacuum state, the atom propagates
as a free wave without coupling to the field mode in vacuum state |0⟩ [12], leaving the
cavity without altering the state of the cavity-field mode. We recall that in an AJC
process, an atom in an initial excited state |e⟩ does not couple (λ = 0) to a free anti-
rotating negative frequency field mode in an initial vacuum state |0⟩.

The atom in excited state |e⟩ then interacts with mode b containing a single photon-
field as follows

eiβε̂e|e, 1b⟩ → cos(β)(âŝ− + â†ŝ+)2 |e, 1b⟩ + i sin(β) (âŝ− + â†ŝ+) |g, 0b⟩

(4.1.41)

leading to
eiβε̂e|e, 1b⟩ → cos(β)|e, 1b⟩ + i sin(β)|g, 0b⟩ . (4.1.42)

After completing one Rabi oscillation in a time t = 2π
R̄e1

at Rabi frequency Re1 =
2λAe1 = 2λ since the Rabi frequency parameter Ae1 ∼= 1 determined by considering the
initial condition. This gives

β = λt = π . (4.1.43)

The form of Eq. (4.1.42) results into an evolution

|e, 1b⟩ = eiπ|e, 1b⟩ (4.1.44)

We see in Eq. (4.1.44) that the atom in excited state |e⟩ again leaves the cavity mode
containing one photon without altering the state of the single-photon field mode.
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When the atom in excited state |e⟩ enters mode b in vacuum state followed by mode a
containing a single-photon field mode, we observe a similar qubit state transition where
in mode b the atom propagates as a free wave without coupling to the field mode followed
by the transition |e, 1a⟩ → eiπ|e, 1a⟩ in mode a after one complete Rabi oscillation time.

From the results obtained, we conclude that the target qubit made up of the elec-
tromagnetic field remains unchanged if the control qubit, that is, the two-level atom, is
initially in the excited state |e⟩, while when the atom is in ground state |g⟩, the cavity
states |0⟩ and |1⟩ flip. We shall refer to this gate as the AJC C-NOT (atom → cavity),
i.e.,

AJC C −NOT |e, 0⟩ → |e, 0⟩ =


1
0
0
0

 ; AJC C −NOT |e, 1⟩ → |e, 1⟩ =


0
1
0
0

 ;

AJC C −NOT |g, 0⟩ → |g, 1⟩ =


0
0
0
1

 ; AJC C −NOT |g, 1⟩ → |g, 0⟩ =


0
0
1
0

 ,

(4.1.45)

which we write in a compact matrix form

AJC C −NOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (4.1.46)

The form of the operator in Eq. (4.1.46) is of exact form as the standard C-NOT gate
operator defined in Eq. (1.7.7) and [22, 23, 50] applied in the JC interactions.

It is important to note that the statistical properties of the cavity field are determined
by the statistical properties of the atom that exits the cavity after coupling to the field
during the specified interaction time.

4.1.4.1 Probability of success of the C-NOT gate

The qubit state transition operations during the C-NOT gate process, yielded qubit
states with individual qubits having different qubit values. In this respect, the success
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probability for the C-NOT gate is given by Eq. (3.2.46)

Ps = 1 − (sin2(ϕa) + cos2(ϕa) sin2(ϕb)) (3.2.46′)

In terms of the Rabi frequency we write Eq. (3.2.46) as

Ps = 1 − (sin2(Ra∆ta) + cos2(Ra∆ta) sin2(Rb∆tb)) . (4.1.47)

For the case when the atom in the ground state |g⟩ enters the electromagnetic cavity
with field mode a in vacuum state followed by a single-photon field mode b we obtain the
interaction parameters

Ra = Rg0 = 2λ ; ∆ta = π

Rg0
= π

2λ,

Rb = Re1 = 2λ ; ∆tb = π

2
(Rg0 +Re1)
Rg0Re1

= π

2λ (4.1.48)

and when it enters a single-photon field mode a then proceeds to field mode b in vacuum
state the interaction parameters reduce to

Ra = Re1 = 2λ ; ∆ta = π

2
(Re1 +Rg0)
Re1Rg0

= π

2λ,

Rb = Rg0 = 2λ ; ∆tb = π

Rg0
= π

2λ (4.1.49)

which results in a unit probability of success Ps = 1 for the respective transitions.
Finally when the atom initially in excited state |e⟩ enters mode a in vacuum state then

a single-photon field mode b we obtain the interaction parameters

Ra = Re0 = 2λAe0 = 0 ; Ae0 = 0 ; λ = 0 ; ∆ta = ∞,

Rb = Re1 = 2λAe1 = 2λ ; Ae1 ∼= 1 ; ∆tb = 2π
Re1

= π

λ

(4.1.50)

whereas when it enters a single-photon field mode a then mode b in vacuum state respec-
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tively, the interactions parameters are

Ra = Re1 = 2λAe1 = 2λ ; Ae1 ∼= 1 ; ∆ta = 2π
Re1

= π

λ
,

Ra = Re0 = 2λAe0 = 0 ; λ = 0 ; Ae0 = 0 ; ∆ta = ∞

(4.1.51)

which again gives a unit probability of success, for each transition.
We observe that success probabilities depend mainly upon the precise selection of the

interaction times of the two-level atom with the successive cavity modes.

4.1.5 Hadamard logic gate in the AJC interaction mechanism

Let us now consider two examples specifying Hadamard rotations for initial atomic basis
states |g⟩, |e⟩ entering field modes in initial vacuum and single-photon states |0⟩, |1⟩
respectively. The general form of the gate operators are defined in Eq. (3.2.32), Sec. 3.2.3
according to

ε̂g = Â

Agn

=
2
[
δŝz + 2λ(âŝ− + â†ŝ+)

]√
16λ2(n+ 1) + δ

2
; ε̂e = Â

Aen

=
2
[
δŝz + 2λ(âŝ− + â†ŝ+)

]√
16nλ2 + δ

2

(3.2.32′)
Applying ε̂g defined in Eq. (3.2.32) the single qubit Hadamard operator at sum frequency
δ = 4λ and n = 0 specified for an initial atomic ground state |g⟩ reduces to the form

ε̂g = 1√
2
(
2ŝz + âŝ− + â†ŝ+

)
; ŝz = 1

2

(
1 0
0 −1

)
;

ŝ+ = ŝx + i ŝy =
(

0 1
0 0

)
; ŝ− = ŝx − i ŝy =

(
0 0
1 0

)

ŝx = 1
2

(
0 1
1 0

)
; ŝy = 1

2

(
0 −i
i 0

)
â|n⟩ =

√
n|n− 1⟩ ; â†|n⟩ =

√
n+ 1|n+ 1⟩ .

(4.1.52)

Its action on an initial state vector |g, 0⟩ is the qubit state transition ε̂g|g, 0⟩ which takes
the explicit final form

ε̂g|g, 0⟩ = − 1√
2

|g, 0⟩ + 1√
2

|e, 1⟩ . (4.1.53)
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As expected the initial atomic ground state |g⟩ is rotated to

|g⟩ → 1√
2

(|e⟩ − |g⟩) . (4.1.54)

Notice that the rotation in Eq.(4.1.54) takes the exact standard form operated in terms
of Pauli X,Z gates according to

1√
2

(σ̂x + σ̂z)|g⟩ = 1√
2

((
0 1
1 0

)
+
(

1 0
0 −1

))(
0
1

)
= 1√

2

(
1 1
1 −1

)(
0
1

)

= 1√
2

(
1

−1

)
= 1√

2

((
1
0

)
−

(
0
1

))
= 1√

2
(|e⟩ − |g⟩) (4.1.55)

defining the action of a Hadamard operator

Ĥ = 1√
2

(
1 1

−1 1

)
(4.1.56)

on an initial atomic ground state |g⟩.
We now applying ε̂e in Eq. (3.2.32) at sum frequency δ = 4λ and n = 1 specified for

an initial atomic excited state |e⟩ to obtain a Hadamard operator in the form

ε̂e = Â

Ae1
= 1√

2
(
2ŝz + âŝ− + â†ŝ+

)
;

ŝ+ = ŝx + i ŝy =
(

0 1
0 0

)
; ŝ− = ŝx − i ŝy =

(
0 0
1 0

)

ŝx = 1
2

(
0 1
1 0

)
; ŝy = 1

2

(
0 −i
i 0

)
; ŝz = 1

2

(
1 0
0 −1

)
â|n⟩ =

√
n|n− 1⟩ ; â†|n⟩ =

√
n+ 1|n+ 1⟩ .

(4.1.57)

In this respect, the Hadamard operator ε̂e in Eq. (4.1.57) acts on an initial state vector
|e, 1⟩ resulting into a qubit state transition ε̂e|e, 1⟩ that assumes an explicit final form

ε̂e|e, 1⟩ = 1√
2

|e, 1⟩ + |g, 0⟩ . (4.1.58)
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We clearly see that the initial atomic excited state |e⟩ is rotated to

|e⟩ → 1√
2

(|e⟩ + |g⟩) . (4.1.59)

Notice again that Eq. (4.1.59) is of exact form as that determined by direct application
Pauli X, Z gate rotations according to

1√
2

(σ̂x + σ̂z)|e⟩ = 1√
2

((
0 1
1 0

)
+
(

1 0
0 −1

))(
1
0

)
= 1√

2

(
1 1
1 −1

)(
1
0

)

= 1√
2

(
1
1

)
= 1√

2

((
1
0

)
+
(

0
1

))
= 1√

2
(|e⟩ + |g⟩) (4.1.60)

defining the action of a Hadamard operator

Ĥ = 1√
2

(
1 1

−1 1

)
(4.1.61)

on an initial atomic excited state |e⟩.
The actions in Eqs. (4.1.53), (4.1.58) correspond to and agree with the standard quan-

tum Hadamard gate operation of spin states. ε̂g, ε̂e are indeed AJC Hadamard gate
operators for interaction starting with atom initially in ground state |g⟩ and excited state
|e⟩ respectively.

The Hadamard transformations in Eqs. (4.1.54) and (4.1.59) realised in the AJC in-
teraction process (AJC model) agree precisely with the standard definition in Eq. (1.7.3).

4.2 AJC dynamics of a two-level atom interacting with field
mode in an initial coherent state

We now analyse the time evolution of a two-level atom in a resonant (δ = 2ω), off-resonant
(δ = δ+2ω) AJC interaction when the field mode in an initial coherent state is considered.
Precisely, purity of states in relation to atom-field entanglement in this model is studied
during time evolution of atomic population inversion. In addition, analysis of the quantum
nature of the field system in the AJC interaction is presented. A comparison with the
well known results of the JC process explained in detail in Appendix B is provided.
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4.2.1 Time evolution of Field entropy, purity and atomic population inver-
sion

Accordingly, to discuss the time evolution of the collapses and revival phenomenon W (t)
in relation to degree of entanglement Sj(t) and consequently the degree purity tr(ρ̂2

j(t)) it
is important to recall that for pure states tr(ρ̂2

j) = 1, Sj(t) = 0 and for maximally mixed
states tr(ρ̂2

j) = 1
2 , Sj(t) = 1 where j ≡ a(f).

Under resonance, the AJC, JC Rabi frequencies, Rgn, Rgn and related interaction pa-
rameters cgn, sgn, cgn, sgn in Eqs. (3.3.5d), (B.1.7), which determine the evolution de-
scribed by the respective time evolving Bloch vectors r⃗(t) in Eq. (3.3.6), r⃗(t) in Eq. (B.1.8),
take the forms

AJC:

δ = 0; β = 0 : Rgn = λ
√
n+ 1 + ξ2 ; cgn = ξ√

n+ 1 + ξ2

Rgn−1 = λ
√
n+ ξ2 ; sgn−1 =

√
n

n+ ξ2 (4.2.1a)

JC:

δ = 0; β = 0 : Rgn = λ
√
n ; cgn = 0

Rgn+1 = λ
√
n+ 1 ; sgn+1 = 1 . (4.2.1b)

It is immediately clear that under resonance, δ = 0 , β = 0, the JC Rabi frequency and
related interaction parameters in Eq. (4.2.1b), are completely independent of frequency
detuning parameter, while the AJC Rabi frequency and the related interaction parameters
in Eq. (4.2.1a), depend explicitly on the residual detuning parameter, ξ = ω

λ
.

The physical consequence is that under resonance, the JC dynamics is completely
independent of detuning, while the AJC dynamics is driven by internal residual detuning,
ξ = ω

λ
. As a result, small or large values of the residual detuning parameters define strong

coupling in the region, 0 < ξ < 1, and weak coupling when, ξ > 1.
Applying Eq. (1.3.16) by substituting the time evolving AJC Bloch vector components

rx(t), ry(t), rz(t) defined in Eq. (3.3.6) we plot the time evolution of AJC degree of purity
tr(ρ̂2

a(t)) in Fig. 4.7(a) at δ = 0, |α|2 = 30 and compare with that of JC degree of purity
in Fig. 4.7(b) (Fig. B.1, Appendix B) at δ = 0, = |α|2 = 30 respectively. For ease of
comprehension, in the same figures we provide the respective AJC, JC time evolution of
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atomic population inversion W (t) defined in Eqs. (3.3.7a), (B.1.9a) which takes the same
form as the z-components rz(t), rz(t) in Eqs. (3.3.6), (B.1.8) of the time evolving AJC, JC
Bloch vectors r⃗(t), r⃗(t).
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Figure 4.7: Time evolution of purity parameter and atomic population inversion.
Fig. (4.7(a)) tr(ρ̂2

a(τ)), W (τ) at δ = 2ξλ = 0.0002λ; β = 0, ξ = 0.0001 and |α|2 = 30
in the AJC process while Fig. (4.7(b)) (Fig. (B.1), Appendix B), the corresponding time
evolution of tr(ρ̂2

a(τ)), W (τ) at δ = βλ = 0; β = 0, ξ = 0.0001 and |α|2 = 30 in the JC
interaction.
Fig. (4.7(c)) tr(ρ̂2

a(τ)), W (τ) at δ = 2ξλ = 6λ; β = 0, ξ = 3 and |α|2 = 30 in the
AJC process while Fig. (4.7(d)) the corresponding time evolution of tr(ρ̂2

a(τ)), W (τ) at
δ = βλ = 0; β = 0, ξ = 3 and |α|2 = 30 in the JC interaction.

We observe that in Figs. 4.7(a), 4.7(b), the AJC and JC evolutions are precisely similar.
This is due to the fact that at very small residual detuning ξ = 0.0001 ≃ 0, the AJC and
JC Rabi frequencies Rgn, Rgn are nearly equal, giving the same form of dynamics.

As the residual detuning parameter, ξ, is increased to larger values, the dynamics of
the AJC becomes significantly different from the JC dynamics at resonance, β = 0. This
is illustrated in Figs. 4.7(c), 4.7(d) where the AJC evolution in Fig. 4.7(c) now reveals a
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marked difference compared to the JC evolution in Fig. 4.7(d) since it is independent of
ξ. We see that in the AJC plot in Fig. 4.7(c):

i) the atomic population inversion, W (τ), has gone significantly below zero, i.e., W (τ)
has turned negative, meaning that, at larger ξ = 3, the AJC interaction generates
more spin excitation in the ground state, |g⟩, than in the excited state, |e⟩

ii) the collapse period in the population inversion is longer, τR ≃ 34, than in the
corresponding JC evolution in Fig. 4.7(d) with, τR ≃ 26

iii) the purity parameter, tr(ρ̂2
a(τ)), has increased towards the maximum value,

tr(ρ̂2
a(τ)) = 1, showing that increasing the residual detuning parameter, ξ, to larger

values in the AJC drives the atom towards a pure state as compared to the evolution
in the JC in Fig. 4.7(d) which remains the same as in Fig. 4.7(b).

We then proceed to plot the dynamics of the von Neumann entropy Sa(τ) defined in
Eq. (3.3.8) during the AJC processes and compare it to the widely-studied JC interaction
presented here in Appendix B. To do this, we evaluate and substitute the eigenvalues π1,2

defined in Eq. (3.3.8).
The plotted AJC DEM curves as measured by Sa(t) at various values of field intensities

|α|2 are in Figs. 4.8(a), 4.9(a) and 4.10(a) each for values of sum frequency δ = δ+2ω ; δ ≥
0 whereas Figs. 4.8(b), 4.9(b) and 4.10(b) show the JC process DEM plots at resonance
δ = 0, off-resonance δ ̸= 0 at low, high field intensities |α|2 extracted as plotted in the
extensively studied JC interaction in Appendix B.
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Figure 4.8: Time evolution of entropy of entanglement. Fig. (4.8(a)), Sa(τ) at δ = 2ξλ =
0.0002λ; β = 0, ξ = 0.0001 and |α|2 = 30 in the AJC process while Fig. (4.8(b)) [Fig. B.2,
Appendix B], is the corresponding Sa(τ) at δ = βλ = 0; β = 0, ξ = 0.0001 and |α|2 = 30
in the JC interaction.
Fig. (4.8(c)), Sa(τ) at δ = 2ξλ = 6λ; β = 0, ξ = 3 and |α|2 = 30 in the AJC interaction.

As explained in the case of atomic population inversion, W (τ), and purity parameter,
tr(ρ̂2

a(τ)), we see that at resonance, setting a large residual detuning parameter, ξ = 3, as
presented in our example in Fig. 4.8(c), the AJC DEM dynamics as measured by Sa(τ)
becomes significantly different form the JC Sa(τ), dynamics at resonance, presented in
Fig. 4.8(b). This is because, at very low residual detuning, ξ = 0.0001 ≃ 0, the AJC
and JC Rabi frequencies, Rgn, Rgn, are virtually equivalent, resulting in the same type
of dynamics as visualised in Figs. 4.8(a) and 4.8(b).

With reference to the AJC curve in Fig. 4.8(c):

i) Sa(τ) decreases, and the values of Sa(τ) at the middle of collapse phase does not
dip much towards zero, Sa(τ) = 0.3, in comparison to Sa(τ) = 0.05 in Figs. 4.8(a)
and 4.8(b)
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ii) that the observation in (i) above, means that in the AJC interaction at resonance,
δ = 2ω = 2ξλ, increasing ξ, results in a general decrease in atom-field entanglement,
Sa(τ) = 0.825, in comparison to, Sa(τ) = 1, in Figs. 4.8(a), 4.8(b) and a simultaneous
increase in mixedness of the atom-field states.
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Figure 4.9: Time evolution of entropy of entanglement. Fig. (4.9(a)) is the time evolution
of Sa(τ) at δ = (β+2ξ)λ = 10.0002λ; β = 10, ξ = 0.0001 and |α|2 = 30 in the AJC process
while Fig. (4.9(b)) [Fig. B.3, Appendix B], Sa(τ) at δ = βλ = 10λ; β = 10, ξ = 0.0001
and |α|2 = 30 in the JC interaction.
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Figure 4.10: Time evolution of entropy of entanglement. Fig. (4.10(a)), time evolution
of Sa(τ) at δ = (β + 2ξ)λ = 20.0002λ; β = 20, ξ = 0.0001 and |α|2 = 30 in the
AJC process while Fig. (4.10(b)) [Fig. B.4, Appendix B] is the corresponding Sa(τ) at
δ = βλ = 20λ; β = 20, ξ = 0.0001 and |α|2 = 30 in the JC interaction.

Based on the preceding results in Figs. 4.7(a), 4.7(b), 4.8(a), 4.8(b), 4.9 and 4.10 we
see that;
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(i) at all time intervals, time evolution of the DEM, atomic population inversion, Sa(τ),
W (τ), in the AJC interaction display behaviours agreeing and similar with earlier
results in [173, 174, 184–186] and in Appendix B Figs. B.2, B.3 and B.4;

(ii) at t>0 in a resonant AJC interaction δ = 2ω ; δ = 0, Fig. 4.8(a), the value of the
DEM as measured by the von Neumann entopy of entanglement, Sa(τ), presents
highest initial value of unity at the collapse time [28], τc = 1√

2 , defining maximum
entanglement between the two-level atom and field just like its corresponding reso-
nance case in the JC interaction, Fig. 4.8(b), set at δ = 0 followed by an almost zero
value of Sa(τ) at one half of the revival time as presented in Fig. 4.7, noting that
the AJC process is at all times detuned at 2ω even at resonance δ = 0.

During an off-resonant atom-field quantum systems interaction, the revival time, τR,
of the atomic population inversion is approximated as established in [173], where
here, we combine Eqs. (3.3.7b) (AJC) and (B.1.9c) (JC) in a general form

τR ≃ π√
△2

4λ2 + (|α|2 + 1) −
√

△2

4λ2 + |α|2
; △ ≡ δ, δ = δ + 2ω . (4.2.2)

Applying Eq. (3.3.7b) or (4.2.2) in the AJC process τR

2 ≃ 17.3494 and Eq. (B.1.9b)
in the JC process, τR

2 ≃ 17.20721.

With reference to Figs. 4.7 and 4.8, the physical interpretation agreeing with [174,
184, 187–189] is that at t>0 the atomic state will not be pure but at one half of
the revival time, evaluated herein, the atom, (cavity) field quantum systems evolve
simultaneously into pure state.

At the revival phases, τR ≃ 34.6989 (AJC) , τR ≃ 34.4144 (JC), as clearly visualised
in Figs. 4.7 and 4.8, the DEM in the respective JC, AJC interaction mechanisms
oscillates about a local minimum and maximum specifying that the field at the
revival phase does not evolve to pure state [174];

(iii) touching on the revival times, τR, of the AJC, JC atomic population inversion in (ii)
above, we conclude that despite the processes displaying similar patterns during time
evolution of W (τ) and Sa(τ) they are of different forms due to different values of τR.
This slight difference in τR in the AJC W (τ) plot in comparison to its corresponding
JC case, is due to the residual detuning δ = 2ω = 2ξλ present in the AJC interaction
even at resonance, resulting in delay in revival of atomic inversion as presented;
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(iv) in the permanently detuned AJC case in Fig. 4.9(a), just like its corresponding
off-resonant JC interaction in Fig. 4.9(b) , the DEM measured by Sa(τ) displays
low values at all time intervals in comparison to that in Fig. 4.8, after which Sa(τ)
decreases further with every increase in frequency detuning δ in the JC process and
sum frequency δ = δ + 2ω in the AJC case as shown in Fig. 4.10. This means that
entanglement between the two-level atom and the field decreases with every increase
in sum frequency (AJC) and separately frequency detuning (JC) causing the atom
to have less tendency to evolve to excited state, |e⟩, from the ground state, |g⟩.

Applying again Eq. (3.3.7b) or Eq. (4.2.2) to the AJC Sa(τ) plot in Fig. 4.9(a), we
obtain half the revival time at τR

2 ≃ 23.40431 and the corresponding JC Sa(τ) curve
in Fig. 4.9(b), τR

2 = 23.40410. Similarly the JC Sa(τ) curve presented in Fig. 4.10(a)
gives τR

2 ≃ 35.88870 while the corresponding JC plot in Fig. 4.10(b) τR

2 ≃ 35.88842.
It is clear that at these times Sa(t) does not dip as much towards Sa(τ) = 0 in
comparison to the resonance cases in Fig. 4.8 accordant with [173]. Further, a clear
delay in revival time of atomic inversion, τR, during all the AJC processes as a
consequence of the additional residual detuning 2ω = 2ξλ is noted.

The reduction in Sa(τ) means that for large sum frequency δ = δ + 2ω (AJC) and
separately frequency detuning δ = ω0 − ω (JC), the system tends to pure state at
all time intervals during the interaction;

(v) during the AJC process in Figs. 4.9(a) and 4.10(a), rapid oscillations of Sa(t) are
observed at the collapse time τc = 1√

2 and the revival time, τR, in conformity with the
prediction by Bloch and Siegert [86] that the CR frequency that yields a population
oscillation of 2ω results into rapid spin-flipping operations due to entanglement of
the interacting atom-field quantum systems. In contrast, it is clear that during the
corresponding JC processes in Figs. 4.9(b) and 4.10(b), rapid oscillations are only
at the revival phase and

(vi) during the AJC processes in Figs. 4.9(a) and 4.10(a), Sa(τ) records a slightly higher
value than all the corresponding JC processes in Figs. 4.9(b) and 4.10(b).

4.2.2 Photon statistics

In this section we analyse the behavior/properties of photons in the AJC process where
we applied the Mandel Q-Parameter in Eq. (3.3.11). Using the reduced density op-
erator of the field mode ρ̂

g

f (t) in Eq. (3.3.13) and the evaluations of mean ⟨η̂⟩, mean
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square ⟨η̂2⟩ photon number in Eq. (3.3.14) we proceeded to plot the time evolution of
the Mandel Q-parameter (τ = λt is the scaled time) for an initial atomic ground state
|g⟩ and field mode, initial coherent state |α⟩. Plots of the AJC curves are provided in
Figs. 4.11(a), 4.12(a), 4.13(a) and 4.14(a). We present a comparison with those of the cor-
responding JC process at resonance δ = 0, off-resonance δ ̸= 0 at low, high field intensities
|α|2 in Figs. 4.11(b) [Plotted in Fig. B.5], 4.12(b)[Plotted in Fig. B.6], 4.13(b)[Plotted in
Fig. B.7] and 4.14(b)[Plotted in Fig. B.8] as determined in Appendix B.
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Figure 4.11: Time evolution of Mandel parameter. Fig. (4.11(a)) is the time evolution of
Q(τ) at δ = 2ξλ = 0.0002λ; (β = 0), ξ = 0.0001 and |α|2 = 6 in the AJC process while
Fig. (4.11(b)),Q(τ) at δ = βλ = 0; (β = 0) and |α|2 = 6 in the JC interaction plotted in
Fig. B.5, Appendix B.
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Figure 4.12: Time evolution of Mandel parameter. Fig. (4.12(a)) is the time evolution of
Q(τ) at δ = 2ξλ = 0.0002λ; (β = 0), ξ = 0.0001 and |α|2 = 30 in the AJC process while
Fig. (4.12(b))[Plotted in Fig. B.6, Appendix B],the corresponding Q(τ) at δ = βλ =
0; (β = 0) and |α|2 = 30 in the JC interaction.
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Figure 4.13: Time evolution of Mandel parameter. Fig. (4.13(a)) is the time evolution of
Q(τ) at δ = (β + 2ξ)λ = 20.0002λ; β = 20, ξ = 0.0001 and |α|2 = 30 in the AJC process
while Fig. (4.13(b)), is the corresponding Q(τ) at δ = βλ = 20λ; β = 20 and |α|2 = 6 in
the JC interaction plotted in Fig. B.7, Appendix B.
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Figure 4.14: Time evolution of Mandel parameter. Fig. (4.14(a)) is the corresponding
time evolution of Q(τ) at δ = (β + 2ξ)λ = 20.0002λ; β = 20, ξ = 0.0001 and |α|2 = 30 in
the AJC process while Fig. (4.14(b)), is the corresponding Q(τ) at δ = βλ = 20λ; β = 20
and |α|2 = 30 in the JC interaction plotted in Fig. B.8 Appendix B.

From the plots in Figs. 4.11 - 4.14 we see that;

i) the photon statistics during the JC interaction is dominantly super-Poissonian as
presented in Figs. 4.11(b), 4.12(b) and 4.14(b) consistent with the observation made
in [190]. The only exception is in Fig. 4.13(b) where the nature of photons is dom-
inantly sub-Poissonian. In this particular example a non-zero detuning δ ̸= 0 is
introduced for a low mean photon number |α|2 and

ii) in the AJC plots in Figs. 4.11(a), 4.12(a), 4.13(a) and 4.14(a), the photon statistics
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is dominantly sub-Poissonian and only exhibits negligibly small intervals of super-
Poissonian statistics when the field intensity specified by |α|2 is increased during AJC
atom, field resonant interaction δ = 2ω ; δ = 0. For clarity, compare Figs. 4.11(a)
and 4.12(a). This means that in the AJC interaction, the photon-number variance
is much less than the average number of photons, ⟨(∆η̂)2⟩ ≪ ⟨η̂⟩, of the coherent
field mode.

This dominant sub-Poissonian nature of photon field during the AJC process, is
the cause of the observed slightly higher values of Sa(t) recorded in Figs. 4.9(a)
and 4.10(a) Sec. 4.2.1 consistent with [191].

We conclude here that the AJC process provides a signature sub-Poissonian photon
statistics during the interaction, indicating that the photons in this particular in-
teraction are naturally anti-bunched and maintains it despite variation of the field
intensity and sum frequency as presented in our examples.

4.3 AJC dynamics of a two-level atom interacting with field
mode in an initial squeezed coherent state

When the field mode in an initial squeezed coherent state is considered, we examine the
temporal evolution of a two-level atom in a resonant, δ = 2ω, off-resonant, δ = δ + 2ω,
AJC interaction. In this model, the purity of states, tr(ρ̂2

a(t)), in respect to atom-field
entanglement, Sa(t), is explored during the time evolution of atomic population inversion,
W (t). Furthermore, an examination of the quantum nature of the field system in the
AJC interaction is provided by analysis of dynamics of the Mandel Q-parameter, Q(t). A
comparison with the well-known outcomes of the JC interaction provided in Appendix. C
is included for ease of reference. Further, the considered residual detuning parameter,
ξ = 0.0001 in Sec. 4.2.1 applies. In this regard, an exhaustive comparison is feasible,
following the mathematical and physical interpretation provided therein.

4.3.1 Photon statistics

Referring to the reduced field density operator ρ̂g

f (t) in Eqs. (3.4.7), (3.4.8), interaction
parameters, Rabi frequencies defined in Eq. (3.3.5d) and mean, mean square photon
number defined in Eq. (3.4.9) we easily evaluate Q(τ) in Eq. (3.4.9) at resonance δ =
2ω ; δ = 0, squeeze parameter values r = 1, 1.3, 1.4, 1.5 and field intensity |α|2 = 40.
We then plot time evolution of the Mandel parameter Q(τ) (where τ = λt is the scaled
time) for an initial atomic ground state |g⟩ and initial squeezed coherent state |α, r⟩
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in Figs. 4.15(a), 4.16(a), 4.17(a) and 4.18(a). Plots of the corresponding JC process
at resonance δ = 0 ; r = 1, 1.3, 1.4, 1.5 and field intensity |α|2 = 40 are presented in
Figs. 4.15(b) [Fig. C.1], 4.16(b) [Fig. C.2], 4.17(b)[Fig. C.3] and 4.18(b)[Fig. C.4] as
determined in Appendix C.
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Figure 4.15: Time evolution of Mandel parameter. Fig. (4.15(a)) is the time evolution
of Q(τ) at δ = 2ξλ = 0.0002λ ; β = 0, r = 1, ξ = 0.0001 and |α|2 = 40 in the AJC
process while Fig. (4.15(b))[Fig. C.1, Appendix C], is the corresponding plot of Q(τ) at
δ = βλ = 0; β = 0, r = 1 and |α|2 = 40 in the JC interaction.
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Figure 4.16: Time evolution of Mandel parameter. Fig. (4.16(a)) is the time evolution
of Q(τ) at δ = 2ξλ = 0.0002λ ; β = 0, r = 1.3, ξ = 0.0001 and |α|2 = 40 in the AJC
process while Fig. (4.16(b))[Fig. C.2, Appendix C], is the corresponding plot of Q(τ) at
δ = βλ = 0 ; β = 0, r = 1.3 and |α|2 = 40 in the JC interaction.
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Figure 4.17: Time evolution of Mandel parameter. Fig. (4.17(a)) is the time evolution
of Q(τ) at δ = 2ξλ = 0.0002λ ; β = 0, r = 1.4, ξ = 0.0001 and |α|2 = 40 in the AJC
process while Fig. (4.17(b))[Fig. C.3, Appendix C], is the corresponding plot of Q(τ) at
δ = βλ = 0 ; β = 0, r = 1.4 and |α|2 = 40 in the JC interaction.
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Figure 4.18: Time evolution of Mandel parameter. Fig. (4.18(a)) is the corresponding
time evolution of Q(τ) at δ = 2ξλ = 0.0002λ ; β = 0, r = 1.5, ξ = 0.0001 and |α|2 = 40
in the AJC process while Fig. (4.18(b))[Fig. C.4, Appendix C], is the corresponding plot
of Q(τ) at δ = βλ = 0 ; β = 0, r = 1.5 and |α|2 = 40 in the JC interaction.

From the plots in Figs. 4.15 - 4.18 we see that;

(i) the photon statistics during the AJC interaction just like the JC interaction is dom-
inantly sub-Poissonian at squeeze parameters r = 1 to r = 1.4 as presented in
Figs. 4.15 - 4.17. The only exception is in Fig. 4.18 set at r = 1.5 where the pho-
ton statistics evolves to a dominant super-Poissonian from sub-Poissonian photon
statistics;

(ii) in the AJC plots in Figs. 4.15(a), 4.16(a), 4.17(a) and 4.18(a), the pattern of the
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time evolution of the Mandel parameter are similar to the corresponding JC cases
in Figs. 4.15(b), 4.16(b), 4.17(b) and 4.18(a) but notable difference in thichkness at
the collapse phase, revivals and revival peaks as visualised. However the evolutions
of Q(τ) during the JC interactions in Figs. 4.15, 4.16 and 4.17 depict less negative
values of Q(τ) than the corresponding AJC Q(τ) evolutions which are more negative.
This means that the AJC process provides a reduced photon-number variance than
the mean photon number of the squeezed coherent field mode, i.e., ⟨(∆n̂)2⟩ ≪ ⟨n̂⟩.
This implies that a more anti-bunched photon field mode, can be easily realised,
during the AJC process than during the JC interaction.

We conclude at this point that the interaction feature of photon statistics at squeeze
parameter, 1 ≤ r ≤ 1.4, during the AJC process is similar to that realised during the
corresponding JC interaction when an initial squeezed coherent field mode is considered.
However, obtaining a more anti-bunched field mode in the AJC interaction is easier than
in the analogous JC process as visualised, since the AJC Q(τ) values are more negative
values than the related JC Q(τ) values.

4.3.2 Evolution of atomic population inversion and entropy of entangle-
ment

As earlier stated, the z-component of the time evolving Bloch vector, r⃗(t), is the dif-
ference of the time evolving excited state probability, P ee(t), and time evolving ground
state probability, P gg(t), that defines atomic population inversion, W (t). Applying the
explicit definitions of the time evolving Bloch vector component rz(t) in Eq. (3.4.11),
we plot W (t) in Figs. 4.19(a), 4.20(a) at δ = 2ω ; δ = 0, r = 1, 1.5, |α|2 = 40 during
the AJC interaction and compare with the JC interaction in Figs. 4.19(b)[Fig. C.5, Ap-
pendix C], 4.20(b)[Fig. C.6, Appendix C] at δ = 0, r = 1, 1.5, |α|2 = 40 as determined in
Appendix C.
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Figure 4.19: Time evolution of atomic population inversion. Fig. (4.19(a)) is the time
evolution of W (τ) at δ = 2ξλ = 0.0002λ ; β = 0, r = 1, ξ = 0.0001 and |α|2 = 40 in
the AJC process while Fig. (4.19(b))[Fig. C.5, Appendix C] is the corresponding plot of
W (τ) at δ = βλ = 0 ; β = 0, r = 1 and |α|2 = 40 in the JC interaction.

α2=40; β=0; r=1.5; ξ=0.0001

0 20 40 60 80 100
-1.0

-0.5

0.0

0.5

1.0

τ

W
(τ
)

(a) AJC
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Figure 4.20: Time evolution of atomic population inversion. Fig. (4.20(a)) is the time
evolution of W (τ) at δ = 2ξλ = 0.0002λ ; β = 0, r = 1.5, ξ = 0.0001 and |α|2 = 40 in
the AJC process while Fig. (4.20(b))[Fig. C.6, Appendix C], is the corresponding plot of
W (τ) at δ = βλ = 0 ; β = 0, r = 1.5 and |α|2 = 40 in the JC interaction.
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Figure 4.21: Time evolution of atomic population inversion (Ringing revivals).
Fig. (4.21(a)) is the time evolution of W (τ) at δ = 2ξλ = 0.0002λ ; β = 0, r = 1.5,
ξ = 0.0001 and |α|2 = 40 in the AJC process while Fig. (4.21(b))[Fig. C.7, Appendix C],
is the corresponding plot of W (τ) at δ = βλ = 0 ; β = 0, r = 1.5 and |α|2 = 40 in the JC
interaction.

We proceed to plot the photon number distribution P (n) defined in Eq. (3.4.3) at
r = 1, 1.5, |α|2 = 40 in Figs. 4.22(a), 4.22(b).
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Figure 4.22: Photon number distribution P (n). Fig. (4.22(a)) [Fig. C.8(a)], P (n) at r = 1
and |α|2 = 40 while Fig. (4.22(b)) [Fig. C.8(b)] P (n) at r = 1.5, |α|2 = 40

From the results in Figs. 4.19 - 4.22 we see:

i) that the time evolution of atomic population inversion during the AJC, JC processes
appear similar in form. To investigate, let us determine their respective revival times,
τR. As established in [192], we apply Eq. (B.1.9b) and express the field intensity
formalism with regard to an initial squeezed coherent state, ⟨n̂⟩ = |α|2 + sinh2(r).
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The curve in Fig. 4.19(b) plotted in a resonant, δ = 0, JC process and squeeze
parameter, r = 1, has a revival time τR ≃ 40.41856 while application of Eq. (3.3.7b)
or Eq. (4.2.2) defined in [173] to the corresponding AJC resonant condition curve
δ = 0.0002λ, squeeze parameter r = 1 plotted as presented in Fig. 4.19(a), we
obtain τR ≃ 40.661292. Similarly, Fig. 4.20(b) plotted in a resonant, δ = 0, JC
interaction, squeeze parameter r = 1.5, we apply Eq. (4.2.2) to obtain a revival time
τR ≃ 41.93000 while the corresponding AJC resonant condition plot 4.20(a) set at
δ = 0.0002λ, squeeze parameter r = 1.5, application of Eq. (3.3.7b) or Eq. (4.2.2)
yields a revival time τR ≃ 42.16408. We see from these results that:

a) the atomic population inversion curves display the same pattern but are of
distinct forms due to the different revival times, τR, and

b) there is an increase in revival time. This has two clear contributors. The first is
an increase in squeeze parameter, r, which results in delay in revival of atomic
inversion and second, the existance of the AJC residual infinitesimal detuning,
2ω = 2ξλ, that causes the same effect of delaying revival in atomic inversion.
A similar result was discussed in [17, 193], i.e, squeezing can be enhanced by
increasing the squeeze parameter, r, or frequency detuning as its sum, δ = ω0+ω,
(AJC) or difference, δ = ω0 − ω, (JC) ;

ii) that the oscillations at r = 1.5 in Figs. 4.20(b), 4.20(a) are more irregular at the
collapse region than when r = 1 in Figs. 4.19(b), 4.19(a), commonly referred to as
ringing revivals (see Fig. 4.21) in agreement with [17, 194], i.e., the collapse region is
modulated or displays ringing different from the well known collapse region obtained
when an initial coherent field is considered [28]. As explained in detail in [17, 194], the
ringing is due to interference of the additional peaks (see Fig. 4.22) in the photon
number distribution P (n) = |⟨n|α, r⟩|2 observed during the AJC interaction and
separately JC interaction (presented in Appendix. C), because the revivals produced
by different peaks of P (n) have different local mean photon numbers. In the process
revivals due to individual peaks overlap but the effect of the resulting interference is
to sharpen the ringing structure other than washing it away, i.e, the addition of each
local peak in P (n) adds an echo in W (τ) and the successive echoes brings further
interference, which sharpens the echoes at earlier times and;

iii) in Fig. 4.19 sharpness of the revival regions during atomic population inversion which
occur when the field is sub-Poissonian (see Fig. 4.15 at r = 1) accordant with [194],
in comparison to the less pronounced and blunt peaks in Fig. 4.20 at r = 1.5. We
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noted in our example in Fig. 4.18 plotted at r = 1.5 during the AJC, JC processes,
that the field is super-Poissonian.

Accordingly, for purposes of completeness its important to visualise and discuss the
collapses and revival phenomenon in relation to the DEM. Here the DEM is measured by
the von Neumann entropy Sa(t) defined in Eq. (3.3.8) in terms of the time evolving Bloch
vector r⃗(t) in the general form. Now, with the time evolving Bloch vector components
explicitly defined in Eq. (3.4.11) we easily evaluate Sa(t). The AJC process atomic
entropy Sa(τ) (τ = λt is the scaled time) plots are presented in Figs. 4.23(a) and 4.24(a)
while the corresponding JC interaction plots at resonance δ = 0, r = 1, 1.5, and field
intensity |α|2 = 40 are shown in Figs. 4.23(b)[Fig. C.9, Appendix C] and 4.24(b)[Fig. C.10,
Appendix C] as analysed in Appendix C.
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Figure 4.23: Time evolution of atomic entropy. Fig. (4.23(a)) is the time evolution of
Sa(τ) at δ = 2ξλ = 0.0002λ ; β = 0, r = 1, ξ = 0.0001 and |α|2 = 40 in the AJC
process while Fig. (4.23(b))[Fig. C.9, Appendix C], is the corresponding plot of Sa(τ) at
δ = βλ = 0 ; β = 0, r = 1 and |α|2 = 40 in the JC interaction.
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Figure 4.24: Time evolution of atomic entropy. Fig. (4.24(a)) is the time evolution of
Sa(τ) at δ = 2ξλ = 0.0002λ ; β = 0, r = 1.5, ξ = 0.0001 and |α|2 = 40 in the AJC
process while Fig. (4.24(b))[Fig. C.10, Appendix C], is the corresponding plot of Sa(τ) at
δ = βλ = 0 ; β = 0, r = 1.5 and |α|2 = 40 in the JC interaction.

Based on the results in Figs. 4.23 and 4.24;

i) we see that at a glance, we may not point out the exact revival times, due to the
similar forms of the curves. We can however apply Eqs. (B.1.9b), (B.1.9c) or (3.3.7b)
to establish the exact revival times, τR.

In Fig. 4.23(a) plotted in the AJC interactions, the the revival time is determined
by applying Eq. (3.3.7b) or Eq. (B.1.9c) after substituting the field intensity form
of an initial squeezed coherent state, |α|2 + sinh2(r), to obtain τR ≃ 40.66129. The
corresponding revival time, τR, for the JC Sa(τ) curve in Fig. 4.23(b) is determined by
apply Eq. (B.1.9b) after substituting the field intensity in the squeezed coherent state
form, |α|2 + sinh2(r), to obtain τR ≃ 40.41856. We see that at these times, the value
of Sa(τ) is approximately equal to that at half the revival times τR

2 , i.e, Sa(τ) ≃ 0.04
in our example. This means that at these times (τR,

τR

2 ) the atom-field states are
entangled (mixed) when an initial squeezed coherent state is considered, accordant
with [194]. In addition, as time advances, we note gradual increase in DEM and
consequently the degree of mixedness since Sa(t) records gradual increasing values
with every increase in time. In addition, since the squeeze parameter is set at r = 1,
we note that the delay in revival time during the AJC interaction in Fig. 4.23(a)
in comparison to the JC curve in Fig. 4.23(b), is due to the effect of the residual
detuning δ = 2ω = 2ξλ. Note here that ξ in the JC process is a phase, and it does
not affect the dynamics of Sa(τ) as presented;
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ii) that the behaviour in (i) is enhanced during the AJC and separately JC interaction
set at r = 1.5 as presented in Fig. 4.24. The form of time evolution of Sa(τ) becomes
more rapid with oscillations between [≃ 0.2, 1] characterising an increase in DEM
(and so the degree of mixedness), consistent with [194]. It is now clear that the
DEM (mixedness) increases with an increase in r ;

iii) as demostrated in Fig. 4.23 set at r = 1, that the evolution of Sa(τ) during the AJC
interaction and separately the corresponding JC interaction are of close form since
the difference in revival time is negligibly small. A similar observation suffices at
r = 1.5 as visualised in Fig. 4.24 and

iv) we observe ringing at periods after revivals, i.e, τ = 45 and τ = 90, reminiscent to
that of the atomic population inversion discussed earlier. This is caused by the ad-
ditional oscillations (peaks) in the photon number distribution P (n) in Fig. 4.22(b),
due to addition of more squeezed photons in the coherent field. This effect is ob-
served in the AJC Sa(τ) dynamics in Fig. 4.24(a) and the corresponding JC Sa(τ)
dynamics in Fig. 4.24(b) and in agreement with the findings determined separately
in [193].

In conclusion, it is important to note that the time evolution atomic population inver-
sion W (τ) graphs in Figs. 4.19, 4.20 and separately, the time evolution of atomic entropy
Sa(τ) curves in Figs. 4.23, 4.24 depict similar respective patterns, however, they are of
different forms with respect to different revival times, τR in W (τ), Sa(τ) dynamics. More
precisely, the AJC W (τ), Sa(τ) evolutions, have longer revival times than that observed
in the JC W (τ), Sa(τ) dynamics. Further, the field statistics in the AJC interaction in
Figs. 4.15, 4.16 and 4.17 as measured by the time evolution of Q(τ), indicate that the field
statistics in the AJC interaction is more anti-bunched than that in the JC interaction.

To facilitate the visualised comprehensive comparison, we intentionally set the dimen-
sionless frequency ratio ξ at a very small value, so that the AJC resonant condition
δ = 2ω = 2ξλ ; δ = βλ = 0, does not depart considerably from the JC resonant condition
δ = 0.

Under resonance, the explicit definitions of the Bloch vector components rx(t), ry(t),
rz(t) in Eq. (3.4.11), describing the AJC interaction while referring to the definitions
of interaction parameters cgn, sgn−1, and Rabi frequency Rgn, Rgn−1 defined and deter-
mined in Eq. (3.3.5d) reduce to the form of Eq. (4.2.1a). Similarly, the corresponding
Bloch vector components rx(t), ry(t), rz(t) describing the JC interaction as presented in
Eq. (C.1.9) Appendix C while referring to the interaction parameters cgn, sgn+1 and Rabi
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frequency Rgn, Rgn+1 defined and determined from Eq. (C.1.6), Appendix C take the
form of Eq. (4.2.1b)

We see from Eq. (4.2.1a) that in a resonant atom-field AJC interaction interaction
δ = 2ω = 2ξλ, the dimensionless frequency detuning ratio β = δ

λ
= 0 ; δ = 0 and so the

time-evolving Bloch vector components rx(t), ry(t), rz(t) have only the photon number
n, the dimensionless field mode frequency ratio ξ = ω

λ
, the mean photon number |α|2

and the squeeze parameter r as the variables while from Eq. (4.2.1b), in a resonant JC
interaction δ = 0, the mean photon number |α|2, the photon number n and the squeeze
parameter r are the variables.

It therefore follows that the squeezing effect specified by the squeeze parameter r
domiciled the interactions respectively since the mean photon number was set constant
at |α|2 = 40.

We take note here that varying separately the mean photon number |α|2, sum frequency
(frequency detuning) δ(δ) parameters also affects the degree of squeezing [195, 196], i.e.,
the squeezing effect is enhanced with each increase in |α|2, δ, δ. This means that as an
alternate to variation in squeeze parameter r, keeping r constant while separately varying
|α|2, δ, δ upwards will result in strongly squeezed states or rather, squeezing effect.

In this thesis we considered one case; variation in the squeeze parameter r at a constant
field intensity |α|2 = 40 and in a resonant AJC interaction δ = 2ω to make comparison
with the corresponding JC interaction at resonance δ = 0 clear. Recall that the AJC
interaction always has a residual field mode frequency 2ω.

119



CHAPTER 5
DISCUSSION AND CONCLUSIONS

In this chapter discussion of results obtained in Chapter 4 is presented. In Secs. 5.1, 5.2
and 5.3 clear similarities and differences in quantum features of Rabi oscillations, entan-
glement and nature of field during the respective AJC, JC interaction is highlighted.

5.1 Two-level atom interacting with a field mode in Fock state
i) In Secs. 4.1.1 and A.2.1 of this thesis we analysed Rabi oscillations between basic

stationary coupled atom-field AJC (|ψgn⟩, |ϕgn), JC (|ψen⟩, |ϕen⟩) qubit state vectors
due to pure time evolving AJC (|Ψgn(t)⟩), JC (|Ψen(t)⟩) qubit state vectors for an
initial vacuum field n = 0 as an example. We simulated the Rabi oscillations of
the pure time evolving coupled atom-field JC (|Ψen(t)⟩), AJC (|Ψgn(t)⟩) qubit state
vectors on a unit sphere referred to as the Bloch sphere in Figs. A.1, 4.1(a) and 4.2
using Mathematica software. We observed:

a) that Rabi oscillations in a cavity mode in an AJC interaction process, occur in
the reverse sense relative to the JC interaction process;

b) with reference to Fig 4.2 that due to the larger sum frequency δ = ω0 + ω in
the AJC interaction process as compared to detuning δ = ω0 − ω in the JC
interaction process, the Rabi oscillation circles in the much faster AJC process
are much smaller compared to the corresponding Rabi oscillation circles in the
slower JC interaction process. This observation agrees precisely with the as-
sumption usually adopted in the RWA to drop the AJC coupling terms that
simultaneously excite or de-excite atom and field, noting that the AJC interac-
tion process averages out over time. These Rabi oscillation circles are due to
precession of time evolving AJC Bloch vector ρ⃗gn(t) and the time evolving JC
Bloch vector ρ⃗en(t) respectively for n = 0 in our examples and;

c) in the same picture (Bloch sphere) we analysed JC, AJC resonant and off-
resonant behaviour of Rabi oscillation circles. At resonance as visualised in
Fig. A.1, the JC Bloch vector ρ⃗en(t) traces a path along the yz-plane. In the
contrary since the AJC process is always detuned even at resonance δ = 2ω, the
Bloch vector ρ⃗gn(t) precesses at an axis away from the yz-plane as visualised in
Fig. 4.1(a). The off-resonant JC process depicted form of Rabi oscillation circles
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similar to all the AJC cases as presented in Figs. A.1, 4.1(a). In this off-resonant
condition, the JC, AJC Bloch vectors precess at an axis away from the yz-plane.

ii) We went further in Secs. 4.1.2.1and A.2.2.1 respectively to analyse entanglement
properties of qubit state vectors |ψgn⟩, |ϕgn⟩ and |ψen⟩, |ϕen⟩ generated in the AJC,
JC interaction processes of a two-level atom and a single mode of quantised electro-
magnetic field, with the field mode in an initial vacuum state n = 0 as an example.
We observed that the entanglement properties of basic AJC qubit state vectors
|ψgn⟩, |ϕgn⟩ in Sec. 4.1.2.1 at all cases of sum frequency δ = ω0 + ω just like the JC
process analysed in Sec. A.2.2.1 for qubit state vectors |ψen⟩, |ϕen⟩ at off-resonance
δ ̸= 0 depicted transition of qubit state vectors from initial separable (or product)
qubit state vectors |ψen⟩, |ψgn⟩ to transition qubit state vectors |ϕen⟩, |ϕgn⟩ that are
entangled.

The difference is in the resonance δ = 0, δ = 2ω JC, AJC interaction. The generated
JC, AJC qubit state transitions |ψen⟩ → |ϕen⟩, |ψgn⟩ → |ϕgn⟩ at resonance are; initial
separable (product) qubit state → transition separable (product) qubit state (JC),
initial separable product qubit state → entangled transition qubit state (AJC). This
latter transition takes that consistent unique form because the AJC process remains
detuned at a residual frequency δ = 2ω at resonance.

iii) In the AJC interaction process just like the JC interaction process, it is possible
to generate maximally entangled transition qubit state vectors |ϕgn⟩, |ϕen⟩ which
are useful in QIP like quantum teleportation as teleportation channels which we
demonstrated clearly in this Thesis in Secs. 4.1.2.2 and A.2.2.2.

iv) In Sec. 4.1.3 we studied the general dynamics of AJC interaction described by the
general time evolving AJC qubit state vector |Ψgn(t)⟩. We observed that for dif-
ferent values of sum frequency parameter δ and photon number n, the dynamical
evolution of entanglement takes the same form as that of the JC interaction pro-
cess in Sec. A.2.3 and references cited in this Thesis analysed for different values of
frequency detuning parameter δ and photon number n. As analysed:

a) in all the plots in Figs. 4.3(a) - 4.6 in the AJC and Figs. A.2 - A.5 in the
JC process, entanglement sudden birth (ESB) and entanglement sudden death
(ESD) are observed during time evolution of E(τ) and C(τ) respectively;

b) an increase in sum-frequency parameter δ in the AJC process and frequency
detuning parameter δ in the JC process results into an increase in frequency of
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oscillation DEM measures E(τ) and C(τ) respectively;

c) in all the plots in Figs. 4.3(a) - 4.6 in the AJC and Figs. A.2 - A.5 in the JC
process an increase in photon number n also results into an increase in frequency
of oscillation of DEM measures E(τ) and C(τ) respectively and

d) in the AJC, JC interaction processes in Secs. 4.1.3, A.2.3 as clearly demonstrated
in Fig. 4.5(a) (AJC) in comparison to Fig. A.6(a) (JC), the DEM as measured
by the von Neumann entropy E(τ) (AJC) and separately concurrence C(τ)
(JC) decreases with an increase in sum frequency δ (AJC), frequency detuning
δ (JC) indicating gradual decrease in the degree of entanglement. The result of
time evolution of purity of state tr(ρ̂2

a(τ)) in Fig. 4.5(b) (AJC) and separately
tr(ρ̂2

a(τ)) Fig. A.6(b) (JC) reveals that in the respective interactions the systems
tend to pure state tr(ρ̂2

a(τ)) = tr(ρ̂2
a(τ)) = 1, a point in which the state-vector

description of the atom, field quantum systems is possible since C(τ) = E(τ) =
0. What is more, as visualised in Fig. 4.6(a) (AJC) and Fig. A.7(a) (JC),
entanglement at a fixed sum frequency δ (AJC), frequency detuning δ (JC) is
enhanced by increasing photon number n. Where here the degree of purity
tr(ρ̂2

a(τ)) in Fig. 4.6(b) (AJC) and separately tr(ρ̂2
a(τ)) in Fig. A.7(b) (JC)

provide a physical interpretation that the systems tend to maximally mixed
states tr(ρ̂2

a(τ)) = tr(ρ̂2
a(τ)) = 1

2 during the respective AJC,JC processes, a
point where maximum entanglement is realised C(τ) = E(τ) = 1.

However, there were notable differences on the dynamics of quantum entanglement
as measured by E(τ) in the AJC process and C(τ) in the JC process.

a) To begin with, Fig. 4.3(a) in the AJC process clearly shows that vacuum-field
Rabi oscillations in the AJC interaction mechanism occur when an atom initially
in ground state |g⟩ is in a vacuum-field n = 0 in contrast to the JC interaction
mechanism demonstrated in Figs. A.2 and A.3 where vacuum field Rabi oscil-
lations occur when an atom in an initial excited state |e⟩ enters a vacuum-field
n = 0.

b) The DEM in the JC process provided a unique feature, in that the frequency of
oscillation of DEM as measured by concurrence C(τ) is higher at resonance δ = 0
than off-resonance δ ̸= 0 as presented in Fig. A.2 in comparison to Fig. A.3. This
is because an increase in frequency detuning δ minimises entanglement of the
atom, field quantum systems. In the contrary, the AJC process which is at all
times detuned, any increase in sum frequency δ results in an increase in frequency
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of oscillation of DEM as highlighted earlier. However in an initial vacuum field
n = 0 for various values of sum frequency δ = 5λ, 7λ (AJC) corresponding to
frequency detuning δ = λ, 3λ (JC) chosen arbitrarily the frequency of oscillation
of DEM in the AJC interaction process is higher (shorter periods) than that of
the JC interaction process as presented in Fig. 4.3(a) (AJC) in comparison to
Figs. A.2 and A.3 (JC). In addition, at resonance δ = 0 (Fig. A.2), the JC
process depicts shorter periods than the corresponding δ = 4λ AJC curve of
DEM in Fig. 4.3(a).

c) In the JC interaction process in comparison to the AJC interaction process in
Figs. 4.3(a) - 4.6, local minimums occur only when frequency detuning is set at
off-resonance δ ̸= 0 as shown in Figs. A.2 - A.5 except for the special cases like
that of long-lived entanglement determined for parameter values δ = 4λ, n = 0
in our example in Fig. A.3.

v) The results of unit fidelities in Secs. 4.1.2.2 and A.2.2.2 clearly showed that it is
possible to carry out quantum teleportation in the AJC interaction process just like in
the JC interaction process, noting that the classical limit is 2

3 [65]. However, despite
the fact that it is possible to generate a symmetric atom-field state in Sec. A.2.1
quantified as maximally entangled in Sec. A.2.2.1 and an anti-symmetric atom-field
quantum state in Sec. 4.1.1 quantified as maximally entangled in Sec. 4.1.2.1, the
anti-symmetric qubit states [177] have an advantage over symmetric quantum states
since their qubits are distinct and so they are easy to detect and measure in an
experiment. Due to their special features, anti-symmetric qubit states have recently
been useful in implementing quantum mechanical key sharing protocol [61], quantum
state sharing protocols and for comparing quantum states [178].

vi) Finally in quantum computing, measurement in Bell basis is fundamental as pre-
sented in Secs. 1.8 and 2.4. In practice as stated in Secs. 1.8 and 2.4, for a bipartite
system of qubits, measurement in Bell basis involves applying a C-NOT gate to the
qubits followed by a Hadamard gate to the first qubit which results into a mea-
surement in computational basis. Here the C-NOT gate simply performs the act of
un-entangling the previously entangled qubits. This allows the information to be
converted from quantum information to a measurement of classical information.

In Secs. 4.1.4 we demonstrated that it is possible to implement an efficient quantum
C-NOT gate in the AJC process as quantified by the ideal unit probabilities of
success. This gate provided the same operation as the extensively implemented C-
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NOT gates in the JC process since it flips the target qubit if and only if the atomic
control qubit is in the computational basis state |g⟩ but when the atomic control
qubit is in the computational basis state |e⟩ the target qubit remains unchanged. The
gate operation was achieved by applying respective qubit state transition operations
defined in the AJC sub-space spanned by normalised but non-orthogonal basic qubit
state vectors and accurate choice of atom-field interaction times. Here, the control
qubit was a two-level atom and the target qubit was made up of two non-degenerate
and polarised cavities.

In Sec.4.1.5 we showed that it is possible to perform standard quantum Hadamard
rotations to initial atomic computational basis states {|e⟩, |g⟩} in the AJC pro-
cess similar to those implemented in the extensively applied JC process detailed in
Sec. 2.4. For a specified initial atomic state, this was achieved by setting a spe-
cific sum frequency and photon number in the AJC qubit state transition with the
interaction component in the AJC Hamiltonian generating the state transitions.

5.2 Two-level atom interacting with a field mode in an initial
coherent state

i) The photon statistics is dominantly sub-Poissonian during the AJC interaction as op-
posed to the dominantly super-Poissonian distribution during the JC process clearly
showing that the field mode is naturally anti-bunched during the AJC process. It ba-
sically means that fully quantised light-matter interactions can easily be realised in
the AJC process. The JC, AJC photon distributions are visualised by time evolution
of the Mandel parameter in Figs. 4.11 - 4.14.

ii) From the results visualised in Figs. 4.7, 4.8 - 4.10 and 4.11 - 4.14:

a) considering first the resonance case examples (δ = 0 (JC), δ = 2ξλ (AJC))
presented in Fig. 4.7 and Fig. 4.8, at t > 0, the first maximum of the DEM
Sa(t) is realised at the point when the respective atomic population inversions
are just at the collapse phase ;

b) in both JC, AJC processes, at one-half of the revival time as demonstrated in
Figs. 4.7 and 4.8 the DEM Sa(t) reaches an almost zero degree and consequently
while referring to the degree of purity tr(ρ̂2

a(t)) in Fig. 4.8 it is clear that the
atom and the field systems evolve to pure state and;
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c) an increase in frequency detuning δ (JC) and separately sum frequency δ (AJC)
as demonstrated in Figs. 4.8 - 4.10 leads to a decrease in DEM at all time
intervals, however at one-half of the revival time the value of the DEM does not
deep as much to Sa(t) = 0 in comparison to the resonance case in Fig. 4.8.

iii) For higher values of δ (JC), δ (AJC) the DEM Sa(t) in the AJC process is slightly
higher than those of the JC process as shown here in Figs. 4.8 - 4.10. This is
attributed to the quantum nature of the field during the AJC interaction discussed
in (i).

5.3 Two-level atom interacting with a field mode in an initial
squeezed coherent state

We analysed separately, the interaction of a two-level atom with a single mode of an initial
squeezed coherent light during the AJC, JC processes, and the results in the respective
interactions are consistent with earlier work cited in Sec. 4.3. As visualised, the nature of
photon statistics and DEM take the same similar pattern during time evolution of atomic
population inversion for values of squeeze parameter set in the range [1, 1.5] but different
forms. More precisely, the AJC W (τ), Sa(τ) dynamics generated longer revival times,
τR, due to existence of residual detuning, 2ω, that delayed the revival of atomic inversion.
Further, the AJC Q(τ) dynamics are more negative as visualised, than the corresponding
JC Q(τ) dynamics, indicating that the AJC field statistics is more anti-bunched than its
corresponding JC field statistics. An important quantum property, showing that there is
a higher chance to generate single photons in the AJC interaction than in its correlated
JC process.

What is more, at r > 1.4 the field system becomes dominantly super-Poissonian. We
also observed that at a higher r = 1.5 the revival peaks during atomic population inversion
becomes less pronounced, irregular and ringing revivals observed at an expected collapse
phase. The ringing, is caused by addition of more squeezed photons in the coherent field,
leading to increase oscillations in the photon number distribution P (n). As a result, the
individual peaks overlap and sharpens the ringing structure.

The DEM in the respective AJC, JC interactions, showed that it increases with ev-
ery increase in r and interaction time τ = λt albeit gradually, and so is the degree of
mixedness.
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CHAPTER 6
RECOMMENDATIONS

Owing to the impressive results obtained in analysis of the AJC model in this Thesis,
we recommend a relevant method of detecting entangled states (Schrödinger Cats), AJC
state engineering, practical implementation of quantum teleportation of qubits in the
AJC model and in general, quantum technologies.

6.1 AJC State Engineering
In order to systematically implement the AJC Hamiltonian with a single-tuned blue-
sideband interaction, the simulation process should involve AJC state preparation fol-
lowed by unitary transformation and measurement.

The state of the whole system as an interaction of a two-level atom and a single photon
where both the atom and the photon are initially in ground state |g⟩, |0⟩ will take the
form of Eq. (3.2.11). In a field mode that keeps the cavity field with upto one photon, the
main focus should be to determine the experimental values of the probability amplitudes

α(t) = cos(Rg0t) ; β(t) = −i sin(Rg0t) (6.1.1)

for the initial states |ψg0⟩ and |ϕg0⟩ in Eq. 3.2.11 and show their variation with time that
has a direct correspondence to the Rabi frequency Rg0 which is of the form

Rg0 = 1
2

√
16λ2 + δ

2 (6.1.2)

The measurement procedure can be easily implemented using efficient experimental
schemes for manipulating quantum entanglement with atoms and photons in a cavity
but strictly in the AJC model, during which process difficulties can be identified as ap-
propriate. The most common scheme being CQED [92–94].

6.2 Detection of entangled states: analysis of statistical prop-
erties of atoms

In QED experiments, direct access to the field is not possible since they are trapped in
the high Q cavities. The only way to study the statistical properties of the cavity field is
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to analyse the statistical properties of the atom that exits after having been coupled to
the field during the during the cavity crossing time [93, 94].

6.3 Entanglement Swapping
Entanglement swapping demonstrated in Sec. 4.1.2.2 can be realised in an experimental
set-up through Bell state measurement. Initially, the two sets of entangled states in
Eq. (4.1.12) and Eq. (4.1.13) are prepared. The entire state of the system then takes the
form of Eq. (4.1.14b). The required Bell state measurement is achieved in this case by
first applying the C-NOT gate to Charlies’ qubits the followed by the Hadamard gate
operation to qubit 1 also in Charlies’ end. The processes of which we have elaborated
clearly in Secs. 4.1.4.1 and 4.1.5. Here the results of Bell measurement are communicated
to Bob by Charles.

The most recent and successful schemes are those that apply ion-traps in state prepara-
tion and gate operations [197–200]. We take note that the AJC process has an advantage
of producing anti-symmetric states which again will provide an advantage of accurate
state identification after measurement. While implementing this process step-wise in
the AJC interaction, details of experimental design, procedures and difficulties can be
provided as appropriate.
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APPENDIX A
JC DYNAMICS: FIELD MODE IN AN INITIAL

FOCK (NUMBER) STATE
We provide in this appendix the methodology and results of the dynamics generated by
the JC Hamiltonian Ĥ in Eq. (3.1.3) when a two-level atom interacts with a field mode
in Fock state. The arbitrarily chosen field mode frequency ω = 2λ and various values of
frequency detuning δ = ω0 −ω as parameters in analysis of the AJC dynamics in Sec. 4.1
are maintained in Sec. A.2 to facilitate the desired comparison.

A.1 Methodology
Following the physical property established in [9], only a two-level atom in an initial
excited state |e⟩ entering a field mode in Fock state that is initially in vacuum state
couples to the rotating positive frequency field component during the JC interaction
process. In this respect, applying the state transition operator Â from Eq. (3.1.3) to the
initial atom-field n-photon excited state vector |e, n⟩, the basic qubit state vectors |ψen⟩
and |ϕen⟩ are determined in the form (n = 0, 1, 2,....) [12]

|ψen⟩ = |e, n⟩ ; |ϕen⟩ = cen|e, n⟩ + sen|g, n+ 1⟩ (A.1.1)

with dimensionless interaction parameters cen, sen and Rabi frequency Ren defined as

cen = δ

2Ren

; sen = 2λ
√
n+ 1
Ren

; Ren = 2λAen

Aen =
√

(n+ 1) + δ2

16λ2 ; δ = ω0 − ω (A.1.2)

where we have introduced detuning δ = ω0 − ω to redefine α in Eq. (3.1.3).
The qubit state vectors in Eq. (A.1.1) satisfy the qubit state transition algebraic

operations
Â|ψen⟩ = Aen|ϕen⟩ ; Â|ϕen⟩ = Aen|ψen⟩ . (A.1.3)

In the JC qubit subspace spanned by normalised but non-orthogonal basic qubit state
vectors |ψen⟩, |ϕen⟩ the basic qubit state transition operator ε̂e and identity operator Îe
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are introduced according to the definition

ε̂e = Â

Aen

; Îe = Â2

A2
en

⇒ ε̂2
e = Îe (A.1.4)

which on substituting into Eq. (A.1.3) generates the basic qubit state transition algebraic
operations

ε̂e|ψen⟩ = |ϕen⟩ ; ε̂e|ϕen⟩ = |ψen⟩ ; Îe|ψen⟩ = |ψen⟩ ; Îe|ϕen⟩ = |ϕen⟩ . (A.1.5)

The algebraic properties ε̂2k
e = Îe and ε̂2k+1

e = ε̂e easily gives the final property
(k = 0, 1, 2, ...)

eiθε̂e = cos(θ)Îe + i sin(θ)ε̂e (A.1.6)

which is useful in evaluating the time-evolution operator.
The JC qubit Hamiltonian defined within the qubit subspace spanned by the basic

qubit state vector vectors |ψen⟩, |ϕen⟩ is then expressed in terms of the basic qubit state
transition operators ε̂e, Îe in the form [12]

Ĥe = ℏω
(
n+ 1

2

)
Îe + ℏRenε̂e . (A.1.7)

We use this form of the JC Hamiltonian to determine the general time-evolving state
vector describing Rabi oscillations in the JC dynamics in Sec. A.1.1.

A.1.1 Rabi oscillations between the basic JC qubit state vector |ψen⟩ and
|ϕen⟩

The general dynamics generated by the JC Hamiltonian in Eq. (A.1.7) is described
by a time evolving JC qubit state vector |Ψen(t)⟩ obtained from the time-dependent
Schrödinger equation in the form [12]

|Ψen(t)⟩ = Ûe(t)|ψen⟩ ; Ûe(t) = e− i
ℏ Ĥet (A.1.8)

where Ûe(t) is the time evolution operator. Substituting Ĥe from Eq. (A.1.7) into
Eq. (A.1.8) and applying appropriate algebraic properties [12], we use the relation in
Eq. (A.1.6) to express the time evolution operator in its final form

Ûe(t) = e−iωt(n+ 1
2 )
{

cos(Rent)Îe − i sin(Rent)ε̂e

}
(A.1.9)
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which we substitute into equation Eq. (A.1.8) and use the qubit state transition operations
in Eq. (A.1.5) to obtain the time-evolving JC qubit state vector in the form

|Ψen(t)⟩ = e−iωt(n+ 1
2 )
{

cos(Rent)|ψen⟩ − i sin(Rent)|ϕen⟩
}
. (A.1.10)

This time evolving state vector describes Rabi oscillations between the basic qubit states
|ψen⟩ and |ϕen⟩ at Rabi frequency Ren.

In order to determine the length of the Bloch vector associated with the state vector
in Eq. (A.1.10), we introduce the density operator

ρ̂en(t) = |Ψen(t)⟩⟨Ψen(t)| (A.1.11a)

which we expand to obtain

ρ̂en(t) = cos2(Rent)|ψen⟩⟨ψen| + i

2 sin(2Rent)|ψen⟩⟨ϕen| − i

2 sin(2Rent)|ϕen⟩⟨ψen|

+ sin2(Rent)|ϕen⟩⟨ϕen| .

(A.1.11b)

Defining the coefficients of the projectors in Eq. (A.1.11b) as

ρ11
en(t) = cos2(Rent) ; ρ12

en(t) = i

2 sin(2Rent) ;

ρ21
en(t) = − i

2 sin(2Rent) ; ρ22
en(t) = sin2(Rent)

(A.1.11c)

and interpreting the coefficients in Eq. (A.1.11c) as elements of a 2 × 2 density matrix
ρ̂en(t), which we express in terms of standard Pauli operator matrices I, σx, σy and σz in
Eq. (1.3.6) as

ρ̂en(t) =
(
ρ11

en(t) ρ12
en(t)

ρ21
en(t) ρ22

en(t)

)
= 1

2 (I + ρ⃗en(t) · σ⃗) (A.1.11d)

where as defined in Sec. (1.3) σ⃗ = (σx, σy, σz) is the Pauli matrix vector and we have
introduced the time-evolving Bloch vector ρ⃗en(t) obtained in the form

ρ⃗en(t) = (ρx
en(t), ρy

en(t), ρz
en(t)) (A.1.11e)
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with components defined as

ρx
en(t) = tr (ρ̂en(t)σx) = tr

(
i
2 sin(2Rent) cos2(Rent)
sin2(Rent) − i

2 sin(2Rent)

)
= 0 ;

ρy
en(t) = tr (ρ̂en(t)σy) = tr

(
−1

2 sin(2Rent) −i cos2(Rent)
i sin2(Rent) −1

2 sin(2Rent)

)
= − sin(2Rent) ;

ρz
en(t) = tr (ρ̂en(t)σz) = tr

(
cos2(Rent) − i

2 sin(2Rent)
− i

2 sin(2Rent) − sin2(Rent)

)
= cos(2Rent).

(A.1.11f)

The Bloch vector in Eq. (A.1.11e) takes the explicit form

ρ⃗en(t) =
(

0, − sin(2Rent), cos(2Rent)
)

(A.1.11g)

which has unit length obtained easily as

|ρ⃗en(t)| = 1 . (A.1.11h)

The property that the Bloch vector ρ⃗en(t) is of unit length (the Bloch sphere has unit
radius), shows that the general time evolving state vector |Ψen(t)⟩ in Eq. (A.1.10) is a
pure state, as clearly explained in Sec. 1.3.1. The time evolution of this Bloch vector,
describes geometric configuration of states in the Bloch sphere picture where here we
adopt class 4 Bloch-sphere entanglement of a quantum rank-2 bipartite state [145, 147].
In this class of Bloch-sphere entanglement, only the initial state is separable and all the
other states are entangled.

In this respect, we consider the specific example (which also applies to the general
n-photon case) of an atom initially in excited state |e⟩ entering a cavity with the field
mode starting off in an initial vacuum state |0⟩, such that the initial atom-field ground
state is |e, 0⟩.

A.1.2 Entanglement properties, teleportation of a two-atom maximally en-
tangled state and dynamical evolution of entanglement generated in
the JC interaction

In this section we demonstrate how to apply concurrence measure in analysis of entangle-
ment properties of the JC qubit state vectors and the dynamical evolution of entanglement
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generated in the JC interaction. We proceed further to present the algorithm of teleport-
ing a two-atom Bell pair in the JC process, commonly referred to as teleportation of
entanglement.

A.1.2.1 Entanglement properties of JC qubit states

As stated in Sec. 1.8.2, in quantum information, it is of interest to measure or quantify
the entanglement of states. In a bipartite case, with two sub-systems A, B concurrence
[23, 69, 77] is a good measure of entanglement in practical situations. From Eq. (1.8.12)
(which we re-write here for ease of reference), for pure states of two spins, concurrence is
defined as

C(|ψAB⟩) = |⟨ψAB|ψ̃AB⟩| (1.8.12′)

where we recall |ψ̃AB⟩ ≡ σ̂⊗2
y |ψ∗

AB⟩ is referred to as the ’spin-flipped’ state vector.
Considering the initial stationary qubit state vector |ψen⟩ in the JC interaction defined

in Eq. (A.1.1) in the form
|ψen⟩ = |e, n⟩ = |e⟩ ⊗ |n⟩ , (A.1.1′)

we simply evaluate |ψ̃en⟩ = σ̂⊗2
y |ψ∗

en⟩ and hence C(|ψen⟩) in Eq. (1.8.12) and classify
the state as either entangled or separable (product). We expect degree of entanglement
(DEM) values as measured by C(|ψen⟩) to be in the range [0,1], since concurrence varies
from 0 for a completely disentangled state to 1 for a maximally entangled state.

Further, concurrence can be expressed in terms of the minimum average pure-state
concurrence where the required minimum is to be taken over all possible ways of de-
composing the ensemble ρ̂AB into a mixture of pure states |ψAB⟩. In this respect from
Eq. (1.8.13) (which again we re-write here for ease of reference), for a general two-spin
state, concurrence is defined as

C(ρ̂AB) = max{0, λ1 − λ2 − λ3 − λ4} (1.8.13′)

where
ρ̂AB = |ψAB⟩⟨ψAB| ; ˆ̃ρAB = ρ̂AB(σ̂⊗2

y )ρ̂∗
AB(σ̂⊗2

y ) . (A.1.12)

Here, λi are real square-roots of the eigenvalues of the density matrix ˆ̃ρAB in Eq. (A.1.12).
Now, the general form of the stationary transition qubit state vector |ϕen⟩ in the JC

process is defined in Eq. (A.1.1). Substituting |ϕen⟩ in Eq. (A.1.1) into Eq. (1.3.10) the
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density operator takes the form

ρ̂en = |ϕen⟩⟨ϕen|

= |cen|2 |e, n⟩⟨e, n| + cens
∗
en|e, n⟩⟨g, n+ 1| + senc

∗
en|g, n+ 1⟩⟨e, n|

+ |sen|2 |g, n+ 1⟩⟨g, n+ 1| (A.1.13a)

which we express explicitly in a generalised matrix form as

ρ̂en =


|cen|2 0 0 cens

∗
en

0 0 0 0
0 0 0 0

senc
∗
en 0 0 |sen|2

 (A.1.13b)

to evaluate eigenvalues λi of ˆ̃ρen = ρ̂en(σ̂⊗2
y )ρ̂∗

en(σ̂⊗2
y ) in Eq. (A.1.12) for states deter-

mined at different values of frequency detuning δ and quantify their entanglement using
Eq. (1.8.13) while taking note of the definitions of interaction parameters cen, sen and
Rabi frequency Ren in Eq. (A.1.2).

The DEM values measured by C(ρ̂en) are in the range [0,1]. The concurrence measure
of the DEM is 0 for a completely disentangled state, 1 for a maximally entangled state
and 0 < C(ρ̂en) < 1 for an entangled state.

A.1.2.2 Entanglement evolution in the JC interaction mechanism

The DEM using concurrence measure which was formulated as a convex measure to
amount the DEM for two qubits in pure states by Wooters and Hill [201] is defined as
(a ≡ atom, f ≡ field)

C(t) =
√

2(1 − tr(ρ̂2
j)) ; j : a(f) (A.1.14)

where ρ̂j, is the reduced density operator.
Here, the general dynamics of the JC interaction is described by the general

time-evolving qubit state vector |Ψen(t)⟩ in Eq. (A.1.10). Substituting |Ψen(t)⟩ from
Eq. (A.1.10) into Eq. (A.1.11a) and using the definitions of |ψen⟩ and |ϕen⟩ in Eq. (A.1.1)
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the density operator takes the form

ρ̂en(t) = {cos2(Rent) + c2
en sin2(Rent)}|e, n⟩⟨e, n| + {isen cos(Rent) sin(Rent)

+ censen sin2(Rent)}|e, n⟩⟨g, n+ 1| + {−isen cos(Rent) sin(Rent)
+ censen sin2(Rent)}|g, n+ 1⟩⟨e, n| + {s2

en sin2(Rent)}|g, n+ 1⟩⟨g, n+ 1| .

(A.1.15a)

The reduced density operator of the atom ρ̂a(t) is determined by tracing ρ̂en(t) in
Eq. (A.1.15a) over the field states thus taking the form

ρ̂a(t) = trf (ρ̂en(t)) = Pe(t)|e⟩⟨e| + Pg(t)|g⟩⟨g|

=
(
Pe(t) 0

0 Pg(t)

)
(A.1.15b)

after introducing the general time-evolving atomic state probabilities Pe(t) and Pg(t)
obtained as

Pe(t) = cos2(Rent) + c2
en sin2(Rent) ; Pg(t) = s2

en sin2(Rent) .
(A.1.15c)

Plots of time evolution of the DEM measured by C(t), are then easily generated after
substituting Eq. (A.1.15b) into Eq. (A.1.14) for different parameter values of frequency
detuning δ and photon number n.

Here, the DEM measure C(t) evolves in time within the range [0,1], where a value
nought defines a completely disentangled state (product) and unity a maximally entangled
state.

A.1.2.3 Teleportation in the JC interaction

The maximally entangled atom-field state determined in Sec. A.1.2.1 is expected to be
a symmetric atom-field Bell pair defined in Sec. 1.8 in the form |Φ+⟩. This maximally
entangled atom-field state acts as the teleportation channel and it will be in possession
of a receiver (Bob) in a remote location. Assuming a sender (Alice) would wish to send
to Bob a maximally entangled two-atom symmetric state, the total state of the system
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takes the form (a ≡ Alice, b ≡ Bob)

|ψ⟩total = |Φ+⟩a1,a2 ⊗ |Φ+⟩b1,b2 . (A.1.16)

To actualise teleportation of entanglement, an observer (Charlie) will be responsible for
carrying out the Bell state measurement (projection) process (Sec. 1.8, Eq. (1.8.2)) defined
as [22]

PΣ := ⟨Σ|Λ⟩|Σ⟩ (1.8.2′)

and communicate the results to Bob (or Alice).
In this respect, Alice sends qubit a1 to Charlie and Bob sends to him qubit b1. Charlie

carries out Bell measurement defined in Eq. (1.8.2). If he obtains

a1,b1⟨Φ+|ψ⟩total = 1
2 |Φ+⟩a2,b2 , (A.1.17)

Alice and Bob have a Bell pair between qubit a2 and b2. To quantify probability of success
in the teleporation process, we apply teleportation fidelity [81] as a measure of closeness
of two quantum states defined for any two-qubit state ρ̂ in the form of Eq. (1.8.19a)

Fρ̂ = 2fρ̂ + 1
3 (1.8.19a′)

where fρ̂ is the fully entangled fraction defined as [75] Eq. (1.8.19b)

fρ̂ = max
|Ψ⟩

⟨Ψ|ρ̂|Ψ⟩ =
{
tr

√
ρ̂

1
2
expectedρ̂measuredρ̂

1
2
expected

}2

. (1.8.19b′)

The measurement of Eq. (A.1.17) provides a unit fidelity Fρ̂ = 1 with a quarter chance
of occurring. This means that the teleported state is identical to that sent by Alice and
so, Alice’s qubit was successfully teleported to Bob.

The other three Bell projection outcomes take the respective forms

a1,b1⟨Φ−|ψ⟩total = 1
2 |Φ−⟩a2,b2 ;

a1,b1⟨Ψ−|ψ⟩total = −1
2 |Ψ−⟩a2,b2 ;

a1,b1⟨Ψ+|ψ⟩total = 1
2 |Ψ+⟩a2,b2 , (A.1.18)

and so local corrections given by Pauli operators σ̂x, σ̂y, σ̂z defined in Eq. (1.3.6) are
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performed by Bob (or Alice) after Charlie has communicated the results of measurement
according to

1
2
[
σ̂z(b2)|Φ−⟩a2,b2

]
= 1

2 |Φ+⟩a2,b2 ;

−1
2
[
iσ̂y(b2)|Ψ−⟩a2,b2

]
= 1

2 |Φ+⟩a2,b2 ;
1
2
[
σ̂x(b2)|Ψ+⟩a2,b2

]
= 1

2 |Φ+⟩a2,b2 . (A.1.19)

We see from Eq. (A.1.19) that each measurement has a quarter chance to occur and a
unit fidelity as expected.

A.2 Results: JC dynamics and application in quantum infor-
mation processing (QIP)

A.2.1 Rabi oscillations

We now proceed to demonstrate the time evolution of the Bloch vector ρ⃗en(t) in
Eq. (A.1.11g) which in effect describes the geometric configuration of states. We have
adopted class 4 Bloch-sphere entanglement of a quantum rank-2 bipartite state [145, 147]
to bring a clear visualisation of this interaction.

In the specific example starting with an atom in the excited state |e⟩ and the field
mode in the vacuum state |0⟩ the basic qubit state vectors |ψe0⟩ and |ϕe0⟩, together with
the corresponding entanglement parameters, are obtained by setting n = 0 in Eqs. (A.1.1)
and (A.1.2) in the form

|ψe0⟩ = |e, 0⟩ ; |ϕe0⟩ = ce0|e, 0⟩ + se0|g, 1⟩ ;

ce0 = δ

2Re0
; se0 = 2λ

Re0
; Re0 = 1

2
√

16λ2 + δ2 ;

|e, 0⟩ = |e⟩ ⊗ |0⟩ ; |g, 1⟩ = |g⟩ ⊗ |1⟩ . (A.2.1)

The corresponding Hamiltonian in Eq. (A.1.7) becomes (n = 0)

Ĥe = 1
2ℏωÎe + ℏRe0ε̂e . (A.2.2)
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The time-evolving state vector in Eq. (A.1.10) takes the form (n = 0)

|Ψe0(t)⟩ = e− iωt
2 {cos(Re0t)|ψe0⟩ − i sin(Re0t)|ϕe0⟩} (A.2.3)

which describes Rabi oscillations at frequency Re0 between the initial qubit state vector
|ψe0⟩ and the transition qubit state vector |ϕe0⟩.

The Rabi oscillation process is best described by the corresponding Bloch vector which
follows from Eq. (A.1.11g) in the form (n = 0)

ρ⃗e0(t) = (0, − sin(2Re0t), cos(2Re0t)) . (A.2.4)

In the present work, for various values of frequency detuning δ = λ , 2λ, 3λ , 4λ, 0 and
field mode frequency ω = 2λ we use the general time evolving state vector in Eq. (A.2.3),
with Rabi frequency Re0 as defined in Eq. (A.2.1) to determine the coupled qubit state
vectors |ψe0⟩ , |ϕe0⟩ in Eq. (A.2.1) by setting Re0t = π

2 , describing half cycle of Rabi
oscillation as presented below. In each case we have an accumulated global phase factor
which does not affect measurement results [23, 202, 203], but we have maintained them
here in Eqs. (A.2.5a) - (A.2.5e) to explain the continuous time evolution over one cycle.

δ = 0 : |e, 0⟩ → e−iπ 3
4 |g, 1⟩ → e−iπ 3

2 |e, 0⟩ (A.2.5a)

δ = λ : |e, 0⟩ → e−iπ 25
34

{
1√
17

|e, 0⟩ + 4√
17

|g, 1⟩
}

→ e−iπ 25
17 |e, 0⟩

(A.2.5b)

δ = 2λ : |e, 0⟩ → e−iπ 7
10

{
1√
5

|e, 0⟩ + 2√
5

|g, 1⟩
}

→ e−iπ 7
5 |e, 0⟩

(A.2.5c)

δ = 3λ : |e, 0⟩ → e−iπ 7
10

{
3
5 |e, 0⟩ + 4

5 |g, 1⟩
}

→ e−iπ 7
5 |e, 0⟩

(A.2.5d)
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δ = 4λ : |e, 0⟩ → e−iπ 7
10

{
1√
2

|e, 0⟩ + 1√
2

|g, 1⟩
}

→ e−iπ 7
5 |e, 0⟩

(A.2.5e)

In Fig. A.1 we have plotted the JC Rabi oscillation process with respective Rabi
frequencies Re0 determined according to Eq. (A.2.1) for arbitrary values of frequency
detuning δ = ω0 − ω.

Figure A.1: Rabi oscillations in JC interaction mechanism. Here, blue circle is at res-
onance with frequency detuning δ = ω0 − ω = 0, red circle is for δ = λ, brown circle
δ = 2λ, black circle δ = 3λ and green circle δ = 4λ.

The JC Rabi oscillations for cases δ = λ , 2λ , 3λ , 4λ , 0 are plotted as red, brown,
black, green and blue circles in Fig. A.1. Here, Fig. A.1 is a Bloch sphere entanglement
[145] that corresponds to a 2-dimensional subspace of C2 ⊗ C2

Span{|e, 0⟩ , ce0|e, 0⟩ + se0|g, 1⟩} with ce0 = δ
2Re0

and se0 = 2λ
Re0

, where we recall that, in
the JC interaction the initial atom-field ground state with the field mode in the vacuum
state is |e, 0⟩.

The geometric configuration of the state space demonstrated on the Bloch-sphere in
Fig. A.1 determined using the approach in [12] agrees precisely with that determined
using the semi-classical approach in [139] corresponding to a 2-dimensional subspace of
C2 Span {|e⟩ , |g⟩}. In the approach [139], at resonance where frequency detuning δ = 0
the atomic population is inverted from excited state |e⟩ to ground state |g⟩ and the Bloch-
vector r⃗ = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) describes a path along the yz-plane on the
Bloch-sphere. For other values of frequency detuning, the atom evolves from excited
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state |e⟩ to a linear superposition of excited state |e⟩ and ground state |g⟩ and back to
excited state |e⟩ and the Bloch-vector r⃗ describes a circle about the north pole of the
Bloch-sphere.

The time evolution of this JC Bloch vectors ρ⃗e0 reveals that the Rabi oscillations
between the basic qubit state vectors |ψe0⟩, |ϕe0⟩ describe circles on which the states are
distributed on the Bloch sphere as we have demonstrated.

A.2.2 Entanglement analysis of basic qubit state vectors |ψe0⟩ and |ϕe0⟩ and
teleportation in the JC model

In this section we analyse the entanglement properties of the JC qubit state vectors, dy-
namical evolution of entanglement and teleportation of a two-atom singlet state generated
in the JC interaction.

A.2.2.1 Entanglement properties

Let us start by considering the entanglement properties of the initial state |ψe0⟩ which
according to the definition in Eq. (A.2.1) is a separable pure state. In this context

|ψ̃e0⟩ = σ̂⊗2
y |ψ∗

e0⟩ = σ̂⊗2
y (|e⟩ ⊗ |0⟩) = i|g⟩ ⊗ i|1⟩ (A.2.6)

which on substituting into Eq. (1.8.12) we obtain

C(|ψe0⟩) = |⟨ψe0|ψ̃e0⟩| = | − ⟨e|g⟩⟨0|1⟩| = 0 (A.2.7)

quantifying the state in Eq. (A.2.1) (or the initial qubit state in Eq. (A.2.5a)) as a pure
product state |e⟩ ⊗ |0⟩. Similarly, ignoring the global phase factor in Eq. (A.2.5a), the
transition qubit state |ϕe0⟩ = |g, 1⟩ obtained at resonance δ = 0 is a pure product state
|g⟩ ⊗ |1⟩.

We now proceed to determine the entanglement property of the transition qubit state
vector |ϕe0⟩ obtained at frequency detuning δ = λ in Eq. (A.2.5b). Ignoring the global
phase factor in Eq. (A.2.5b), the transition qubit state |ϕe0⟩ takes the form

δ = λ : 1√
17

|e, 0⟩ + 4√
17

|g, 1⟩ (A.2.8)
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The corresponding density operator of the state in Eq. (A.2.8) is

ρ̂e0 = |ϕe0⟩⟨ϕe0| = 1
17 |e, 0⟩⟨e, 0| + 4

17 |e, 0⟩⟨g, 1| 4
17 |g, 1⟩⟨e, 0| + 16

17 |g, 1⟩⟨g, 1| (A.2.9)

which takes the explicit 4 × 4 matrix form

ρ̂e0 = 1
17


1 0 0 4
0 0 0 0
0 0 0 0
4 0 0 16

 (A.2.10)

and ˆ̃ρe0 by applying the definition in Eq. (A.1.12) is

ˆ̃ρe0 = ρ̂e0(σ̂⊗2
y )ρ̂∗

e0(σ̂⊗2
y ) (A.2.11)

which takes the explicit 4 × 4 matrix form

ˆ̃ρe0 = 1
289


32 0 0 8
0 0 0 0
0 0 0 0

128 0 0 32

 . (A.2.12)

The eigenvalues of the matrix in Eq (A.2.12) are

λ1 = 64
289 , λ2 = 0, λ3 = 0, λ4 = 0 . (A.2.13)

Substituting the eigenvalues in Eq. (A.2.13) into Eq. (1.8.13) we obtain

C(ρ̂e0) = max
{

0,
√

64
289

}
= 8

17 < 1 (A.2.14)

quantifying the transition qubit state in Eq. (A.2.8) (or Eq. (A.2.5b)) as an entangled
state but not maximally entangled since C(ρ̂e0) < 1. Similarly, the transition qubit
states |ϕe0⟩ = 1√

5 |e, 0⟩ + 2√
5 |g, 1⟩ obtained for frequency detuning δ = 2λ in Eq. (A.2.5c)

and |ϕe0⟩ = 3
5 |e, 0⟩ + 4

5 |g, 1⟩ obtained for frequency detuning δ = 3λ in Eq. (A.2.5d) are
entangled but not maximally entangled.

Finally we consider the case of frequency detuning δ = 4λ. Once again ignoring the
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global phase factor in Eq. (A.2.5e), the transition qubit state vector takes the form

δ = 4λ : 1√
2

|e, 0⟩ + 1√
2

|g, 1⟩ . (A.2.15)

The corresponding density operator of the state in Eq. (A.2.15) is

ρ̂e0 = 1
2 |e, 0⟩⟨e, 0| + 1

2 |e, 0⟩⟨g, 1| + 1
2 |g, 1⟩⟨e, 0| + 1

2 |g, 1⟩⟨g, 1| . (A.2.16)

The explicit 4 × 4 matrix forms of ρ̂e0 in Eq. (A.2.16) and ˆ̃ρe0 by applying the definition
in Eq. (A.1.12) are of the form

ρ̂e0 = 1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 ; ˆ̃ρe0 = 1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 . (A.2.17)

The eigenvalues of ˆ̃ρe0 in Eq. (A.2.17) are

λ1 = 1, λ2 = 0, λ3 = 0, λ4 = 0 (A.2.18)

which on substituting into Eq. (1.8.13) we obtain

C(ρ̂e0) = max{0, 1} = 1 . (A.2.19)

The unit concurrence determined in Eq. (A.2.19) reveals that the transition qubit state
vector in Eq. (A.2.15) (or Eq. (A.2.5e) determined at frequency detuning δ = 4λ is a
maximally entangled bipartite pure state.

A similar proof of entanglement of the JC qubit states is easily achieved for all possible
values of frequency detuning parameter δ = ω0 − ω. In general, in an initial vacuum-
field JC interaction and δ ̸= 0 (off-resonance) reversible transitions occur only between
a pure initial separable qubit state vector and an entangled transition qubit state vector
while at resonance when δ = 0 reversible transitions occur only between pure initial and
transition separable qubit state vectors. These properties of Rabi oscillations occurs in
the general JC interaction described by the general time evolving state vector |Ψen(t)⟩ in
Eq. (A.1.10).

159



A.2.2.2 Teleportation in the JC interaction mechanism

In the present work we consider an interesting case of quantum teleportation by apply-
ing entanglement swapping protocol (teleportation of entanglement) [204–207] where the
teleported state is itself entangled. The state we want to teleport is a two-atom max-
imally entangled state in which we have assigned subscripts to distinguish the atomic
qubit states in the form [208]

|κ⟩12 = 1√
2

(|e⟩1|e⟩2 + |g⟩1|g⟩2) (A.2.20)

and it is in Alice’s possession. In another location, Bob is in possession of a maximally
entangled qubit state |ϕe0⟩ generated in the JC interaction in Eq. (A.2.5e) and expressed
as

|ζ⟩3x = 1√
2

|e⟩3|0⟩x + 1√
2

|g⟩3|1⟩x (A.2.21)

where we also assign subscripts to the qubits in Eq. (A.2.21) in order to clearly distinguish
them.

An observer, Charlie, receives qubit-1 from Alice and qubit-x from Bob. The entire
state of the system

|ξ⟩ = |κ⟩12 ⊗ |ζ⟩3x (A.2.22a)

which on substituting |κ⟩12 and |ζ⟩3x from Eqs. (A.2.20), (A.2.21) and reorganising takes
the form

|ξ⟩ = 1
2

[
|Φ+⟩1x

(
|e⟩3|e⟩2 + |g⟩3|g⟩2√

2

)
+ |Φ−⟩1x

(
|e⟩3|e⟩2 − |g⟩3|g⟩2√

2

)
− |Ψ−⟩1x

(
|e⟩3|g⟩2 − |g⟩3|e⟩2√

2

)
+ |Ψ+⟩1x

(
|e⟩3|g⟩2 + |g⟩3|e⟩2√

2

)]
(A.2.22b)

after introducing the emerging Bell states obtained as

|Φ+⟩1x = |e⟩1|0⟩x + |g⟩1|1⟩x√
2

; |Φ−⟩1x = |e⟩1|0⟩x − |g⟩1|1⟩x√
2

|Ψ−⟩1x = |e⟩1|1⟩x − |g⟩1|0⟩x√
2

; |Ψ+⟩1x = |e⟩1|1⟩x + |g⟩1|0⟩x√
2

.

(A.2.22c)
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Charlie performs Bell state projection between qubit-1 and qubit-x (Bell state mea-
surement (BSM)) and communicates his results to Bob which we have presented in
Sec. A.2.2.2.1 below.

A.2.2.2.1 Bell state measurement

BSM is realised at Charlie’s end. Projection of a state |Λ⟩ onto |Σ⟩ is defined in
Eq. (1.8.2) as [22]

PΣ := ⟨Σ|Λ⟩ |Σ⟩ . (1.8.2′)

Using |ξ⟩ form Eq. (A.2.22) and applying Eq. (1.8.2) we obtain a Bell state projection
outcome communicated to Bob in the form

1x⟨Φ+|ξ⟩ = 1
2

(
|e⟩3|e⟩2 + |g⟩3|g⟩2√

2

)
= 1

2 |Φ+⟩32 . (A.2.23a)

The Bell state |Φ+⟩32 in Eq. (A.2.23a) is in the the form of Alice’s qubit in Eq. (A.2.20).
Alice and Bob now have a Bell pair between qubit-2 and qubit-3. Similarly, the other
three Bell projections take the forms

1x⟨Φ−|ξ⟩ = 1
2

(
|e⟩3|e⟩2 − |g⟩3|g⟩2√

2

)
= 1

2 |Φ−⟩32 (A.2.23b)

1x⟨Ψ−|ξ⟩ = −1
2

(
|e⟩3|g⟩2 − |g⟩3|e⟩2√

2

)
= −1

2 |Ψ−⟩32 (A.2.23c)

1x⟨Ψ+|ξ⟩ = 1
2

(
|e⟩3|g⟩2 + |g⟩3|e⟩2√

2

)
= 1

2 |Ψ+⟩32 (A.2.23d)

For these cases of Bell state projections in Eqs. (A.2.23b) - (A.2.23d) it will be necessary
for Bob to perform local corrections to qubit-3 by Pauli operators as shown in Tab. A.1.
We also see that the probability of measuring states |ϵ⟩32 in Eqs. (A.2.23a) - (A.2.23d)
is p = 1

4 . In general, by application of entanglement swapping protocol (teleportation
of entanglement), qubit-2 belonging to Alice and qubit-3 belonging to Bob despite never
having interacted before became entangled. In addition we see that a maximally entan-
gled symmetric atom-field transition qubit state |ϕe0⟩ (in Eq. (A.2.5e)) generated in the
JC interaction can be used in quantum information processing (QIP) protocols like en-
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tanglement swapping (teleportation of entanglement) which we have demonstrated here.

Table A.1: Table showing how Bob applies an appropriate gate to his qubit based on
BSM from Charlie

|κ⟩12 |ϵ⟩32 UNITARY OPERATION
1√
2(|e⟩1|e⟩2 + |g⟩1|g⟩2) 1√

2(|g⟩3|e⟩2 + |e⟩3|g⟩2) σ̂x(atom3) ⊗ Î(atom2)
1√
2(|g⟩3|e⟩2 − |e⟩3|g⟩2) iσ̂y(atom3) ⊗ Î(atom2)

1√
2(|e⟩3|e⟩2 − |g⟩3|g⟩2) σ̂z(atom3) ⊗ Î(atom2)

A.2.2.2.2 Maximal teleportation fidelity

For any two-qubit state ρ̂ the maximal fidelity is given in Eq. (1.8.19a) in the form
[81]

Fρ̂ = 2fρ̂ + 1
3 (1.8.19a′)

where as defined in Eq. (1.8.19b) fρ̂ is the fully entangled fraction in the form [75]

fρ̂ = max
|Ψ⟩

⟨Ψ|ρ̂|Ψ⟩ =
{
tr

√
ρ̂

1
2
expectedρ̂measuredρ̂

1
2
expected

}2

(1.8.19b′)

From Tab. A.1

ρ̂expected = |κ12⟩⟨κ12|

= 1
2

[
(|e1⟩|e2⟩ + |g1⟩|g2⟩)(⟨e1|⟨e2| + ⟨g1|⟨g2|)

]
= 1

2

[
|e1, e2⟩⟨e1, e2| + |e1, e2⟩⟨g1, g2| + |g1, g2⟩⟨e1, e2| + |g1, g2⟩⟨g1, g2|

]

= 1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


(A.2.24a)
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ρ̂measured = |ϵ32⟩⟨ϵ32|

= 1
2

[
(|e3⟩|e2⟩ + |g3⟩|g2⟩)(⟨e3|⟨e2| + ⟨g3|⟨g2|)

]
= 1

2

[
|e3, e2⟩⟨e3, e2| + |e3, e2⟩⟨g3, g2| + |g3, g2⟩⟨e3, e2| + |g3, g2⟩⟨g3, g2|

]

= 1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


(A.2.24b)

Substituting the results in Eq. (A.2.24a) and Eq. (A.2.24b) into the fully entangled frac-
tion Eq. (1.8.19b) we obtain

fρ̂ =

tr


1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2




2

= 1 (A.2.24c)

Substituting the value of the fully entangled fraction into Eq. (1.8.19a) we get

Fρ̂ = 1 (A.2.24d)

a maximal teleportation fidelity of unity, showing that the state was fully recovered, i.e
Alice’s qubit in Eq. (A.2.20) was successfully teleported to Bob. We obtain an equal
outcome to all the other measured states. We have thus achieved teleportation using a
maximally entangled qubit state generated in a JC interaction, using the case where the
atom is initially in an excited state |e⟩ and the field in an initial vacuum state |0⟩ as an
example.

A.2.3 Evolution of entanglement

Substituting ρ̂a(t) in Eq. (A.1.15b) into Eq. (A.1.14) and using the standard definitions
of cen, sen and Ren in Eq. (A.1.2) to evaluate the probabilities in Eq. (A.1.15c), we plot
concurrence C(τ) Eq. (A.1.14) against scaled time τ = λt at resonance where the fre-
quency detuning δ = 0, arbitrarily chosen values of non-resonant frequency detuning
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δ = λ, 2λ, 3λ, 4λ and photon number n = 0, 1, 2 in Figs. A.2 - A.5. We note in
Figs. A.2 - A.5 that the dynamical behaviour of quantum entanglement measured by
concurrence is in the range 0 ≤ C(τ) ≤ 1, such that min C(τ) = 0 and max C(τ) = 1.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
τ
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0.4

0.6

0.8

1.0

C(τ)

n=0;δ=0

Figure A.2: Concurrence C(τ) against scaled time τ at resonance δ = 0 when n = 0.
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n=0 ; δ=4λ

Figure A.3: Concurrence C(τ) against scaled time τ at off-resonance δ = λ, δ = 2λ,
δ = 3λ and δ = 4λ when n = 0.
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Figure A.4: Concurrence C(τ) against scaled time τ at resonance δ = 0 when n = 1, 2.
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Figure A.5: Concurrence C(τ) against scaled time τ at off-resonance δ = λ when n = 1, 2.
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Figure A.6: Time evolution of DEM at increasing frequency detuning δ when photon
number n is set constant and its effect on the degree of purity tr(ρ̂2

a(t)). Fig. (A.6(a)),
time evolution of concurrence C(τ) at n = 1 ; δ = 4λ, 10λ while Fig. (A.6(b)) time
evolution of purity tr(ρ̂2

a(t)) at n = 1 ; δ = 4λ, 10λ in the JC process
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Figure A.7: Time evolution of DEM at increasing photon number n when the frequency
detuning δ set constant and its effect on the degree of purity tr(ρ̂2

a(t)). Fig. (A.7(a)), time
evolution of concurrence C(τ) at n = 1, 2, 3 ; δ = 10λ while Fig. (A.7(b)) time evolution
of purity tr(ρ̂2

a(t)) at n = 1, 2, 3 ; δ = 10λ in the JC process

Comparing Fig. A.2 and Fig. A.3 we observe that at resonance δ = 0 the frequency
of oscillation of C(τ) as shown in Fig. A.2 is higher than when detuning is set at off
resonance δ ̸= 0 as demonstrated in Fig. A.3 for the specific cases of δ = λ, 2λ, 3λ, 4λ.
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In addition, Figs. A.2 and A.3 clearly show that there are Rabi oscillations even for the
case when n = 0, commonly referred to as vacuum-field Rabi oscillations [8, 209, 210].
Further we observe in Fig. A.3, that despite the reduction in frequency of oscillation
of C(τ) at off-resonance when δ ̸= 0 in comparison to the resonance case δ = 0 in
Fig. A.2, the frequency of oscillation of C(τ) increases with an increase in non-resonant
frequency detuning δ ̸= 0. In the specific case of an initial photon number n = 0 and non-
resonant frequency detuning δ = 4λ as demonstrated in Fig. A.3, we observe a long-lived
entanglement at C(τ) = 1. This agrees precisely with the result presented in Sec. A.2.2,
where the transition qubit state vector obtained for parameter values n = 0 and δ = 4λ
was determined to be maximally entangled (resulting into the long-lived entanglement)
before returning momentarily to a separable state. What is more, with reference to
Fig. A.3 it is evident that there is gradual vanishing of local minimums with increasing
non-resonant frequency detuning δ ̸= 0 indicating enhancement of entanglement.

We now investigate the dynamics of C(τ) when the frequency detuning is set at res-
onance, off resonance δ = 0, δ ̸= 0 while varying the photon number n. In Fig. A.4 we
considered a resonance case δ = 0 and varied the photon number n while in Fig. A.5,
we set frequency detuning constant at δ = λ and varied the photon number n. In both
cases, we observe that the frequency of oscillation of C(τ) increases with an increase in
photon number n. Which means that the frequency of entangling the atom, field quantum
systems increases with every increase in photon number n.

In Fig. A.6 we investigate the effect of increasing frequency detuning δ on the dynamics
of concurrence C(τ) and consequently the degree of purity tr(ρ̂2

a(t)) when the photon
number n is considered constant. In this respect, we set n = 1 and vary δ. We observe in
Fig. A.6(a) that C(τ) records a lower value when δ = 10λ than when δ = 4λ. The result
in Fig. A.6(b) reveals that the decrease in C(τ) with every increase in δ at constant n is a
consequence of the system tending to pure state. Further, with reference to Fig. A.7(a) we
see that increasing the photon n increases the DEM as measured by C(τ) and consequently
as demonstrated in Fig. A.7(b) the system tends to a maximally mixed state. This means
that an increase in photon number n at a fixed frequency detuning δ results into an
increase in the DEM of the atom, field quantum systems.

Finally in all the plots in Figs. A.2 - A.5, entanglement sudden birth (ESB) and
entanglement sudden death (ESD) is observed during time evolution of C(τ). In ESB,
there is an observed creation of entanglement where the initially un-entangled qubits are
entangled after a very short time interval. Consequently DEM decreases and goes to zero
over a short period of time, where the system returns momentarily to a separable state, i.e,
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ESD. These findings in Sec. A.1.2.2 are consistent with those obtained in [179, 181, 182]
as examples.
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APPENDIX B
JC DYNAMICS: FIELD MODE IN AN INITIAL

COHERENT STATE
In this appendix the methodology and results of the dynamics generated by the JC
Hamiltonian Ĥ in Eq. (3.1.3) when a two-level atom interacts with a field mode initially in
coherent state is presented. Various arbitrary values of field intensity |α|2, dimensionless
field mode frequency ratio ξ = ω

λ
and dimensionless frequency detuning ratio β = δ

λ
chosen

in the analysis of the AJC dynamics in Sec. 4.2 are adopted in Sec. B.2 to facilitate the
desired comparison with the AJC dynamics.

B.1 Methodology
Let us consider the field initially in a coherent state as defined in Eq. (1.5.6g) which we
re-write here in a general form (t = 0)

|ψn⟩ = e− |α|2
2

∞∑
n=0

|α|n√
n!

|n⟩ (B.1.1)

where α is the coherent amplitudes, and a generalised initial atomic state |ψa⟩ prior to
the JC interaction mechanisms prepared in a superposition of excited |e⟩ and ground |g⟩
states in the form (t = 0)

|ψa⟩ = A |e⟩ +B |g⟩ ; A =
√
ζ ; B =

√
1 − ζ (B.1.2)

where the atom is in an excited states with probability ζ and ground states with prob-
ability 1 − ζ. In Eq. (B.1.1) the states |n⟩, n = 0, 1.2, 3, .... of the mode are the photon
number (Fock) states.

The initial atom-field state |ψan⟩JC is obtained as a direct product of atom and the
field states according to

|ψan⟩JC = |ψa⟩ ⊗ |ψn⟩ . (B.1.3)

Defining the mean photon number |α|2 as

|α|2 = ⟨â†â⟩t=0 (B.1.4)
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the exact solutions to the Schrödinger equation [10] for the initial atom-field system in
Eq. (B.1.3) in the JC interaction |Ψan(t)⟩ take the explicit form (t > 0)

|Ψan(t)⟩ =
∞∑

n=0

e− α2
2

([
A
αn

√
n!

e−iωt(n+ 1
2)(cos(Rent) − icen sin(Rent)) −

i B
αn+1√
(n+ 1)!

sgn+1 e
−iωt(n+ 1

2 ) sin(Rgn+1t)
]

|e⟩ +[
B
αn

√
n!

e−iωt(n− 1
2 )(cos(Rgnt) + icgn sin(Rgnt)) −

−i A αn−1√
(n− 1)!

e−iωt(n− 1
2 ) sen−1 sin(Ren−1t)

]
|g⟩
)

⊗ |n⟩ (B.1.5)

The final form of Eq. (B.1.5) has been arrived at through Schmidt decomposition defined
in Eq. (1.8.5) Sec. (1.8.2) and so the entanglement of the two interacting atom, field
quantum systems is readily apparent.

To describe the evolution of the atom alone we introduce the reduced density matrices
of the atom ρ̂a(t) by tracing ρ̂an(t) over the field states in the form

ρ̂a(t) = trf (|Ψan(t)⟩⟨Ψan(t)|) (B.1.6a)

where for an atom in an initial ground state |g⟩ at any time t > 0 the state vectors of the
system |Ψgn(t)⟩ in the JC processes take the form (B = 1, A = 0)

|Ψgn(t)⟩ =
∞∑

n=0

e− α2
2

[(
− i

αn+1√
(n+ 1)!

sgn+1e
−iωt(n+ 1

2 ) sin(Rgn+1t)
)

|e⟩ +

αn

√
n!
e−iωt(n− 1

2 ) (cos(Rgnt) + i cgn sin(Rgn)) |g⟩
]

⊗ |n⟩ (B.1.6b)

Applying Eq. (B.1.6a), the JC reduced atomic density operators ρ̂g
a(t) determined from
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Eqs. (B.1.6b) take explicit the form

ρ̂g
a(t) = e−α2

∞∑
n=0

[α2n

n!

(
cos2(Rgnt) + c2

gn sin2(Rgnt)
)

|g⟩⟨g|

+i α2n+1√
n!(n+ 1)!

sgn+1e
iωt sin(Rgn+1t)

(
cos(Rgnt) + icgn sin(Rgnt)

)
|g⟩⟨e|

−i α2n+1√
n!(n+ 1)!

sgn+1e
−iωt sin(Rgn+1t)

(
cos(Rgnt) − icgn sin(Rgnt)

)
|e⟩⟨g|

+ α2(n+1)

(n+ 1)! s
2
gn+1 sin2(Rgn+1t)|e⟩⟨e|

]
(B.1.6c)

with the Rabi frequency and interaction parameters in the JC process defined as

Rgn = λ

2
√

4n+ β2 ; cgn = β√
4n+ β2

; sgn = 2
√

n

4n+ β2 ; β = δ

λ

(B.1.7)

B.1.1 Purity and atomic population inversion

We re-write the degree of purity defined in Eq. (1.3.16) in the form

tr(ρ̂2
j(t)) = 1

2
[
1 + (r2

x(t) + r2
y(t) + r2

z(t))
]

; j : a(f) (1.3.16′)

Recall that for pure states, tr(ρ̂2
a(f)(t)) = 1 in which the state-vector description of

each individual system is possible. On the other hand for a two-level system a maximally
mixed state corresponds to tr(ρ̂2

a(f)(t)) = 1
2 .

Defining the JC time evolving Bloch vector r⃗(t) = rx(t)̂i + ry(t)ĵ + rz(t)k̂ with com-
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ponents rx(t), ry(t), rz(t) in the JC interaction evaluated in explicit form as

rx(t) = tr(ρ̂g
a(t)σ̂x) =

∞∑
n=0

e−α2 α2n+1√
n!(n+ 1)!

[
− 2sgn+1 sin(Rgn+1t) cos(Rgnt) sin(ωt)

−2sgn+1cgn sin(Rgn+1t) sin(Rgnt) cos(ωt)
]

ry(t) = tr(ρ̂g
a(t)σ̂y) =

∞∑
n=0

e−α2 α2n+1√
n!(n+ 1)!

[
2sgn+1 sin(Rgn+1t) cos(Rgnt) cos(ωt)

−2sgn+1cgn sin(Rgn+1t) sin(Rgnt) sin(ωt)
]

rz(t) = tr(ρ̂g
a(t)σ̂z) =

∞∑
n=0

e−α2
[ α2(n+1)

(n+ 1)!s
2
gn+1 sin2(Rgn+1t) − α2n

n!

(
cos2(Rgnt)

+c2
gn sin2(Rgnt)

)]
,

(B.1.8)

we easily plot time evolution of the degree of purity tr(ρ̂2
a(t)) in the JC interaction con-

sidering the definition of interaction parameters and Rabi frequency in Eq. (B.1.7).
In order to discuss the collapses and revival phenomenon, in relation to degree of

entanglement Sf (t) and purity of states tr(ρ̂2(t)) we introduce atomic population inversion
W (t) [34] defined as the difference between the excited and ground state probabilities
according to

W (t) = tr (σ̂zρ̂a(t)) (B.1.9a)

which takes the exact form as the z-component rz(t) in Eq. (B.1.8) of the JC time evolving
Bloch vector.

The revival time of atomic population inversion, τR, at resonance δ = ω0 − ω = 0, is
defined as [192]

τR = 2π
√

|α|2 , (B.1.9b)

while in an off-resonant interaction, τR is approximated as [173]

τR ≃ π√
δ2

4λ2 + (|α|2 + 1) −
√

δ2

4λ2 + |α|2
. (B.1.9c)
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B.1.2 Entropy of Entanglement

Consideing the atomic subsystem, we apply the von Neumann entropy in Eq. (1.8.9)
defined in terms of the length of the time evolving Bloch vector r⃗(t), which we re-write
here for ease of reference in the form

Sa(t) = −π1 log2 π1 − π2 log2 π2 ; π1 = 1
2 [1 + |r⃗(t)|] ; π2 = 1

2 [1 − |r⃗(t)|] .
(B.1.10)

We then compute with ease the eigenvalues π1, π2, considering the definition of the JC
Bloch vector components in Eqs. (B.1.8) and interaction parameters, Rabi frequency in
Eq. (B.1.7). At various values of frequency detuning δ and field intensity |α|2 we plot
and analyse the dynamics of the von Neumann entropy for the atomic subsystem Sa(t) in
Eq. (3.3.8) in relation to atomic population inversion (Rabi oscillations) W (t) and purity
of states tr(ρ̂2

a(t)).

B.1.3 Photon statistics

In this section we present the approach adopted in analysis of the nature of photons
during the JC interaction process.

B.1.3.1 Mean photon number

The initial average photon number in the normal order [174] |α|2 in the JC processes is
defined in Eq.(B.1.4). As time advances (t > 0) the average photon number is of the form

⟨â†â⟩t = tr
[
ρ̂f (t) â†â

]
(B.1.11)

The time evolving reduced density operators of the field ρ̂g
f (t) in the JC interaction is

determined from Eqs. (B.1.6b) by tracing ρ̂gn(t) over the atomic states according to

ρ̂g
f (t) = tra(ρ̂gn(t)) ; ρ̂gn(t) = |Ψgn(t)⟩⟨Ψgn(t)| (B.1.12a)
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to obtain

ρ̂g
f (t) = e−α2

∞∑
n=0

[α2n

n!

(
cos2(Rgnt) + c2

gn sin2(Rgnt)
)

α2(n+1)

(n+ 1)! s
2
gn+1 sin2(Rgn+1t)

]
⊗ |n⟩⟨n| (B.1.12b)

B.1.3.2 Mandel parameter

The Mandel Parameter defined in Eq. (1.4.1) is fundamental in characterising the quan-
tum statistical properties of a system. We re-write it here in the form

Q = ⟨(∆η̂)2⟩
⟨η̂⟩

− 1 ; ∆η̂ =
√

⟨η̂2⟩ − ⟨η̂⟩2 (B.1.13)

where ⟨(∆η̂)2⟩ is the photon number variance, ⟨η̂⟩ is the mean photon number and η̂ ≡ â†â

is the normal ordered operator of the number of particles (excitations).
Defining

⟨(â†â)2⟩t = tr
[
ρ̂f (t) (â†â)2] (B.1.14)

and together with reduced field density operators in Eq. (B.1.12b), interaction param-
eters and Rabi frequencies defined in Eq. (B.1.7), and mean photon number defined in
Eq. (B.1.11), we easily evaluate Q(t) in Eq. (B.1.13) for various values of frequency de-
tuning δ and field intensities |α|2. We then analyse the evolution of Q(t) during the
interaction, with focus on whether the nature of photons display Poissonian (coherent),
super-Possonian (classical) or sub-Poissonian (nonclassical) statistics. For Poissonian
photon statistics Q(t) = 0, super-Poissonian Q(t) > 0 and sub-Poissonian Q(t) < 0.

B.2 Results: JC dynamics of a two-level atom interacting
with field mode in an initial coherent state

We now analyse the time evolution of a two-level atom in a resonant, off-resonant JC
interactions respectively when the field mode in an initial coherent state is considered.
Precisely, purity of states in relation to atom-field entanglement in the models is studied
during time evolution of atomic population inversion. In addition, a side by side analysis
of the quantum nature of the field system in the JC and AJC interaction is presented.
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B.2.1 Time evolution of Field entropy, purity and atomic population inver-
sion

Accordingly, to discuss the time evolution of the collapses and revival phenomenon W (t)
in relation to degree of entanglement Sj(t) and consequently the degree purity tr(ρ̂2

j(t)) it
is important to recall that for pure states tr(ρ̂2

j) = 1, Sj(t) = 0 and for maximally mixed
states tr(ρ̂2

j) = 1
2 , Sj(t) = 1 where j ≡ a(f).

Applying Eq. (1.3.16) by substituting the time evolving JC Bloch vector components
rx(t), ry(t), rz(t) defined in Eq. (B.1.8) we plot the time evolution of degree of purity
tr(ρ̂2

a(t)) in Fig. B.1 at δ = 0, |α|2 = 30 during the JC interaction. For ease of com-
prehension, in the same figures we provide the respective the time evolution of atomic
population inversion W (t) defined in Eq. (B.1.9a) which takes the same form as the
z-component rz(t) of the time evolving JC Bloch vector r⃗(t).

α2=30 ; β=0 ; ξ=0.0001
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Figure B.1: Time evolution of purity parameter and atomic population inversion.
tr(ρ̂2

a(τ)), W (τ) at δ = βλ = 0; β = 0, ξ = 0.0001 and |α|2 = 30 during the JC in-
teraction.

We then proceed to plot the dynamics of the von Neumann entropy Sa(τ) defined in
Eq. (B.1.10) during the JC process. To do this, we evaluate and substitute the eigenvalues
π1, π2 defined in Eq. (B.1.10).

The JC process entropy of entanglement plots at resonance δ = 0, off-resonance δ ̸= 0
at low, high field intensities |α|2 are shown in Figs. B.2, B.3 and B.4.
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Figure B.2: Time evolution of entropy of entanglement. Sa(τ) at δ = βλ = 0; β = 0, ξ =
0.0001 and |α|2 = 30 in the JC interaction.
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Figure B.3: Time evolution of entropy of entanglement. Sa(τ) at δ = βλ = 10λ; β =
10, ξ = 0.0001 and |α|2 = 30 in the JC interaction.
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Figure B.4: Time evolution of entropy of entanglement. Sa(τ) at δ = βλ = 20λ; β =
20, ξ = 0.0001 and |α|2 = 30 in the JC interaction.

Based on the preceding results in Figs. B.2, B.3 and 4.10(b) we see that;
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i) at all time intervals, time evolution of the DEM, atomic population inversion Sa(τ),
W (τ) in the JC interaction display behaviours conforming with earlier results in
[173, 174, 184–186];

ii) at t>0 in a resonant JC interaction δ = 0, Fig. B.2, the value of the DEM Sa(τ)
presents highest initial value of unity defining maximum entanglement between the
two-level atom and field followed by an almost zero value of Sa(τ) at one half of
the revival time as presented in Fig. B.1. With reference to Figs. B.1 and B.2, the
physical interpretation agreeing with [174, 184, 187–189] is that at t > 0 the atomic
state will not be pure but at one half of the revival time [192], τR

2 = π
√

| ∝ |2 ≃ 17.2,
the atom, (cavity) field quantum systems evolve simultaneously into pure state.

At the revival phases, τR = 2π
√

|α|2 ≃ 34.4, as clearly visualised in Figs. B.1
and B.2, the DEM in the JC interaction mechanisms oscillates about a local mini-
mum and maximum specifying that the field at the revival phase does not evolve to
pure state [174];

iii) in the off-resonant JC interaction process presented in Fig. B.3, the DEM Sa(τ)
displays low values at all time intervals in comparison to that in Fig. B.2 which
decreases further with every increase in frequency detuning δ and as visualised in
Fig. B.4. This means that entanglement between the two-level atom and the field
decreases with every increase in frequency detuning (JC).

During an off-resonant atom-field quantum systems interaction, the revival time τR

of the atomic population inversion is approximated as [173]

τR ≃ π√
δ2

4λ2 + (|α|2 + 1) −
√

δ2

4λ2 + |α|2
. (B.2.1)

Applying Eq. (B.2.1), we obtain half the revival time in Fig. B.3 at τR

2 ≃ 23.4 and
that in Fig. B.4 at τR

2 ≃ 35.9. It is clear that at these times Sa(t) does not dip as
much towards Sa(τ) = 0 in comparison to the resonance cases in Fig. B.2 accordant
with [173]. This means that for large detuning (JC) and separately sum frequency
(AJC), the system tends to pure state at all time intervals during the interaction
and

iv) during the JC process in Figs. B.3 and B.4 rapid oscillations are occur at the revival
phase τR and none at the collapse time [28] τc = 1√

2
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B.2.2 Photon statistics

In this section we analyse the nature of photons during the JC processes. We proceed by
plotting the time evolution of the Mandel Q parameter for an initial atomic ground state
|g⟩ interacting with a field mode in an initial coherent state. Plots of the JC process at
resonance δ = 0, off-resonance δ ̸= 0 at low, high field intensities |α|2 are presented in
Figs. B.5, B.6, B.7 and B.8.
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Figure B.5: Time evolution of Mandel parameter. Q(τ) at δ = βλ = 0; β = 0 and
|α|2 = 6 in the JC interaction.
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Figure B.6: Time evolution of Mandel parameter. Q(τ) at δ = βλ = 0; β = 0 and
|α|2 = 30 in the JC interaction.
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α2=6 ; β=20
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Figure B.7: Time evolution of Mandel parameter. Q(τ) at δ = βλ = 20λ; β = 20 and
|α|2 = 6 in the JC interaction.
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Figure B.8: Time evolution of Mandel parameter. Q(τ) at δ = βλ = 20λ; β = 20 and
|α|2 = 30 in the JC interaction.

From the plots in Figs. B.5 - B.8 we see that the photon statistics during the JC inter-
action is dominantly super-Poissonian as presented in Figs. 4.11(b), 4.12(b) and 4.14(b)
consistent with the observation made in [190]. The only exception is in Fig. 4.13(b)
where the nature of photons is dominantly sub-Poissonian. In this particular example a
non-zero detuning δ ̸= 0 is introduced for a low mean photon number |α|2.
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APPENDIX C
JC DYNAMICS: FIELD MODE IN AN INITIAL

SQUEEZED COHERENT STATE
We present the methodology and results of the JC dynamics generated by the JC Hamil-
tonian Ĥ in Eq. (3.1.3) when a two-level atom interacts with a field mode initially in a
squeezed coherent state. Various values of squeeze parameter r, field intensity |α|2, di-
mensionless field mode frequency ratio ξ = ω

λ
and dimensionless frequency detuning ratio

β = δ
λ

arbitrarily chosen in the analysis of the AJC dynamics in Sec. 4.3 are maintained at
the same values in Sec. C.2 to guide a comprehensive comparison with the JC dynamics.

C.1 Methodology
Let us now consider when a field mode in an initial coherent squeezed state |α, ς⟩ defined
in Eq. (1.5.8a) is considered, which we re-write here in a general form

|α, ς⟩ = 1√
cosh(r)

exp
[
−1

2 |α|2 − 1
2α

∗2eiθ tanh(r)
]

×
∞∑

n=0

[1
2e

iθ tanh(r)
]n

2

√
n!

Hn

[
γ
(
eiθ sinh(2r)

)− 1
2
]

⊗ |n⟩

(C.1.1a)

where r, ς is the squeeze, complex squeeze parameter in the form

ς = r exp(iθ) ; 0 ≤ r < ∞ ; 0 ≤ θ ≤ 2π , (C.1.1b)

α the coherent amplitudes and

γ = α cosh(r) + α∗eiθ sinh(r) . (C.1.1c)

We define the average photon number ⟨â†â⟩ for the squeezed state in Eq. (C.1.1a) in
the form

|α|2 + sinh2(r) (C.1.2)
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such that if |α|2 ≫ sinh2(r), the coherent part of the state dominates the squeezed part.
The probability of finding n-photons P (n) in the field during the respective JC pro-

cesses takes a general form

P (n) = |⟨n|α, ς⟩|2

=
(1

2 tanh(r))n

n! cosh(r) exp
[
−|α|2 − 1

2
(
α∗2ei θ + α2e−i θ

)
tanh(r)

]
×

∣∣∣Hn

[
γ
(
ei θ sinh(2r)

)− 1
2
] ∣∣∣2 . (C.1.3)

If at t = 0, the atom is in a superposition of excited |e⟩ and |g⟩ state as defined in
Eq. (B.1.2) and the field in an initial squeezed coherent state as defined in Eq. (C.1.1a) we
easily obtain the initial atom-field state according to Eq. (B.1.3). When B = 1, A = 0,
we determine as an example in the case of an atom in an initial ground state |g⟩ the JC
initial atom-field qubit state vector in the form

|ψgn⟩JC = |ψg⟩ ⊗ |α, ς⟩ (C.1.4)

to obtain

|ψgn⟩JC =
∞∑

n=0

Sn |g, n⟩ ; ⟨â†â⟩t=0 = |α|2 + sinh2(r) . (C.1.5)

Here, we shall consider an initial squeezed coherent state with θ = 0, and so ς = r, α
are real. This implies that the squeezed coherent state |α, ς⟩ is now mapped onto |α, r⟩.

The exact solution |Ψgn(t)⟩ to the Schrödinger equation [10] for the JC initial atom-
field system in Eq. (C.1.5) take the explicit form (t > 0)

|Ψgn(t)⟩ = e− i
ℏ Ĥgt|g, n⟩ =

∞∑
n=0

[
Sn e

−iω(n− 1
2)t
(

cos(Rgnt)

+icgn sin(Rgnt)
)

|g⟩ − ie−iω(n+ 1
2)t Sn+1 sgn+1 sin(Rgn+1)|e⟩

]
⊗ |n⟩ ;

Rgn = λ

2
√

4n+ β2 ; cgn = β√
4n+ β2

; sgn = 2
√

n

4n+ β2 ; β = δ

λ

(C.1.6)

The final form of Eqs. (C.1.6) has been arrived at through Schmidt decomposition [28] and
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so entanglement of the two interacting atom, field quantum systems is readily apparent.

C.1.1 Photon statistics

We shall examine the nature of photon statistics during the JC interaction by applying
the Mandel Q parameter defined in Eq. (B.1.13). The initial average photon number is
of the form of Eq. (C.1.5). At any t > 0, the mean, mean square photon number evolve
in time according to Eqs. (B.1.11), (B.1.14).

The time evolving reduced density operators of the field ρ̂g
f (t) during the JC interaction

determined from Eqs. (C.1.6) is easily obtained as

ρ̂g
f (t) = tra(|Ψgn(t)⟩⟨Ψgn(t)|) =

[
S2

n

(
cos2(Rgnt) + c2

gn sin2(Rgnt)
)

+S2
n+1 s

2
gn+1 sin2(Rgn+1t)

]
⊗ |n⟩⟨n| (C.1.7)

With the reduced field density operator in Eq. (C.1.7), interaction parameters, Rabi
frequencies defined in Eq. (C.1.6) and mean, mean square photon number defined in
Eqs. (B.1.11), (B.1.14) we easily evaluate Q(t) in Eq. (B.1.13) at different values of r
parameter. We then plot time evolution of the Mandel Q parameter Q(τ) (where τ = λt

is the scaled time) for an initial atomic ground state |g⟩ in an initial squeezed coherent
state. As expected, for super-Poissonian photon statistics Q(t) > 0, sub-Poissonian
Q(t) < 0 and Poissonian Q(t) = 0.

C.1.2 Evolution of atomic population inversion and entropy of entangle-
ment

To describe the evolution of the atom alone we introduce the reduced density matrices
of the atom by tracing the density operator ρ̂gn(t) over the field states determined from
Eq. (C.1.6) according to

ρ̂g
a(t) = trf (|Ψgn(t)⟩⟨Ψgn(t)|) (C.1.8a)

181



taking the explicit form

ρ̂g
a(t) =

∞∑
n=0

[
S2

n

(
cos2(Rgnt) + c2

gn sin2(Rgnt)
)

|g⟩⟨g|

+i Sn Sn+1 sgn+1e
iωt sin(Rgn+1t)

(
cos(Rgnt) + icgn sin(Rgnt)

)
|g⟩⟨e|

−i Sn Sn+1 sgn+1e
−iωt sin(Rgn+1t)

(
cos(Rgnt) − icgn sin(Rgnt)

)
|e⟩⟨g|

+S2
n+1 s

2
gn+1 sin2(Rgn+1t)|e⟩⟨e|

]
.

(C.1.8b)

We then define the time evolving Bloch vector in the JC interaction r⃗(t) = rx(t)̂i +
ry(t)ĵ + rz(t)k̂ with components easily evaluated as rx(t) = tr (σ̂xρ̂

g
a(t)), ry(t) =

tr (σ̂yρ̂
g
a(t)), rz(t) = tr (σ̂zρ̂

g
a(t)) reducing to explicit forms

rx(t) =
∞∑

n=0

[
Sn Sn+1

(
− 2sgn+1 sin(Rgn+1t) cos(Rgnt) sin(ωt) − 2sgn+1cgn

sin(Rgn+1t) sin(Rgnt) cos(ωt)
)]

;

ry(t) =
∞∑

n=0

[
Sn Sn+1

(
2sgn+1 sin(Rgn+1t) cos(Rgnt) cos(ωt) − 2sgn+1cgn

sin(Rgn+1t) sin(Rgnt) sin(ωt)
)]

;

rz(t) =
∞∑

n=0

[
S2

n+1 s
2
gn+1 sin2(Rgn+1t) − S2

n

(
cos2(Rgnt) + c2

gn sin2(Rgnt)
)]

.

(C.1.9)

We shall use the time evolving Bloch vector components in Eq. (C.1.9) to evaluate time
evolution of atomic population inversion W (t) and the time evolution of the von Neumann
entropy Sa(t) (as a measure of DEM).

The atomic population inversion W (t) [34] is defined as the difference between the
excited and ground state probabilities

W (t) = tr (σ̂zρ̂a(t)) (C.1.10)

which is of the exact form as the z-component rz(t) in Eq. (C.1.9) of the time evolving
JC Bloch vector.

Using the definition of rz(t) in Eq. (C.1.9), we plot W (t) during the JC process. The

182



atomic population inversion W (t) will be seen to evolve in time in the range [-1, 1].
In order to discuss the collapses and revival phenomenon in relation to degree of

entanglement we again apply the von Neumann entropy Sa(t) in Eq. (B.1.10) (or (1.8.9))
defined in terms of the length of the time evolving Bloch vector r⃗(t). We again evaluate
the eigenvalues π1, π2 considering the definitions of the time evolving JC Bloch vector
components in Eq. (C.1.9).

Plots of Sa(t) at different values of squeeze parameter r are then easily plotted. The
DEM Sa(t) will evolve in time in the range [0,1], i.e, Sa(t) = 0 quantifies disentanglement
and consequently the atom, field quantum systems evolve to pure state, Sa(t) = 1 maxi-
mum entanglement consequently maximally mixed atom-field states else if 0 < Sa(t) < 1
entangled and so partially mixed atom-field states.

C.2 Results: JC dynamics of a two-level atom interacting
with field mode in an initial squeezed coherent state

C.2.1 Photon statistics

Referring to the reduced field density operators in Eq. (C.1.7), interaction parameters,
Rabi frequencies defined in Eqs. (C.1.6) and mean, mean square photon number defined
in Eqs. (3.3.9), (3.3.12) we easily evaluate Q(t) in Eq. (3.3.11) at resonance δ = 0 and field
intensity |α|2 = 40. We then plot time evolution of the Mandel Q parameter Q(τ) (where
τ = λt is the scaled time) for an initial atomic ground state |g⟩ in an initial squeezed
coherent state. Plots of the JC process at resonance δ = 0 ; r = 1, 1.3, 1.4, 1.5 and field
intensity |α|2 = 40 are presented in Figs. C.1, C.2, C.3 and C.4.
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Figure C.1: Time evolution of Mandel parameter. Q(τ) at δ = βλ = 0; β = 0, r = 1 and
|α|2 = 40 in the JC interaction.
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α2=40; β=0; r=1.3
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Figure C.2: Time evolution of Mandel parameter. Q(τ) at δ = βλ = 0; β = 0, r = 1.3
and |α|2 = 40 in the JC interaction.
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Figure C.3: Time evolution of Mandel parameter. Q(τ) at δ = βλ; β = 0, r = 1.4 and
|α|2 = 40 in the JC interaction.
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Figure C.4: Time evolution of Mandel parameter. Q(τ) at δ = βλ = 0; β = 0, r = 1.5
and |α|2 + sinh2(r) = 40 in the JC interaction.

From the plots in Figs. C.1 - C.4 we see that the photon statistics during the JC
interaction is dominantly sub-Poissonian at squeeze parameters r = 1 to r = 1.4 as
presented in Figs. C.1 - C.3. The only exception is in Fig. 4.18(b) set at r = 1.5 where
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the photon statistics evolves to a dominant super-Poissonian from sub-Poissonian photon
statistics. It is clear that the interaction feature of the nature of photon statistics is
dependent on the squeeze parameter r accordant with earlier works in [28] [17, 194]. It
was observed that squeezed coherent states exhibit photon antibunching effect within
some limits, i.e., r ≤ 1.3 similar to the findings herein which characterises nonclassical
statistics of the field mode.

C.2.2 Evolution of atomic population inversion and entropy of entangle-
ment

As earlier stated, the z-component of the time evolving Bloch vector is the difference of
the time evolving excited state probability and time evolving ground state probability
that defines atomic population inversion W (t). Applying the explicit definition of the
time evolving Bloch vector component rz(t) in Eq. (C.1.9), we plot W (t) in Figs. C.5, C.6
at δ = 0, r = 1, 1.5, |α|2 = 40 during the JC interaction.
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Figure C.5: Time evolution of atomic population inversion. W (τ) at δ = βλ = 0; β =
0, r = 1 and |α|2 = 40 in the JC interaction.
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Figure C.6: Time evolution of atomic population inversion. W (τ) at δ = βλ = 0; β =
0, r = 1.5 and |α|2 = 40 in the JC interaction.
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α2=40; β=0; r=1.5
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Figure C.7: Time evolution of atomic population inversion (Ringing revivals). W (τ) at
δ = βλ = 0; β = 0, r = 1.5 and |α|2 = 40 in the JC interaction.

We proceed to plot the photon number distribution Pn defined in Eq. (C.1.3) at r =
1, 1.5, |α|2 = 40 in Fig. C.8.
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Figure C.8: JC photon number distribution Pn. Fig. C.8(a), P (n) at r = 1 and Fig. C.8(b)
P (n) at r = 1.5.

From the results in Figs. C.5 - C.8 we see:

i) that the oscillations at r = 1.5 in Fig. C.6 more irregular at the collapse region than
when r = 1 in Fig. C.5, commonly referred to as ringing revivals (see Fig. C.7) in
agreement with [17, 194], i.e., the collapse region is modulated or displays ringing
different from the well known collapse region obtained when an initial coherent
field is considered [28]. As explained in detail in [17, 194], the ringing is due to
interference of the additional peaks (see Fig. C.8) the photon number distribution
Pn = |⟨n|α, r⟩|2 because the revivals produced by different peaks of Pn have different
local mean photon numbers. In the process revivals due to individual peaks overlap
but the effect of the resulting interference is to sharpen the ringing structure other
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than washing it away, i.e, the addition of each local peak in Pn adds an echo in W (τ)
and the successive echoes brings further interference, which sharpens the echoes at
earlier times and;

ii) in Fig. C.5 sharpness of the revival regions during atomic population inversion which
occur when the field is sub-Poissonian (see Fig. C.1 at r = 1) accordant with [194],
in comparison to the less pronounced and blunt peaks in Fig. C.6 at r = 1.5. We
noted in our example in Fig. C.4 plotted at r = 1.5 during the JC processes, that
the field is super-Poissonian.

Accordingly, for purposes of completeness its important to visualise and discuss the
collapses and revival phenomenon in relation to the DEM. Here the DEM is measured by
the von Neumann entropy Sa(t) defined in Eq. (3.3.8) in terms of the time evolving Bloch
vector r⃗(t) in the general form. Now, with the time evolving Bloch vector component
explicitly defined in Eq. (C.1.9) we easily evaluate Sa(t). The JC process atomic entropy
Sa(τ) plots at resonance δ = βλ = 0; δ = 0, r = 1, 1.5, and field intensity |α|2 = 40 are
shown in Figs. C.9 and C.10.
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Figure C.9: Time evolution of atomic entropy. Sa(τ) at δ = βλ = 0; β = 0, r = 1 and
|α|2 = 40 in the JC interaction.
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α2=40 ; β=0 ; r=1.5 ; ξ=0.0001
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Figure C.10: Time evolution of atomic entropy. Sa(τ) at δ = βλ = 0; β = 0, r = 1.5 and
|α|2 = 40 in the JC interaction.

Based on the results in Figs. C.9 and C.10 we see;

i) in Fig. C.9 during the JC interaction, the value of Sa(τ) at the revival time [192]
τR = 2π

√
|α|2 + sinh2(r) respectively, is approximately equal to that at half the

revival times τR

2 , i.e, Sa(τ) ≃ 0.04 in our example. This means that at these times
(τR,

τR

2 ) the atom-field states are entangled (mixed) when an initial squeezed co-
herent state is considered, accordant with [194]. In addition, as time advances, we
note gradual increase in DEM and consequently the degree of mixedness since Sa(t)
records gradual increasing values with every increase in time and

ii) that the behaviour in (i) is enhanced during the JC interaction set at r = 1.5 as
presented in Fig. C.10. The form of time evolution of Sa(τ) becomes more rapid
with oscillations between [≃ 0.2, 1] characterising an increase in DEM (and so the
degree of mixedness), consistent with [194]. It is now clear that the DEM increases
with an increase in r.
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