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Abstract: Compounds from Zanthoxylum chalybeum Engl. were previously reported for inhibitory
activities of amylase and glucosidase enzymatic action on starch as a preliminary study toward the
establishment of a management strategy against postprandial hyperglycemia, however, the inhibitory
kinetics and molecular interaction of these compounds were never established. A study was thus
designed to establish the inhibitory kinetics and in silico molecular interaction of α-glucosidase and
α-amylase with Z. chalybeum metabolites based on Lineweaver–Burk/Dixon plot analyses and using
Molecular Operating Environment (MOE) software, respectively. Skimmianine (5), Norchelerythrine
(6), 6-Acetonyldihydrochelerythrine (7), and 6-Hydroxy-N-methyldecarine (8) alkaloids showed
mixed inhibition against both α-glucosidase and α-amylase with comparable Ki to the reference
acarbose (p > 0.05) on amylase but significantly higher activity than acarbose on α-glucosidase.
One phenolic 2,3-Epoxy-6,7-methylenedioxyconiferol (10) showed a competitive mode of inhibition
both on amylase and glucosidase which were comparable (p > 0.05) to the activity of acarbose. The
other compounds analyzed and displayed varied modes of inhibition between noncompetitive and
uncompetitive with moderate inhibition constants included chaylbemide A (1), chalybeate B (2) and
chalybemide C (3), fagaramide (4), ailanthoidol (9), and sesame (11). The important residues of
the proteins α-glucosidase and α-amylase were found to have exceptional binding affinities and
significant interactions through molecular docking studies. The binding affinities were observed
in the range of −9.4 to −13.8 and −8.0 to −12.6 relative to the acarbose affinities at −17.6 and
−20.5 kcal/mol on α-amylase and α-glucosidase residue, respectively. H-bonding, π-H, and ionic
interactions were noted on variable amino acid residues on both enzymes. The study thus provides
the basic information validating the application of extracts of Z. chalybeum in the management of
postprandial hyperglycemia. Additionally, the molecular binding mechanism discovered in this
study could be useful for optimizing and designing new molecular analogs as pharmacological
agents against diabetes.

Keywords: diabetes; α-glucosidase; α-amylase; molecular docking; Zanthoxylum chalybeum; ADMET
profiling

1. Introduction

Diabetes mellitus (DM), a metabolic condition displayed by extraordinary amounts of
plasma glucose (hyperglycemia), is closely linked to death and morbidity worldwide. It is
a condition brought on by insufficient or excessive insulin secretion, insulin resistance, or
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both [1,2]. Predisposing factors of DM can be traced to environmental and genetic factors,
namely, changes in physical activity and dietary habits, age, resistance to insulin, and
diabetes in the family medical history [3].

In spite of the failure to discover an all-around therapeutic remedy, a number of
management options have been discovered alongside insulin which have enhanced
the management of DM [4]. Different categories of antidiabetic drugs are available
which exert their action by boosting the body’s insulin production, improving the body’s
sensitivity to insulin or reducing insulin resistance, and reducing intestinal glucose
absorption [5]. The later therapeutic route may entail modulation of the enzyme α-
amylase and α-glucosidase to delay the glucose absorption rate so as to maintain an
optimal blood glucose level in DM patients. However, the major drawback of these drugs
is their non-specificity in targeting different glucosidases. Practical examples include
miglitol and acarbose. They are effective at decreasing glucose absorption through the
inhibition of the activity of the α-glucosidases found in the small intestinal brush barrier,
although they often cause diarrhea, flatulence, and abdominal bloating [6]. Metformin
has been demonstrated as a better medication for DM, although is not recommended for
patients with decreased renal or hepatic function [7].

The aforementioned negative side effects of these medications have prompted re-
searchers to look for alternate treatments with fewer severe drawbacks, especially those
derived from natural drug reservoirs such as the metabolites of medicinal plants. In order
to alleviate ailments and ease human suffering, herbal medicines and natural products
have been employed as a source of medicine for a long time. As a result, interest in phy-
tomedicine is rising; plant extracts have the potential to be safer, are more readily avail-
able, are less expensive, and have fewer negative side effects than synthetic antihyper-
glycemic medications [8]. However, the scope of discovering novel natural compounds
with pharmacological importance in order to control type II diabetic mellitus (T2DM) is
still constrained owing to the lack of a sufficient mechanism-based comprehensive inves-
tigation of these phytopharmaceuticals. Following the application of the root bark and
stem of Z. chalybeum Engl. (Rutaceae) by traditional healers, a thorough bioassay investi-
gation showed the extracts have an antihyperglycemic potential against streptozotocin-
and alloxan-induced diabetic rats [9–11]. Subsequently, bioactivity-guided isolation
resulted in the identification of some of the bioactive compounds including chaylbemide
A (1), chalybemide B (2) and chalybemide C (3), fagaramide (4); skimmianine (5), norchel-
erythrine (6), 6-acetonyldihydrochelerythrine (7) and 6-hydroxy-N-methyldecarine (8),
ailanthoidol (9), 2,3-epoxy-6,7-methylenedioxyconiferol (10) and sesamine (11) with
the structures shown in Figure 1. These compounds have been shown to inhibit the
enzymes α-glycosidase and α-amylase with IC50 values between 43.22 and 49.36 µM at
comparable levels to (p > 0.05) the positive control acarbose which has IC50 values of
42.67 and 44.88 µM against α-amylase and α-glycosidase, respectively [12]. Such results
established the ability of Z. chalybuem against DM; however, the study failed to establish
the possible mechanism of interaction between the enzymes and the inhibitors (com-
pounds), thus necessitating further investigation on the mode of actions via inhibition
kinetics and molecular interaction studies.
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Figure 1. Identified compounds from Z. chalybeum’s root bark.

The lock-and-key mechanism, where the lock encrypts the protein and the ligand is
the key, is analogous to protein–ligand interaction. Hydrophobic contact appears to be the
main mechanism promoting binding. By using chemoinformatic/bioinformatics tools, in
silico techniques assist in finding pharmacological targets. Additionally, they can be used
to discover potential active sites in target structures, create candidate compounds, dock
the target with these ligands, use resulting binding affinities to order the ligands, and to
enhance binding capabilities, further modify the molecules [13]. In an effort to create novel
anti-diabetic drugs, in silico molecular modeling and analysis has been used to establish the
potential mode of interaction of therapeutic agents with molecular receptors [14] to confirm
the classical experimental bioassays. In that respect, a study to establish the mechanism of
action based on inhibition constants and the in silico molecular interaction analysis of these
Z. chalybeum metabolites against α-glucosidase and α-amylase was completed and results
are reported herewith.

2. Materials and Methods
2.1. Isolation of Study Compounds and Their Kinetic Analyses

The compounds under study were isolated from the root barks of Z. chalybeum. Briefly,
the root barks were chopped into small pieces separately, air-dried at room temperature
under shade for 21 days, and ground into a fine powder using an electric pulverizer.
The powdered root bark (0.8 kg) was exhaustively extracted with 95% aqueous methanol
(4 × 1.5 L) and filtered to afford a 30 g crude sample. The crude sample was partitioned into
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total alkaloid extraction and nonalkaloid fraction, followed by a series of chromatographic
procedures that led to the isolation of eleven pure compounds as described by Ochieng
et al., 2020 [12]. Furthermore, the structures of the eleven compounds were elucidated
following spectroscopic techniques as described by Ocheing et al., 2020 [12].

Mode of compound inhibition against porcine pancreas α-amylase and yeast α-
glucosidase were determined at increasing substrate, pNPG, concentrations (0.25, 0.5,
1, 2, and 5 mM), both when the pure compounds 1–11 and acarbose were present at 0, 0.5,
1, 2.5, 10, and 20 mM and in their absence. Using Lineweaver–Burk plots, the mode of
inhibition was established, followed by secondary plots (Dixon plots) depending on the
established mode of inhibition. The following equation was used to obtain the inhibition
constants (Ki) [15]:

v = Vmax ×
S

Km

(
1 + [I]

Ki

) + S(1 +
[I]
αKi

)

where S and I are the concentrations of the substrate and inhibitor, respectively; Vmax is the
maximum velocity; Km is the Michaelis–Menten constant; Ki is the competitive inhibition
constant; and αKi is the uncompetitive inhibition constant.

2.2. Statistical Analysis

A computer application for nonlinear regressions on the MS-Excel-2019 version was
used to evaluate the kinetic data. Lineweaver–Burk plots on monoreplicate tests were
performed followed by Dixon secondary plots to determine the inhibition constants. The
means of the observed triplicate inhibition constants were subjected to analysis of variance
with Tukey HSD/Tukey Kramer post-analysis to compare means. The least significant
difference was considered at p < 0.05 and the coefficient of determination (R2) was obtained
as the average of the regression curves from Dixon plots of individual experiments.

2.3. In Silico Method

The Molecular Operating Environment (MOE) software v. 2015.10 from the Chemical
Computing Group, Montreal, QC, Canada and the incorporated Merck Molecular Force
Field (MMFF94x) were used for all in silico studies [16].

2.3.1. Ligands Preparation

Compounds 1–11 were obtained from the literature, and their 2D molecular graphs
were sketched in ChemDraw Ultra Ver. 12.0 and saved as MDL files (.sdf). The .sdf file
format of acarbose, the reference molecule, was retrieved from NCBI PubChem [17]. All
the molecules were then imported into MOE where three-dimensional (3D) molecular
models of each were generated. The MMFF94x force field was then used to optimize the
generated geometries and subsequently subjected to a low-mode molecular dynamics
conformational search (LowModeMD) to obtain the most favorable conformers for each
ligand. An energy threshold of 5 kcal/mol above the lowest energy conformation was
applied and the conformation limit was set to 10 for each ligand. The resulting conformers
with the lowest force field energy were minimized using the AM1 Hamiltonian (MOPAC
module of MOE), and the minimized geometries then saved into a MOE database for
further action.

2.3.2. Drug-Likeness Predictions and Structural Skeleton Similarity Analysis

The 11 ligands and acarbose were evaluated using Lipinski’s rule of five, taking the
following factors into consideration: lipophilicity, molecular weight, and the amount of
hydrogen bond acceptors and donors [18]. To establish the structural skeleton similarity
common to these molecules, further analysis of their physicochemical parameters was
completed. This was executed in DataWarrior software [19], a flexible, interactive,
and chemistry-aware tool for the viewing and interpretation of chemical data. The
existence of eight structural properties—electronegative atoms, carbo rings, aromatic
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carbon atoms, H-donor atoms, H-acceptor atoms, heterorings, rotatable bonds, and
ring closures—was enumerated and examined after the compounds were subjected to
DataWarrior for structure analysis.

2.3.3. ADME/Tox Prediction

The compounds’ absorption, distribution, metabolism, and excretion (as well as toxi-
cological; ADME/Tox) characteristics were predicted by means of the PreADMET online
server [20] and SwissADME server [21]. This server computes pharmacokinetic properties
such as Human Intestinal Absorption (HIA), the permeability of Caco-2 cells in vitro (PCaco-
2), skin permeability (PSkin), plasma protein-binding (PPB), and permeation through the
blood–brain barrier (CBrain/CBlood). The toxicity was predicted using PreADMET and
pro-Tox II servers [22].

2.3.4. 3D Protein Structures Preparation

To predict, in silico, the potential interactions of the ligands with the enzymes
α-glucosidase and α-amylase (PDB-IDS: 2QMJ and 7TAA, respectively) [23,24], 3D
structures of the receptors were obtained from the Research Collaboratory for Structural
Bioinformatics (RCSB) Protein Data Bank (PDB) [25]. The protein models were first
prepared by removing all water molecules (MOE: SEQ) and correcting all incomplete
and omitted residual amino acids that could result from the X-ray crystallographic data
identified through the MOE software (Compute, Prepare, Structure Preparation, Correct).
At 27 ◦C and pH 7.0, the models were virtually titrated to modify the ionization step
of acidic and basic side chains of the amino acid. The models were then protonated
accordingly in MOE software. Following that, the energy of the enzyme models was
decreased in order to minimize the structure of the protein within the confines of the
allocated force field. The reduction was completed slowly by setting all heavy atom sites
and only permitting a steady increase within a radius of 0.5 to 1.5 Å in MOE software
following the steps Compute, Energy Minimize, and Tether Atoms. This was to ensure
no major variation in the protein structure as determined by the experiment. Finally,
without any constraints, an energy minimization was performed, resulting in totally
relaxed protein structures for further investigation.

2.3.5. Docking Simulation

Each molecule was simulated to determine its optimal orientation within each protein
model binding site (MOE: Compute, Dock). Before docking, α-glucosidase and α-amylase
amino-acid residues’ binding interactions with acarbose were investigated. The protein
sites for each enzyme model consisted of Asp203, Asp542, Asp327, His600, and Arg526
residues for α-glucosidase and Trp83, Asp340, Arg344, Arg204, Glu230, and Lys209 for
α-amylase were selected and occupied by dummy atoms. To explore the binding modes of
the 11 compounds with α-glucosidase and α-amylase proteins, 10 conformations of each
ligand were docked into the respective enzyme’s chosen binding pocket using MOE-Dock
module with conditions, placement: triangle matcher, rescoring: London dG, refinement:
forcefield, retain: 10. RMSD (root mean square deviation) values, and docking scores of
ligands’ top-ranked conformers were utilized to investigate their binding mechanisms.
The determined Gibbs energy (MOE: London DG) resulting from the produced complexes
of the enzymes and ligands (docking poses) were applied as the scoring parameters in
this regard. Each complex’s S-score relates to its virtual free energy in kcal/mol. As
a spontaneous reaction is indicated by a larger negative result, all docking poses were
arranged in increasing S-score order.

Before conducting molecular docking studies on the two enzymes, the docking pro-
tocol employed in this work was validated. To accomplish this, the co-crystalized ligand
(acarbose) was re-docked into the binding sites of the enzymes, commonly referred to as
self-dock. The docking simulation was carried out with the lowest energy conformer of the
ligand docked into the active sites of the two proteins in various conformations, with the
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proteins treated as rigid entities (MOE: Rigid Receptor). The top ten hits from the docking
simulation were used for further analysis.

The postures derived from the self-dock were compared with the experimental con-
formation (the crystallographic pose), yielding binding modes, and orientations that are
as shown in Figure 2. Additionally, the re-docked data of the co-crystallized ligand–
protein interactions strongly corresponded (see Table 1) with the original interactions
from the crystal structure complexes; additionally, the co-crystallized ligands’ RMSD val-
ues 1.74 Å for α-amylase and 1.6 Å for α-glucosidase which are less than 2 Å, which is
recommended [26–31], demonstrate that the docking approach was adequately validated.
For each enzyme structure, the lowest S-score from each self-dock was chosen and used as
the reference for all subsequent docking simulations with that protein.
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Figure 2. Superposed structures of acarbose after validation of the binding mode as obtained
using the MOE software: in blue, the crystallographic pose; in green, the top-ranked docking pose.
(a) α-glucosidase (PDB ID: 2QMJ); (b) α-Amylase (PDB ID: 7TAA).

Table 1. Inhibition modes and inhibition constant (Ki) values obtained from Lineweaver–Burk plots
and Dixon Plots, respectively, for metabolites of Z. chalybeum against α-glucosidase and α-amylase
inhibition in comparison to the reference acarbose inhibitions.

Compound α-Amylase α-Glucosidase

Inhibition Mode Ki (mM) R2 Inhibition Mode Ki (mM) R2

1 Non-competitive 13.36 ± 2.43 ** 0.9345 Non-competitive 20.95 ± 2.14 0.9824
2 Non-competitive 11.05 ± 0.58 ** 0.9424 Uncompetitive 44.58 ± 1.65 0.9207
3 Non-competitive 14.83 ± 0.50 ** 0.9381 Non-competitive 17.56 ± 0.24 0.9824
4 Non-competitive 26.69 ± 2.13 ** 0.9899 Non-competitive 34.73 ± 0.79 ** 0.9198
5 Mixed 2.74 ± 0.06 0.9572 Mixed 7.64 ± 0.02 ** 0.9544
6 Mixed 7.57 ± 0.59 0.9527 Mixed 7.68 ± 0.04 ** 0.9578
7 Mixed 3.34 ± 0.03 0.9978 Mixed 4.73 ± 0.10 ** 0.9966
8 Mixed 3.10 ± 0.20 0.9753 Mixed 9.17 ± 0.10 ** 0.9913
9 Uncompetitive 26.28 ± 1.47 ** 0.9619 Uncompetitive 20.62 ± 1.94 0.9929
10 Competitive 5.54 ± 1.02 0.9850 Competitive 17.21 ± 0.16 0.8692
11 Non-competitive 12.53 ± 1.957 ** 0.9552 non-competitive 24.33 ± 1.93 0.8748
Acarbose Competitive 6.14 ± 0.01 0.9606 Competitive 22.40 ± 1.23 0.8387

** values are significantly different from the standard inhibitor (acarbose) Inhibition constant (Ki) based on Tukey
HSD/Tukey Kramer post-analysis of one-way analysis of variance replicated Ki values. Least significant difference
was considered at p < 0.05 and the coefficient of determination (R2) was obtained as the average of the regression
curves from Dixon plots of individual experiments.

3. Results and Discussion
3.1. Kinetic Analyses

Kinetic analysis based on both Lineweaver–Burk plots and Dixon plots revealed the
modes of inhibition and the enzymes–inhibitor inhibition constants (Table 1) revealed
that compounds showing mixed inhibitory modes such as Skimmianine (5), Norchel-
erythrine (6), 6-Acetonyldihydrochelerythrine (7), and 6-Hydroxy-N-methyldecarine (8)
showed comparable Ki to acarbose (p > 0.05) on amylase while the other six compounds
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which showed significantly (p < 0.05) low activity compared to acarbose displayed
either noncompetitive or uncompetitive modes against α-amylase actions on starch.
The same compounds showing mixed inhibition on amylase showed similar modes on
α-glucosidase activities, with significantly (p < 0.05) higher Ki values compared to Ki of
acarbose indicating a better inhibitory potential towards α-glucosidase than amylase.
Conversely, the other compounds displaying non-competitive and uncompetitive inhibi-
tions against α-glucosidase activities showed comparable Ki values (p < 0.05) relative to
acarbose. One compound 2,3-Epoxy-6,7-methylenedioxyconiferol (10) showed a com-
petitive mode of inhibition both on α-amylase and α-glucosidase with Ki of 5.54 ± 0.58
(R2 = 0.985) and 17.21 ± 0.15 (R2 = 0.8692), respectively, which were statistically com-
parable (p < 0.05) to that of acarbose thus indicative of the most active inhibitors from
the Z. chalybeum extracts. Compound 10 and the alkaloids (5, 6, 7, and 8) displaying
competitive and mixed inhibitions, respectively, were thus invariably noted as the most
potent inhibitors of both amylase and glucosidase. On the other hand, the remaining
compounds 1, 2, 3, 4, 9, and 11 showed varied modes of inhibition and associated disso-
ciation constants towards the two enzymes which would be categorized as moderate
inhibitory activities. Such preliminary kinetic results would thus be better confirmed
with molecular interaction studies based on in silico experiments.

3.2. Drug-Likeness Predictions and Structural Skeleton Similarity Analysis

Lipinski’s rule of five and the Veber rules are closely linked to drug-likeness prop-
erties. Molecules with characteristics that match these rules could be deemed promising
therapeutic candidates with high oral bioavailability. If a drug molecule fails to fulfill more
than one of the five rules, it will have poor oral absorption. Lipinski’s rule of five states
that a compound is orally bioactive when it has a molecular weight (MW) of 500 or less, a
cLogP (partition coefficient between n-octanol and water) of 5 or less, a number of hydro-
gen bond donors (HBD) of no more than 5, a number of hydrogen bond acceptors (HBA)
equal to or less than 10, and a number of rotatable bonds (RB) of 10 or less [32,33]. Unlike
Lipinski’s rule of five, the Veber rules only specify two requirements for drug candidates to
have excellent oral bioavailability. These requirements are that there are no more than ten
rotatable bonds and that the polar surface area is at most 140 Å.

Drug likeness is a high degree of control of several molecular and structural character-
istics that determine whether a given ligand is similar to approved drugs. These descriptors
(molecule size, hydrogen bonding properties, hydrophobicity, flexibility, and electronic
distribution, among other pharmacophore features) determine ligand conduct in a living
organism such as bio-transportation, bioavailability, proteins’ affinity, metabolism, reactiv-
ity, and toxicity [34]. This screening procedure was executed to assess the drug-likeness of
the molecules using DataWarrior to evaluate the physicochemical characteristics and subse-
quently comparing them to those of acarbose using Lipinski’s rule of five. Additionally,
these molecules were evaluated as to whether they were mutagenic, tumorigenic, irritant,
or whether they had reproductive effects.

As shown in Table 2, some of the compounds are predicted to have no toxic properties.
Compounds 7 and 8 are shown to be mutagenic and tumorigenic. Compounds 1, 4, and 9
are predicted to have a reproductive effect with compound 9 further being shown to be
an irritant. All the other compounds are predicted as being non-mutagenic, non-irritant,
non-tumorigenic, and have no reproductive effects.
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Table 2. Physicochemical properties of compounds 1–12.

M
olecule
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LogP
b
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B

A
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B
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d
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Electronegative
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ings
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losures
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H
etero-rings

A
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atic
A
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T
PSA

f(Å
)

M
utagenic

Tum
origenic

R
eproductive

Effect

Irritant

1 287.358 3.7 4 1 6 2 1 1 0 6 47.6 none none high none
2 218.319 1.1 2 1 5 4 2 1 1 6 33.7 none none none none
3 285.342 2.6 4 0 5 4 2 1 1 12 38.8 none none none none
4 233.266 2.3 4 1 3 4 2 1 2 6 47.6 none none high none
5 257.288 2.5 4 0 3 4 3 1 3 10 40.6 none high none none
6 333.342 4.3 5 0 2 4 3 2 0 18 49.8 low none none none
7 351.357 3.3 6 2 1 5 5 2 1 16 71.4 high high none none
8 407.421 4.1 7 0 4 5 3 2 1 16 66.5 high high none none
9 326.347 3.5 5 2 5 6 5 2 4 15 72.1 none none high high
10 194.185 0.9 4 1 2 6 6 3 2 6 51.2 low none none none
11 354.357 3.2 6 0 2 7 5 3 2 12 55.4 none none none none
12 646.613 −8.4 19 14 9 19 4 3 2 0 325.8 none none none none

a: Molecular weight; b: Partition coefficient between n-octanol and water; c: Hydrogen bond acceptor; d: Hydrogen
bond donor; e: Rotatable bond; f: Topological polar surface area (Å).

The acceptable TPSA values range from 0 to 140 Å as molecules with a greater value
tend to be poor at permeating cell membranes [33]. The compounds 1–11 obeyed this
rule. However, acarbose had a TPSA value > 140 Å. Log P, MW, and TPSA values indicate
that the compounds have good membrane permeability and oral bioavailability. Indeed,
hydrophobicity, membrane permeability, and drug molecule bioavailability are all affected
by these variables, in addition to HBA and HBD. Acceptable RB values also reflect good
compound intestinal permeation and oral absorption. TPSA is also useful in determining
drug transport and biodistribution behavior [35].

The hydrophobicity of a molecule is directly proportional to log P. The LogP values of
between−2 and 6.5 indicate that the molecule is sufficiently hydrophobic and will therefore
permeate through cellular membranes as there is an appropriate balance of permeability
and solubility [36,37]. The LogP values (see Table 2) indicate that these molecules are
hydrophobic and will therefore have a higher affinity for the organic phase over water. The
compounds have optimum logP values within the range (0.9–4.3).

To determine the structural skeleton similarity, the compounds were subjected to
DataWarrior software analysis, which was used to enumerate and classify eight structural
skeleton variables and look for similarities (Table 2). We evaluated the count of intramolec-
ular rotatable bonds to determine the compounds’ flexibility and discovered that only
compound 7 had one rotatable bond while all others were composed of two–six rotatable
bonds and acarbose with the highest number (9). Small molecules’ electronegative atoms
(N, O, S, F, Cl) play a very important role in the formation of hydrogen bonds with pro-
tein amino acid residues; seven of these atoms were counted in compound 7, while the
other compounds had two–six electronegative atoms. The reference drug acarbose had 19
electronegative atoms.

We calculated the number of H-bond acceptors and donors to establish the type of
electronegative atoms. Six of the molecules presented 1–2 H-donor atoms. In contrast, H-
acceptor atoms were found in all the compounds, which contained two–seven H-acceptor
atoms. The ring closures, most of which consist of carbon atoms engaged in electrostatic and
hydrophobic interactions, were tallied, and all compounds had one to six rings, including
acarbose with four. We considered both carbo- and heteroring closures to establish the
form of the ring closures. Additionally, we discovered all compounds contained one–three3
carbo-rings. Unlike carbo-rings, 1–4 heterorings were found in 10 compounds, including
acarbose. Lastly, we calculated the number of aromatic carbon atoms, and all but acarbose
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had 6–18 aromatic atoms. We discovered no inverse or direct correlation between the factors
we studied and the compounds’ binding affinities after characterizing and analyzing them.

3.3. ADME/Tox Prediction

The goal of the in silico absorption, distribution, metabolism, and excretion (ADME)
profiling is to reduce high, late drug attrition during drug development and optimizing
testing by focusing only on the most promising candidates. The predicted values of ADME
for compounds 1–11 and the reference, acarbose, are presented in Table 3. ADME/Tox
properties are related to pharmacokinetic (absorption, distribution, metabolism, excretion)
and pharmacodynamic (drug efficacy and toxicity) characteristics of drugs. The in silico
prediction of these properties is important, particularly in the optimization of drug leads or
new drug molecules. ADME properties affect drug membrane permeation, oral bioavail-
ability, and drug metabolism [35]. In this study, the eleven compounds were predicted to
have high gastrointestinal absorption with values ranging from 93.66 to 97.93%. However,
the reference acarbose has very poor intestinal absorption. The data on human intestinal
absorption are the total amount of drug absorbed and bioavailable as a percentage of
aggregate excretion in feces, bile, and urine [38]. It is worth noting that, because acar-
bose is designed to work in the gut, a low level of oral bioavailability does seem to be
therapeutically preferable.

Table 3. ADME/Tox properties for compounds 1–11 and the reference, acarbose.
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19
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Perm
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/h)
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C
arcinogenicity
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m
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C
ytotoxicity

Toxicity
C

lass

1 1.13 95.34 87.74 non non non non −2.86 44.84 Inactive Inactive Active Inactive 4
2 0.79 96.22 40.15 non non yes non −1.03 54.93 Inactive Inactive Inactive Inactive 5
3 0.17 98.11 87.07 non non non non −2.92 54.35 Inactive Inactive Inactive Inactive 4
4 0.14 94.94 53.54 non non non non −3.43 38.10 Inactive Inactive Active Inactive 4
5 2.68 97.93 90.19 yes yes non yes −3.74 56.83 Active Inactive Active Inactive 4
6 0.05 97.64 90.55 yes yes non yes −3.98 52.67 Inactive Active Active Inactive 4
7 0.20 94.62 87.76 yes yes non non −4.02 21.94 Inactive Inactive Active Active 4
8 0.02 97.55 89.45 yes yes non non −3.88 48.50 Inactive Active Active Active 4
9 0.28 94.23 88.29 yes yes non yes −2.92 30.85 Inactive Inactive Active Inactive 5
10 0.58 93.66 45.96 yes yes non yes −3.97 24.39 Inactive Active Inactive Inactive 3
11 0.05 97.12 83.12 yes yes non yes −4.42 57.03 Inactive Active Active Inactive 3
Acarbose 0.03 0.00 31.61 yes non yes non −5.19 0.81 Active Inactive Active Inactive 6

These compounds including the reference were predicted to have no permeation across
the blood–brain barrier (BBB). The BBB penetration is calculated as the proportion of drug
concentration levels in the brain and blood [39]. The predicted plasma protein binding (PPB)
values indicated that the molecules are variedly bound to the protein plasma with values
ranging from 40.15–90.55%. However, acarbose is bound to a low extent to the plasma
protein. Only the unbound drug is typically available for permeation across cell membranes
in order to reach the pharmacological target and elicit the desired activity [40]. Therefore,
this property can not be emphasized enough. The Caco-2 (human colon carcinoma cell line)
penetrability for the estimation of orally administered drug absorption of compounds 1–11
ranged from 24.39 to 57.03% with the reference, acarbose, showing no permeation through
the Caco-2 cell membrane. This implied that these compounds can be administered orally,
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with considerable permeation across cell membranes. The transdermal efficacy of these
molecules as demonstrated by their skin permeability including the reference indicates
that they cannot penetrate through the skin except for compound 2. It is reported that
drugs with logKp values higher than −2.5 cm/h will not penetrate through the skin with
ease [41]. The BOILED-Egg plot between WLOGP and TPSA to predict gastrointestinal
absorption and brain penetration of the selected molecules is shown in Figure 3. It can be
seen from the plot that the molecules are predicted to possess BBB permeant properties
and considerable GI absorption.
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The metabolism of a drug is another important pharmacokinetic property that
should be evaluated during drug development. Cytochrome P450, a family of isozymes,
is one of the enzymes taking part in the liver metabolism and biotransformation of
drugs. The metabolism of drugs by the cytochrome P450 system is a vital factor in
drug interactions that can result in toxicities and a decrease in pharmacological activity.
Therefore, determining if the drug is a substrate, inducer, or inhibitor of cytochrome P450
is important. There are various cytochrome P450 isozymes such as CYP1A2, CYP2C19,
CYP2C9, CYP2D6, CYP2E1, and CYP3A4 that are involved in drug metabolism [42].
According to the ADME prediction using SwissADME, ligands 1, 2, and 4 are non-
inhibitors for CYP2C19, CYP2C9, CYP2D6, and CYP3A4. Compounds 5–11 are however
inhibitors of CYP2C9 and CYP3A4. Compounds 5, 6, 9–11 are also inhibitors of CYP2C19.
The reference acarbose inhibits CYP3A4 and CYP2D6. The ADME properties of these
compounds show satisfactory drug qualities.

To ensure that the compounds do not harm human cells and organs, in silico toxicity
predictions were executed. This prediction is essential in the early stages of drug discovery
because many drug candidates fail in clinical trials due to toxicity. The prediction of toxico-
logical properties of the ligands was performed using the ProTox-II webserver (see Table 3).
The ProTox-II predicts the oral toxicity of compounds based on 2D molecular graph similar-
ities with 33,000 compounds and their associated LD50 values. Other properties predicted
include toxicological endpoints (immunotoxicity, carcinogenicity, and cytotoxicity) and
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organ toxicity (hepatotoxicity) [43]. Compounds 1–11 were predicted to have LD50 values
of 1000, 2031, 1990, 760, 600, 1000, 2000, 2000, 3919, 720, and 1500 mg/kg, respectively.
Acarbose was predicted to have an LD50 value of 24,000 mg/kg. The ADMET properties
indicate that these molecules pass the adsorption, distribution, metabolism, excretion, and
toxicity parameters having shown acceptable bioavailability scores and are orally safe,
properties that mostly determine the success of a drug lead [44].

3.4. Molecular Docking

The target of the isolation of any natural product is to discover biologically potent
therapeutic molecules. The isolation of secondary metabolites and screening of their
biological activity, on the other hand, is a tedious, lengthy, and expensive endeavor that
can be eased by the use of in silico methods. Molecular docking, a well-documented
and powerful in silico approach, can help sieve out inactive compounds. It estimates
the modes of interaction between optimized conformations of various compounds and a
protein structure. It also helps to predict the probable mode of action of observed biological
activity. Given the possibility of this viewpoint, we elaborate on comprehensive molecular
docking analyses of isolated compounds from Zanthoxylum chalybeum Engl. which have
been demonstrated to have varied inhibitions against α-glucosidase and α-amylase. We
investigate the binding modes between both the targeted proteins and the ligands using
the MOE software.

The optimized structures (1–11) of the active compounds from Zanthoxylum chalybeum
Engl. were docked into the active site of the α-glucosidase protein (N-terminal glucoamy-
lase PDB ID: 2QMJ). These compounds were discovered to have good docking scores (−8 to
−13 kcal/mol) and binding interactions with the amino residues Asp203, Asp327, Asp542,
Arg526, and His600 (Table 4, Figures 4–7, and Figures S25–S28 (Supplementary Materi-
als)). Human α-glucosidase has a structure similar to that of human glycoside hydrolase
family GH311 homologues, maltase glucoamylase, and sucrase-isomaltase. A trefoil at the
N-terminus, the Type-P domain is linked to the β-sheet domain. The catalytic (β/α)8 barrel
then follows with its two inserts β3 (insert I) and β4 (insert II). This is then proceeded by
proximal and distal β-sheet domains at the C-terminus. The narrow substrate-binding
pocket is formed by a loop from the N-terminal-sheet domain and inserts I and II and
is located near the C-terminal ends of the catalytic (β/α)8 domain’s β-strands. Asp518
function as the catalytic nucleophile while Asp616 is the acid/base catalyst [45].

Compounds 1 and 3 which showed noncompetitive inhibition on both enzymes,
and compound 2 with uncompetitive inhibition and noncompetitive inhibition on α-
glucosidase and α-amylase respectively, demonstrated binding affinities of between
−13.8 and −9.3 (kcal/mol) against α-amylase and α-glucosidase. Compound 1 formed
conventional hydrogen interactions with α-amylase interface residues ASP 297 and ARG
344 (see Table 4 and Figures 5 and 7). In addition, it formed hydrogen bond interactions
with ASP 542 residues in the case of α-glucosidase. On the other hand, compound 2
formed hydrogen bond interactions with ASP 340 and ARG 344 in addition to the ionic
bond with ASP 340 with α-amylase. On analysis of this compound’s interactions with
α-glucosidase, it was found that it forms hydrogen bond interactions with MET 444 and
ASP 542 residues in addition to ionic interactions with ASP 443 and ASP 542 residues.
Conversely, compound 3 formed hydrophobic interactions of the types H-π and π-π,
with HIS 296 and TYR 82 residues of the α-amylase, respectively. Analysis of compound
3 in complex with α-glucosidase revealed the presence of a hydrogen bond interaction
with ARG 526 residue.
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Table 4. The interactions and binding affinities of compounds 1–11 and acarbose with α-amylase
enzyme (7TAA) and α-glucosidase enzyme (2QMJ) residues discovered during complex structure
visualization.
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1 −11.2 1.5 ASP 297
ARG 344

H-donor
H-acceptor −9.3 2.0 ASP 542 H-donor

2 -13.8 0.8
ASP 340
ARG 344
ASP 340

H-donor
H-acceptor
Ionic

-12.6 1.8

MET 444
ASP 542
ASP 443
ASP 542

H-donor
H-donor
Ionic
ionic

3 −10.1 0.8 HIS 296
TYR 82

H-π
π-π −10.6 0.9 ARG 526 H-acceptor

4 −9.4 0.8 ASP 340 H-donor −9.0 1.2
MET 444
ASP 542
PHE 575

H-donor
H-donor
H-π

5 −10.0 1.9 TRP 83 π-H −9.5 0.8 ASP 542
TRP 406

H-donor
π-H

6 −11.9 1.9 ARG π-cation −9.8 0.9 - -

7 −10.9 0.8 HIS 210
LEU 232

H-donor
π-H −13.8 0.8 ASP 443

ASP 542
H-donor
H-donor

8 −10.8 1.3 HIS 296
TYR 82

H-π
H-π −8.0 2.0 THR 204 π-H

9 −11.4 1.0

ASP 340
GLN 35
TYR 79
HIS 296

H-donor
H-acceptor
H-acceptor
H-π

−10.3 2.8 ASP 327 H-donor

10 −10.1 1.1 ASP 340
GLN 35

H-donor
H-acceptor −10.0 0.6 ASP 327 H-donor

11 −12.3 1.2 ARG 204
TRP 83

H-acceptor
H-acceptor −11.0 1.5 ARG 526

PHE 575
H-acceptor
H-π

Acarbose −17.6 1.7

ASP 206
GLU 230
ASP 340
ASP 168
ARG 204
TRP 83
ASP 206

H-donor
H-donor
H-donor
H-donor
H-acceptor
H-acceptor
ionic

−20.5 1.6

ASP 542
ASP 327
ASP 203
MET 444
ASP 474
HIS 600
ARG 526
ASP 542

H-donor
H-donor
H-donor
H-donor
H-donor
H-acceptor
H-acceptor
ionic
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Figure 5. The 2D interactions of chaylbemide A (1), chalybeate B (2), and chalybemide C (3), 2,3-
Epoxy-6,7-methylenedioxyconiferol (10), sesame (11), and the reference acarbose with α-glucosidase
enzyme (PDB ID: 2QMJ).
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Figure 6. Docking conformation with the highest score conformers for Skimmianine (5), Norchel-
erythrine (6), 6-Acetonyldihydrochelerythrine (7), and 6-Hydroxy-N-methyldecarine (8) alkaloids,
2,3-Epoxy-6,7-methylenedioxyconiferol (10), and the reference acarbose (carbon atoms in cyan) in the
binding site of α-amylase (ID: 7TAA). Lipophilic areas on the molecular surface are colored green,
while hydrophilic areas are colored purple.
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Figure 7. Docking conformation with the highest score conformers for chaylbemide A (1), chalybeate
B (2) and chalybemide C (3), 2,3-Epoxy-6,7-methylenedioxyconiferol (10), sesame (11), and the
reference acarbose (carbon atoms in cyan) in the binding site of α-glucosidase (ID: 2QMJ. Lipophilic
areas on the molecular surface are colored green, while hydrophilic areas are colored purple.
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Compound 4, which had noncompetitive inhibition on both α-amylase and α-
glucosidase but with Ki values significantly higher than those of the reference, formed a
hydrogen bond-type interaction with the ASP 340 residue of the α-amylase and a binding
affinity of −9.4 kcal/mol. Docking of this compound on the binding site of α-glucosidase,
indicated a binding affinity of −9.0 kcal/mol and analysis of the complex interactions
revealed the presence of hydrogen bond-type interactions with MET 444 and ASP 542
residues in addition to H-π-type hydrophobic interactions with the PHE 575 residue.

Compounds 5–8 were established to have mixed inhibitions on both enzymes
and from the docking simulations registered binding affinities of between −9.5 and
−13.8 kcal/mol. Compound 5 formed a hydrophobic interaction of the π-H-type with
the TRP 83 residue of the α-amylase. It also showed a hydrogen bond-type as well
as hydrophobic interactions of the type π–H with ASP 542 and TRP 406 residues
of the α-glucosidase. Compound 6 formed conventional hydrophobic interactions
of the π-cation type with the α-amylase interface residue ARG 344. Compound 7
formed conventional hydrogen interactions and hydrophobic π-H-type interactions
with α-amylase interface residues HIS 210 and LEU 232, respectively. In complex
with α-glucosidase, it formed hydrogen bond interactions with ASP 443 and ASP 542
residues. Docking compound 8 onto the binding pocket of α-amylase and α-glucosidase
showed hydrophobic interactions of the H-π-type with α-amylase interface residues
HIS 296 and TYR 82 observed. With THR 204 residues of α-glucosidase, it formed π-H
hydrophobic interactions.

Compounds 9 and 11 showed uncompetitive inhibition while compound 10 had
competitive inhibition on both proteins. Compound 9 demonstrated binding affini-
ties of −11.4 and −10.3 kcal/mol against α-amylase and α-glucosidase, respectively.
It displayed conventional hydrogen interactions and hydrophobic π-H-type interac-
tions with α-amylase interface residues ASP, 340, GLN 35, and TYR 79, and HIS 296,
respectively. On analysis of its interaction with α-glucosidase, π-H hydrophobic inter-
actions with the ASP 327 residue was observed. With compound 10, binding scores
of −10.1 and −10.0 kcal/mol with α-amylase and α-glucosidase were observed, re-
spectively. The α-amylase ASP 340 and GLN 35 residues interacted with compound
10 forming hydrogen bonds. Hydrogen bond interaction was also observed in the
case of α-glucosidase with the enzyme ASP 327 residue. Compound 11 formed hy-
drogen bond-type interactions with ARG 204 and TRP 83 residues of the α-amylase
binding pocket. These resulted in a binding score of −12.3 kcal/mol. The molecule
formed hydrogen and a π-H type hydrophobic bonds with ARG 526 and PHE 575
residues, respectively, of the α-glucosidase. The binding affinity, in this case, was
−11.0 kcal/mol.

Acarbose was used as the control, showing a binding score of −17.6 kcal/mol with
α-amylase, and formed ordinally hydrogen bonds with residues ASP 206, GLU 230,
ASP 340, ASP 168, ARG 204, and TRP 83. In addition, it formed attractive electrostatic
forces with residue ASP 206. On the other hand, with α-glucosidase, a binding affinity
of −20.5 kcal/mol was recorded. With ASP 542, ASP 327, ASP 203, MET 444, ASP
474, HαIS 600, and ARG 526 residues of the binding pocket it formed hydrogen bond
interactions, in addition to an ionic bond with ASP 542. Apparently, the greater number
of H-bond interactions at the binding pocket in acarbose was a result of the higher
number of hydroxyl functional groups which formed hydrogen bonds with the active
sites’ amino acid residues [46]. In previously reported in silico studies, a number
of 1,2-benzothiazine and xanthone derivatives, 8-c-ascorbyl(-)-epigallocatechin, and
Voglibose also showed α-glucosidase inhibition through interaction with Asp203,
Asp542, and Arg526 pocket residues of the receptor protein [47–50]. Additionally,
reported molecular docking studies of 1, 2-benzothiazine derivative against α-amylase
indicated excellent binding affinities with the residues TRP83, ASP340, ARG 204, and
GLU 230 [51].
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In addition to the control molecules, the eleven ligands formed several other bonds
with main amino acid residues as can be seen in Figures S25–S28 which may interrupt
the normal physiological functions of these two enzymes. The natural products studied
through the molecular docking simulations in this work revealed significant binding
energies with the pocket residues for the two proteins. These compounds established
networks of different types of interactions (although fewer than the reference) that played
a part in the binding affinity of the calculated complexes and therefore affirmed their dual
inhibitory activity.

We demonstrate that compounds 1–11 are dual inhibitors, effective to both proteins
with comparable potency, and the docking studies results show that the compounds bind
to the active sites of the receptors with a good binding energy of interactions and RMSD
values. Importantly, all the studied compounds had formerly been reported to inhibit
α-glucosidase and α-amylase, with IC50 values of between 43.22 and 58.21 µM [12]. The
dual inhibitors involved in this study, as disruptors of a critical carbohydrate metabolic
process, provide a potential starting point for structural optimization in search of more
efficacious and highly potent carbohydrate metabolism inhibitors. The newly acquired
information on compounds 1–11 being some of the few compounds known to have a dual
inhibitory activity against α-glucosidase and α-amylase could be helpful in the future
to look for inhibitors of such enzyme systems. Furthermore, the current results add an
important component to the knowledge of these natural products’ mechanism(s) of action
in the management of diabetes. Lastly, it is important to mention that a virtual screening
of natural product libraries to yield an assortment of more hits is at the moment being
investigated and will be the subject of future communication.

4. Conclusions

In conclusion, this study aimed to find a potential duo inhibitor for α-amylase
and α-glucosidase from the phytochemicals of the medicinal plant Zanthoxylum chaly-
beum Engl., examined their mode of interaction with protein residues of the binding
pocket, and profiled their ADMET and Toxicity properties in silico. In comparison to the
standard control (acarbose), the compounds exhibited remarkable inhibition constants
(Ki), binding affinities and strong interactions with crucial pocket amino acid residues
of the α-amylase and α-glucosidase proteins. The results of this study indicate that
these molecules have the potential to be antidiabetic drugs by inhibiting α-amylase and
α-glucosidase which are responsible for the metabolism of carbohydrates into absorbable
simple sugars. Through inhibition of these enzymes, the absorption of dietary sugars
and the succeeding postprandial upsurge in blood glucose and insulin levels is limited.
However, more experimental studies are required to confirm the antidiabetic activity of
these compounds in vivo.

Supplementary Materials: The following supporting information can be downloaded at: https:
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plots for inhibition of α-amylase and α-glucosidase by compounds 1–11 and the reference acarbose;
Figures S25–S28: 2D and 3D interactions of compounds 1–11 and the reference acarbose with α-
amylase and α-glucosidase enzymes.
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