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Abstract
Studies on gray leaf spot (GLS) of maize have reported inconsistencies in the

relationship between partial disease resistance and agronomic traits. Understanding

this variation could facilitate the use of agronomic traits as a basis for selection to

improve partial resistance to GLS. Coinheritance of nine agronomic traits with partial

resistance to GLS was examined among 48 maize (Zea mays L.) inbred lines artifi-

cially infected with Cercospora zeina in field evaluations across nine environments in

western Kenya in 2013 and 2014. Five measures of disease severity and two disease

resistance components were evaluated for their association with agronomic traits.

Standardized area under disease progress curve (SAUDPC) was the most efficient

in delineating differences in GLS severity between genotypes, whereas latent period

(LP) was the least effective. Among maize genotypes, values of SAUDPC ranged

from 29.3 to 97.9 across environments. Genotypic and phenotypic correlations were

strongest between SAUDPC and the absolute rate of disease increase (ρ; r= .71), final

percent diseased leaf area (r = .66) and International Maize and Wheat Improvement

Center (CIMMYT) disease severity grade (r = .60), but weakest between SAUDPC

and LP (r = −.19). Correlations of SAUDPC were significant (P = .05) with eight

of the 11 agronomic traits examined, with the strongest being between SAUDPC and

the stay-green characteristic (SGR; r = −.87), days to maturity (DTM; r = −.60) and

ear/plant height ratio (r=−.52). Genotypic and phenotypic coefficients of correlation

Abbreviations: AIC, Akaike’s information criterion; BCFI, Bentley’s comparative fit index; CDSG, International Maize and Wheat Improvement Center

disease severity grade; CIMMYT, International Maize and Wheat Improvement Center; CMA, causal mediation analysis; DTA, days to anthesis; DTM, days

to maturity; DTS, days to silking; EH, ear height; EH/PH, ear/plant height ratio; EPP, number of ears per plant; FPDLA, final percent disease leaf area; GLS,

gray leaf spot; H2, broad-sense heritability; LP, latent period; LPP, number of leaves per plant; PDLA, percent disease leaf area; PDLAIP, percent disease leaf

area at the inflection point; PH, plant height; QTL, quantitative trait loci; RMSEA, root mean square error approximation; SAUDPC, standardized area under
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2 NYANAPAH ET AL.Crop Science

of SAUDPC with agronomic traits were all negative. Overall, absolute genotypic cor-

relations were numerically larger than the corresponding coefficients of phenotypic

correlation with the magnitude and direction of coheritability estimates mimicking

trends in genotypic and phenotypic correlations. Causal mediation analysis indicated

that covariation of GLS resistance with agronomic traits was mainly due to direct

effects of days to anthesis and DTM and indirect effects of SGR and silking–maturity

interval.

1 INTRODUCTION

Genotypic correlation between traits is often an indicator

of the direction and magnitude of correlated response to

selection, relative efficiency of indirect selection based on

correlated secondary traits and thus, facilitates computa-

tion of multiple trait selection indices (Falconer & Mackay,

1996). Correlation of traits indicates linkage and/or pleiotropy

of pertinent genes, whose segregation accounts for phe-

notypic covariation. However, pleiotropy may be absent if

traits are influenced to a similar extent by environmental

conditions manifested as nonheritable correlation. This phe-

nomenon, referred to as environmental correlation, directly

contributes to deviation of phenotypic or genotypic corre-

lation from coheritability due to the confounding effects of

the environment (Holland, 2006; Vasquez-Kool, 2019). Since

coheritability depicts the concurrent or recursive inheritance

of traits, it reflects the effectiveness of tandem selection

and facilitates the development of appropriate methods to

incorporate multiple desirable traits into new germplasm.

Previous studies on the relationship between partial resis-

tance to gray leaf spot (GLS) in maize (Zea mays L.) and

agronomic traits have reported mixed results. For example,

Rupe et al. (1982) indicated that plant maturity was critical

in late-season development of GLS, with initial symptoms

not appearing until plants approached anthesis. A 3-wk delay

in planting caused a corresponding delay in the appearance

of symptoms. However, Hilty et al. (1979) reported con-

currence of initial disease symptoms with silk emergence

regardless of genotype maturity, wherein the number of GLS

lesions increased as plants approached senescence. Examina-

tion of stomatal penetration by the GLS pathogen in maize

demonstrated that host resistance is ontogenic, regardless of

the level of varietal resistance (Gwinn et al., 1987). Fur-

ther, the discordance between early and late-disease ratings

among genotypes suggested that early and late-season resis-

tance involved different loci (Bubeck et al., 1993). Coates and

White (1994) corroborated this finding when they reported a

different gene action for resistance in early and late-disease

ratings. Understanding the inconsistency between GLS resis-

tance and agronomic traits can facilitate the identification of

agronomic traits that could serve as surrogate for resistance,

particularly in early generation trials where more emphasis is

often placed on the phenology of genotypes.

A significant negative phenotypic correlation between GLS

severity and days to anthesis (DTA) was reported by Derera

et al. (2008). However, this observation did not sufficiently

explain the protection of late-maturing hybrids against GLS.

It was hypothesized that environmental factors regulated the

strength of the relationship between earliness and resistance

since the correlation was significant in only one of three trial

environments (Balint-Kurti et al., 2008). Similarly, Gordon

et al. (2006) observed a negative but weak and nonsignificant

correlation between GLS severity and days to silking (DTS)

and concluded that resistance was not significantly affected

by earliness of flowering as previously reported by Menkir

and Ayodele (2005). The observed correlation between GLS

resistance and plant maturity in molecular markers studies has

equally yielded mixed results. For example, a quantitative trait

locus (QTL) on chromosome 4 associated with DTS (Bubeck

et al., 1993) was linked to a QTL for resistance in a separate

study (Saghai Maroof et al., 1993). However, in a subsequent

study, QTLs associated with GLS resistance did not colo-

calize with those associated with DTA (Balint-Kurti et al.,

2008). Clement et al. (2000) observed that only one of the four

QTLs associated with ear/total plant height ratio (EH/PH) was

associated with ear height (EH) and GLS resistance. While

some of the above studies indicate that DTA, days to maturity

(DTM), and EH/PH are correlated with each other and with

GLS resistance, there are no reports that describe the direct

and indirect effect of agronomic traits on GLS resistance.

Other aspects of maize phenology that have also been

investigated for phenotypic association with GLS resistance

include PH, EH, ear aspect (EA, i.e., visual appeal of a

dehusked ear), grain yield, and plant aspect (PA, i.e., visual

appeal of a plant). Menkir and Ayodele (2005) reported that

GLS severity was significantly correlated with PA, EA, and

grain yield, but not with plant height (PH) and EH. However,

the relevance of PA is unclear given that highly suscep-

tible genotypes are bound to have a lower visual appeal.

Although Clement et al. (2000) reported that GLS sever-

ity was correlated with EH/PH, the correlations were weak

and nonsignificant in four of the 12 environments included

in their study. In addition, only one out of the four QTLs
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NYANAPAH ET AL. 3Crop Science

associated with EH/PH colocalized with a QTL for GLS resis-

tance (Clement et al., 2000). A better understanding of the

inconsistency between GLS resistance and plant maturity or

EH/PH can facilitate selection of breeding approaches that

simultaneously improve resistance and agronomic traits to

optimize yield.

Since its conceptualization by Wright (1934), path coef-

ficient analysis has been used extensively in genetics and

other sciences to decompose the total effects of component

independent traits and/or variables into direct and indirect

effects on correlated traits and/or variables. In its essence,

path analysis is a form of structural equation modeling (SAM),

a powerful tool for describing the relationships between three

or more variables (Dudley et al., 2004). Causal mediation

analysis (CMA) is another form of SAM that describes the

strength of the sequence by which antecedent variables affect

mediating variable(s) that ultimately influence a dependent

variable (Shrout & Bolger, 2002). Comparative analysis of

the effectiveness of classical path analysis and CMA in

modeling mechanisms underlying coinheritance of traits is

lacking in plant genetics. In addition, path analysis models

in plant genetic studies usually exclude endogenous medi-

ation variables, despite this being the standard approach in

contemporary SAM in other fields (Shrout & Bolger, 2002).

Prediction of dependent variables is greatly improved when

mediation (intervening) variables are included in SAM as

mediator(s) of indirect effects of causal (independent) vari-

able(s). While studies indicate that DTA, DTS, DTM, and

EH/PH are significantly correlated with each other and with

GLS resistance (Clement et al., 2000; Derera et al., 2008;

Menkir & Ayodele, 2005), there are no reports of direct and

indirect effects of maize phenology on GLS resistance. Simi-

larly, no studies have been conducted on the coheritability or

genotypic correlation of partial resistance to GLS with these

agronomic traits.

Given the above considerations, the goal of this study was

to determine the prospect of using of agronomic traits as

a basis for truncated, tandem, or index selection aimed at

improving partial resistance to GLS. The specific objective of

the study was to use genotypic correlations and coheritability

estimates in CMA to examine and develop an empirical con-

struct of the genetic association between agronomic traits and

partial resistance to GLS in maize.

2 MATERIALS AND METHODS

2.1 Genotypes, planting, field layout and
inoculation

Forty-eight inbred lines from the International Maize and

Wheat Improvement Center (CIMMYT) germplasm collec-

tion were used in this study (Supplemental Table S1). These

genotypes are among the most genetically diverse in the world

Core Ideas
∙ Resistance correlated with stay green character-

istic, days to maturity, and ear to plant height

ratio.

∙ Coheritability of earliness and ear to plant height

ratio with disease resistance is moderate.

∙ Days to anthesis indirectly mediates genetic corre-

lation of stay green characteristic with resistance.

∙ Effects of days to silking and days to maturity on

partial resistance to gray leaf spot were more or less

direct.

and are considered useful for broadening the genetic base

of other maize germplasms (Fan et al., 2010). These geno-

types were evaluated in nine environments in western Kenya

in 2013 and 2014, with each environment representing a single

location–year–season combination (Table 1). In each environ-

ment, inbred lines were planted in plots consisting of three

3-m rows spaced 0.75-m apart. Within the rows, seeds were

sown in hills spaced 0.25-m apart by placing two kernels per

hill and covering with a 2- to 3-cm layer of topsoil. Each hill

received 5 g of diammonium phosphate fertilizer (DAP-46) at

planting.

To reduce inter-plot interference, plots were separated from

each other by two rows of a non-host, sorghum (Sorghum
bicolor L. Moench) cultivar Seredo (Kenya Seed Co. Ltd).

Inbred lines were evaluated in a randomized complete block

design with four replications and layouts of each plot were

generated with PROC PLAN of SAS version 8.2. To limit

the risk of early natural infection of plants with GLS before

artificial inoculation, planting was carried out immediately

at the start of the growing season in plots that were at least

75 m away from sites where maize had been grown in the

previous season. Besides pesticide application, all standard

agronomic and cultural practices recommended for maize

were followed in all environments. To limit specific host ×
pathogen interaction that would confound host genotype ×
environment interaction, a wildtype mixed population of C.
zeina was used to inoculate plants between V2 and V3 growth

stage as described by Nyanapah et al. (2020).

2.2 Data collection

2.2.1 Disease assessment and resistance
components

Five measures of disease severity, that is, percent diseased

leaf area (PDLA), CIMMYT (1985) disease severity grade

(CDSG), final PDLA (FPDLA), standardized area under
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4 NYANAPAH ET AL.Crop Science

T A B L E 1 Locations and weather attributes of environments used to characterize quantitative resistance of gray leaf spot of maize in western

Kenya

Seasona Location Longitude Latitude Rainfall Mean day temp. Mean night temp. RHb Environmentc

mm ˚C %

2013
LR Kadongo 34˚35′56″ E 0˚12′08″ S 812 32.4 16.8 58 E1

Kapuonja 34˚35′54″ E 0˚00′24″ S 765 28.6 14.0 60 E2

Kehancha 34˚36′54″ E 1˚11′38″ S 861 32.7 17.8 61 E3

SR Kadongo 34˚46′04″ E 0˚41′02″ S 963 28.2 15.1 58 E4

Kapuonja 34˚35′56″ E 0˚12′08″ S 659 30.2 16.8 59 E5

Kehancha 34˚36′54″ E 1˚11′38″ S 773 32.6 19.6 59 E6

2014
LR Kadongo 34˚43′18″ E 0˚31′28″ S 862 29.4 14.8 58 E7

Kapuonja 34˚35′56″ E 0˚12′08″ S 798 28.7 18.2 62 E8

Kehancha 34˚36′54″ E 1˚11′36″ S 804 29.8 15.6 60 E9

aThe long rains (LR) season is from March to July, while the short rains (SR) season is from August to November. Values of weather variables are either total (rainfall) or

means (temperature and relative humidity) across the entire season.
bRH, Relative humidity.
cE refers to the serial number of an environment.

disease progress curve (SAUDPC), and percent diseased leaf

area at the inflection point (PDLAIP) and two disease resis-

tance components, that is, late period (LP) and the weighted

mean absolute rate of disease increase (ρ), were quantified and

reported as described by Nyanapah et al. (2020).

2.2.2 Agronomic traits

Eleven agronomic traits were recorded for test genotypes

using six tagged plants randomly selected in each plot except

for DTA, DTS, and DTM, which were measured on all plants

in a plot.

Plant height was recorded as the height (cm) between the

plant base and point of insertion of the lowest tassel branch,

EH was recorded as the height (cm) between the plant base

to the point of insertion of the topmost ear, ET/PH was cal-

culated as the ear height divided by the plant height, and the

number of leaves per plant (LPP) was recorded by dividing the

total number of leaves in the middle row of each plot by the

total number of plants in a row at the R4 stage (Ritchie et al.,

1993). The number of ears per plant (EPP) was recorded by

dividing the total number of ears in the middle row of each plot

by the total number of plants in that particular row at the R6

growth stage, DTA was recorded as the number of days from

sowing to the day when 50% of the plants in each plot started

to shed pollen, DTS was recorded as the number of days from

sowing to the day when ears in 50% of plants in each plot

started to expose their silk (i.e., attained the R3 growth stage),

DTM was recorded as the number of days from sowing to the

day when ears in 50% of plants in each plot attained physio-

logical maturity (R6 growth stage), anthesis–silking interval

was recorded as the difference between DTS and DTA, and

the silking–maturity interval (SMI) recorded as the difference

(d) between DTM and DTS. The stay-green characteristic

(SGR) was rated on a scale of 1 to 10 at R6 as described by

Bekavac et al. (2007).

2.3 Statistical analyses

All statistical analyses were conducted based on single-plot

data composed of the mean of measurements taken over

six sampled plants for all traits except for DTP, DTS, and

DTM. Data for the latter three traits comprised of a single

measurement taken from the entire plot.

2.3.1 Exploratory data analysis and
processing

Unless otherwise stated, all parameters were estimated under

the following assumptions: (a) inbred lines are fully inbred,

that is, inbreeding coefficient of a line = 1.0, (b) effect of

inbred sets is fixed, and (c) effects of genotypes, environ-

ments, and replications are random. A series of exploratory

analyses were conducted to test and correct for heterogene-

ity of error variances. Each location–season–year data were

first analyzed separately as a distinct environment before

combining for appropriate analyses over environments.

Single environment analysis of variation (ANOVA) for par-

titioning out structured plot error was based on the model:

𝑌𝑖𝑗𝑘 = μ + 𝐺𝑖 + 𝑅𝑗 + 𝑒𝑖𝑗𝑘, where Yijk is the observation on

plot k with the replication j of genotype i (i.e., a particular
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NYANAPAH ET AL. 5Crop Science

inbred entry), μ is the mean of all plots in the set and envi-

ronment (i.e., mean over all replications and all genotypes),

G is the effect of genotype i, R is the effect of replica-

tion j in the environment, and eijk is random effect of plot

error (i.e., residual). Residuals for individual environments

were then inspected for normality using the Shapiro–Wilk

test and data corrected for normality and subjected Levene

test for homogeneity of error variance for combined ANOVA

over environments (SAS Institute, 1999). Data violating the

normality assumptions of ANOVA were subjected to the

corrective transformations depending on the nature of the

violation (Supplemental Table S2). Where entry means and

their corresponding standard errors were computed based on

transformed observations, the values were back-transformed

to present them in the original units of measurement for the

considered traits.

Evaluation of disease assessment and resistance
component variables
The most useful disease assessment or resistance component

variable to quantify disease resistance for inclusion in the

genetic analyses was determined as described by Nyanapah

et al. (2020). The ANOVA of appropriately corrected data of

each trait nested within trial environments were all based on

the following linear model: 𝑌𝑖𝑗𝑘𝑥 = μ𝑥 + 𝐺𝑖𝑥 +𝑅𝑗𝑥 + 𝑒𝑖𝑗𝑘𝑥,

where x is the trait of interest, and all other variables are as

described above. The ANOVA of each trait pooled over trial

environments was based on the following model: 𝑌𝑖𝑗𝑘𝑥 = μ𝑥 +
𝐸𝑘𝑥 + 𝐺𝑖𝑥 + RE𝑗𝑘𝑥 + GE𝑖𝑘𝑥 + 𝑒𝑖𝑗𝑘𝑥, where Ekx is the effect of

environment k on trait x, REjkx is the effect of replication j
within environment k on trait x, GEikx is the effect of the inter-

action between genotype i and environment k on trait x, and

all other variables are as described above.

Estimation of variance and covariance components
Analysis of variance for appropriately processed data was

implemented to facilitate additive decomposition of com-

ponents of variance attributed to the different sources of

variation of phenotypes (SAS Institute, 1994). Actual coef-

ficients of expected mean squares and cross products were

obtained to estimate variance and covariance components

by equating actual mean squares corresponding to specific

sources of variation and their expected values (Hallauer

et al., 2010). Covariance components and their asymptotic

variance–covariance matrices were estimated based on results

of multivariate analysis of variance (MANOVA) invoked with

METHOD = TYPE1 option of multivariate PROC GLM.

Estimates of the phenotypic and genotypic components of

covariance between variate x (i.e., resistance ratings) and

covariate y (i.e., agronomic trait ratings) were extracted from

MANOVA results using the method-of-moments by equating

expected mean sum of cross products to their actual values

(Mode & Robinson, 1959).

2.3.2 Estimation of repeatability and
broad-sense heritability

Repeatability and broad-sense heritability were estimated as

described by Campbell and Lipps (1998). Standard errors

(SE) of the genotypic component of variance were approxi-

mated and subsequently used to approximate SE of the broad

sense heritability estimates. The heritability estimates were

declared significant if values exceeded 1.96 SE (Campbell &

Lipps, 1998). The approximate 95% confidence interval (CI)

of repeatability estimates were computed as the estimates ±
1.96 SE. Repeatability estimates were declared significantly

different from zero if the approximate 95% CI did not include

zero.

2.3.3 Estimation of association between
partial resistance and agronomic traits

Coefficients of phenotypic correlation (𝑟𝑝𝑥𝑦 ) between trait

pairs x and y within environments were calculated as

described by Sodini et al. (2018). Here, SEs of the estimated

phenotypic correlation coefficients were approximated using

the jackknife method (Singh et al., 1997) and an approxi-

mate 95% CI for the correlations was calculated as described

above. Phenotypic correlation coefficients were declared sig-

nificant if their approximate 95% CI did not include a value

of zero. Genotypic correlations between resistance and agro-

nomic traits were estimated from genotypic covariances and

phenotypic components of variance for the corresponding

traits using the method of moments. Standard errors of

genotypic correlations and approximate 95% CI were calcu-

lated as described above. Coheritability (𝐶ℎ𝑥𝑦
) between trait

pairs were computed from phenotypic and genotypic vari-

ances as described by Vasquez-Kool (2019). Similarly, SE

of and coheritability estimates were calculated as described

by Vasquez-Kool (2019) and estimates of coheritability were

declared significant as described above.

2.3.4 Structural equation modeling

Model assumptions
Six elements were emphasized in the validation of path anal-

ysis and causal mediation models: (a) no skewness or kurtosis

in the joint distribution of the variables, (b) all variables were

continuous, (c) there were negligible (i.e.,< .05) missing data,

(d) there was only first-order relationships between variables,

(e) there was no multi-collinearity among the independent

variables, and (f) residuals of all covariances were small and

centered around zero. In addition, every mediation variable

(and their residual terms) was assigned a scale as described

by Yung (2010).
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6 NYANAPAH ET AL.Crop Science

F I G U R E 1 Simple path diagram depicting the relationship

between gray leaf spot (GLS) resistance and agronomic traits for 48

elite maize inbred lines artificially inoculated with Cercospora zeina
and evaluated across nine environments in western Kenya. Parameters

b1 to b9 are path coefficients for the relationship between pertinent

agronomic traits and resistance to GLS; c1 to c3 are covariance values

between pertinent exogenous variables; and ei represents the errors

associated with measurement of pertinent variables

Variable specification
To avoid bias in selection of predictor variables included the

causal mediation analysis, relationships between SAUDPC

and agronomic traits were pretested using best-subsets regres-

sion implemented with PROC REG (SAS Institute, 1999).

Out of the 210 possible SAUDPC prediction models, only

agronomic traits within the nine-predictor-variable model

with the largest chi-square score were advanced to causal

mediation analysis. Based on this criterion, EPP and anthesis–

silking interval were excluded from the structural equation

analysis.

Basic path analysis model specification
The basic path model was designed based on the hypothe-

sis that all agronomic variables retained after the best-subsets

regression significantly affected partial resistance to GLS.

The hypothesized paths and in the basic multiple regression

model (Figure 1) were set up by entering each selected agro-

nomic trait with resistance (i.e., inverse of SAUPDC) using

the RAM syntax of PROC CALIS.

Causal mediation model specification
Conceptual framework for the tentative causal mediation

model (Figure 2) was based on a mixture of intuition, estab-

lished theory, known aspects of maize phenology, and the

temporal sequence of measurement of the retained agronomic

variables. For instance, EH/PH is computed after measure-

ment of EH and PH. Thus, EH/PH was presumed to mediate

effects of EH and PH. Similarly, SMI is the difference between

DTS and DTM. Thus, SMI was the presumed mediator of the

effects of DTS and DTM. Previous studies have reported that

flowering of maize terminates internode elongation, increase

in PH, and production of new leaves (Fournier & Bruno,

2000). Thus, DTA preceded PH, EH, and LPP. Other studies

have shown that the duration of vegetative growth in maize

affects SGR (Bekavac et al., 2007). Thus, DTA was hypothe-

sized to be a predictor of SGR since it marks truncation of the

vegetative phase of growth. In addition, increased number of

leaves has previously been linked to low placement of the pri-

mary ear in maize (Muirhead & Shaver, 1985). Thus, LPP was

regarded as an additional predictor of EH/PH. Contribution of

exogenous variables to prediction of resistance, computed as

the inverse of SAUDPC, was tested by principal component

analysis using PROC PRINCOMP. To optimize model parsi-

mony, only exogenous variables that predicted resistance with

eigenvalues > 1.0 and collectively accounted for under 90% of

the total variation in resistance were included as mediators.

Based on these criteria, only DTS and DTM were retained as

direct predictors of resistance (Figure 2).

Structural equations corresponding to hypothesized causal

mediation model were transcribed directly in the LINEQS

statement of PROC CALIS in SAS by entering the exoge-

nous (DTA, DTS, and DTM) and endogenous (EH, EH/PH,

PH, LPP, SGR, and SMI) variables with resistance as the

response variable. Precision of path coefficient estimates was

optimized by entering observed values of exogenous vari-

ables into the mediation path model as the true score plus a

measurement error term attributed to variation in accuracy of

measurements (Yung, 2010). This approach was formalized

by the function,𝑓 (ϕ) = ϕ + 𝑒ϕ, to create a latent predictor

variable 𝑓 (ϕ), which is the true, but unobserved score that

equals the observed score, ϕ, plus a presumed measurement

error, 𝑒ϕ. To minimize risk of under-identification, some error

covariances and variances were constrained using the PCOV

and PVAR statements of PROC CALIS as described by Yung

(2010).

Model estimation and evaluation
Standardized model parameters and accompanying statistics

for statistical validation based on the default maximum like-

lihood method were subsequently estimated using PROC

CALIS. To limit complication of the tentative causal medi-

ation model, only covariance parameters justified by theo-

retical or substantive logic were added to the model. For
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NYANAPAH ET AL. 7Crop Science

F I G U R E 2 Tentative mediation path diagram of the relationship between gray leaf spot (GLS) resistance and agronomic traits for 48 elite

maize inbred lines artificially infected with Cercospora zeina and evaluated across nine environments in western Kenya. RES, resistance computed

as inverse of standardized area under disease progress curve (i.e., RES = 1/SAUDPC); PH, plant height; EH, ear height; EH/PH, ear height relative to

plant height; DTA, days to anthesis; DT, days to silking; DTM, days to maturity; LPP, number of leaves per plant; SMI, silking-physiological

maturity interval; SGR, stay-green characteristic. Parameters b1 to b9 are path coefficients for the relationship between pertinent agronomic traits and

resistance to GLS; c1 to c3 are covariance values between pertinent exogenous variables; and e1 to e8 are errors associated with measurement of

pertinent variables.

example, DTA and DTS are assumed to have a part of their

correlation beyond their common latent origins. As such,

this “extra” correlation was conceptualized in the model

as a correlation (or covariance) between the errors of the

two variables represented by a double-headed arrow con-

necting the two variables as shown in the path diagram.

Similarly, QTL associated with flowering of maize and PH

are pleiotropic and height-related traits are genetically corre-

lated with flowering of maize (Cui et al., 2017). As such, PH

and EH were connected to DTA by double arrows to represent

covariance of their errors. The logic justified path specifica-

tions that included correlated and explicit error parameters

(Figure 2).

To assess the overall performance of the path model, the

ON(PNLY) option in the FITINDEX Statement of PROC

CALIS was used to customize output of model fit sum-

mary with only the five most useful statistics; (a) adjusted

goodness-of-fit index (AGFI), (b) Akaike’s information cri-

terion (AIC), (c) Bentley’s comparative fit index (BCFI), (d)

root mean squared error approximation (RMSEA), and (e)

mean square residual (SRMSR). Small SRMSR and RMSEA

(i.e., < 0.05) and large AGFI and BCFI (i.e., > 0.9) values

were deemed indicators of good model fit. The AIC values

were compared to determine which of the multiple models

best balanced model for the considered dataset, with smaller

values indicating better fit and a model with a ΔAIC (the
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8 NYANAPAH ET AL.Crop Science

F I G U R E 3 Revised mediation path diagram of the relationship between gray leaf spot (GLS) resistance and agronomic traits for 48 elite maize

inbred lines artificially infected with Cercospora zeina and evaluated across nine environments in western Kenya. RES, resistance computed as

inverse of standardized area under disease progress curve (i.e., RES = 1/SAUDPC); PH, plant height; EH, ear height; EH/PH, ear height relative to

plant height; DTA, days to anthesis; DT, days to silking; DTM, days to maturity; LPP, number of leaves per plant; SMI, silking-physiological

maturity interval; SGR, stay-green characteristic. Romanized values are path coefficients for the relationship between pertinent agronomic traits and

resistance to GLS; italicized values are covariance values between pertinent exogenous variables; Romanized values within ovals are errors

associated with measurement of pertinent variables

difference between the two AIC values being compared) >2

being deemed significantly better.

Model modification
Only the CMA model was modified with initial fit statis-

tics. To test potential for improvement of model fit and

guide model modification, Lagrange multiplier test indices

and Wald statistics were extracted using the MODIFICA-

TION option of PROC CALIS. Model modification was

then performed by: (a) by freeing parameters fixed a pri-

ori (b) by fixing parameters freed in the tentative model as

described elsewhere (SAS Institute, 1999), and/or (c) by omit-

ting parameters whose estimates were not significant (α= .05)

from the revised model (Figure 3).

3 RESULTS

3.1 Disease assessment variable to quantify
GLS resistance

Disease severity across all the environments ranged from 57%

recorded in E3 to 70% that was recorded in E7 (Figure 4).

Environments E1, E2, E7, E8, and E9 were highly favorable

(i.e., severity >65%) for disease development, whereas E3,

E4, E5, and E6 were moderately favorable (50% > severity

≤ 65%) to disease development.

Of the six disease variables used to quantify resistance,

SAUDPC explained the greatest proportion of the variation

(R2 = 89.4%) in the ANOVA model. Among other factors
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NYANAPAH ET AL. 9Crop Science

F I G U R E 4 Estimates of repeatability, mean disease severity and number of significant differences among standardized area under the disease

progress curve scores of 48 elite maize inbred lines artificially infected with Cercospora zeina and evaluated across nine environments in western

Kenya. Mean disease severity is the average gray leaf spot severity across all inbred lines in each environment.

(Nyanapah et al., 2020), SAUDPC was thus selected as

the primary disease variable for subsequent evaluation of

the relationship between GLS resistance and agronomic

traits.

3.2 Repeatability estimates

Estimates of repeatability (τ2) ranged from .09 to .82 depend-

ing on the environment (Table 2). Among disease variables,

τ2 were lowest for LP and highest for SAUDPC and CDSG

(τ2 = .68) across environments. Estimates of repeatability

were significantly different from zero for all disease variables

except for LP. Among agronomic traits, estimates were low-

est for SGR (τ2 = .35) and highest for PH (τ2 = .77) across

environments (Table 2).

Comparison of τ2 across environments showed that lower

estimates were more common in environments that exhibited

lower rather that higher within-trial variability of SAUDPC

(Figure 4). For example, τ2 were lower in E2 and E7, which

also had a corresponding lower number of significant differ-

ences among entries. In contrast, τ2 was highest in E3 and

E5, which also had the highest number of significant differ-

ences in SAUDPC values among entries. In general, high τ2

for SAUDPC were observed in environments that were mod-

erately favorable for disease development (i.e., intermediate

mean severity), such as E5 and E6 (Figure 4). However, the

highest τ2 for SAUDPC was observed in E3, which had the

broadest range of disease severity among inbred lines, even

though this environment had the lowest mean disease sever-

ity. The lowest τ2 for SAUDPC was observed in E7, which had

the highest mean disease severity but less within-environment

variability of inbred disease severity (Figure 4).

3.3 Broad-sense heritability estimates

Estimates of broad-sense heritability (H2) of GLS severity and

agronomic traits pooled over all environments were all signif-

icantly (P ≤ .05) different from zero except for LP and ranged

from .22 (for PDLAIP) to .78 (for LPP; Table 3). Among the

disease variables, H2 were high (i.e., >.65) for SAUDPC and

FPDLA but low (i.e., ≤.45) for PDLAIP and LP. Similarly,

among agronomic traits, H2 were high (≥.70) for LPP and PH

and low (≤.47) for EH and SGR.

Estimates of H2 were also affected by the how favorable

trial environments were to disease development. For example,

H2 increased when data were pooled over three environments

with moderate levels of disease (i.e., E3, E4, and E5) for all

traits except FPDLA, PDLAIP, EH/PH, DTS, and SMI. In

contrast, H2 decreased for all traits except SAUDPC and ρ,

when data were pooled over three environments most favor-

able for disease development (i.e., E1, E2, and E7; Table 3).

Regardless of the favorability of environmental conditions

for disease development, H2 remained consistently higher

for SAUDPC than FPDLA among disease variables and

consistently higher for LPP than PH among agronomic traits

evaluated (Table 3).
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10 NYANAPAH ET AL.Crop Science

T A B L E 2 Estimates of repeatability for gray leaf spot (GLS) resistance assessment and agronomic traits for elite maize inbred lines artificially

infected with Cercospora zeina in nine environments in western Kenya

Repeatability in environmenta

Variable E1 E2 E3 E4 E5 E6 E7 E8 E9 Mean
GLS assessmentb

SAUDPC .69* .64* .78* .61* .72* .68* .60* .70* .68* .68

ρ .56* .59* .62* .53* .61* .57* .55* .59* .55* .57

FPDLA .63* .70* .69* .61* .59* .73* .68* .68* .61* .66

CDSG .68* .70* .66* .67* .75* .64* .71* .68* .59* .68

PDLAip .61* .57* .62* .48* .60* .47* .51* .47* .59* .55

LP .17 .24* .15 .21 .18 .23 .12 .09 .12 .17

Agronomic traitc

SGR .38* .35* .32* .34* .41* .37* .33* .29* .32* .35

DTM .49* .43* .46* .45* .38* .38* .46* .35* .40* .42

EH/PH .51* .52* .57* .56* .59* .57* .55* .53* .43* .54

DTS .45* .47* .45* .54* .46* .54* .42* .47* .50* .48

LPP .64* .65* .56* .62* .66* .68* .64* .59* .63* .63

PH .82* .74* .82* .74* .75* .78* .76* .69* .81* .77

DTA .69* .74* .67* .66* .70* .68* .67* .69* .64* .68

SMI .60* .65* .59* .66* .57* .66* .55* .54* .59* .60

EH .57* .58* .48* .51* .53* .49* .56* .47* .48* .52

Note. Means are average of repeatability estimates across all environments.
aE denotes the serial number of environment and specific details of the environments are presented in Table 1.
bSAUDPC is standardized area under disease progress curve; ρ is the weighted mean absolute rate of disease increase; FPDLA is final percent diseased leaf area; CDSG

is CIMMYT (1985) disease severity grade; PDLAip is percent diseased leaf area at inflection point; and LP is latent period.
cSGR is the Stay-green characteristic; DTM is days to maturity; EH/PH is ear height relative to plant height; DTS is days to silking; LPP is number of leaves per plant;

PH is plant height; DTA is days to anthesis; SMI is silking-physiological maturity interval; and EH is ear height.

*Significant at the .05 probability level.

3.4 Phenotypic correlation and components
of covariance estimates

Absolute values of coefficients of phenotypic correlation of

SAUDPC with agronomic traits ranged from .16 (with EH) to

.84 (with SGR) with different levels of statistical significance

(Table 4). Among the disease variables examined, phenotypic

correlation of SAUDPC was strongest with CDSG (r = .60;

P < .01) and weakest with LP (|r| = .19; P > .05). Out of

the agronomic traits examined, the strongest correlation was

between SGR and CDSG (|r| = .96; P < .01), whereas the

weakest correlation was between EH and LP (r = .02; P > .05;

Table 4).

Phenotypic correlations between SAUDPC and agronomic

traits were all negative ranging from −.84 to −.28, and sig-

nificant (P < .01) except with EH (r = −.16; P > .05).

In contrast, phenotypic correlations between LP and agro-

nomic traits were all positive, weak (.02 ≤ r ≤ .21), and

nonsignificant. Phenotypic correlations of the remaining

disease assessment variables with all agronomic traits fol-

lowed the same trends as those between SAUDPC and

agronomic traits but with slightly lower coefficients except

for correlation of FPDLA and CDSG with SGR, where coeffi-

cients were much higher (r = −.92 and r =−.96, respectively;

Table 4). Estimates of phenotypic components of covariance

between SAUDPC and agronomic traits ranged from −127.6

to −0.78 (Supplemental Table S3).

3.5 Genotypic correlation estimates

Absolute values of the coefficients of genotypic correlations

were generally larger than their corresponding phenotypic val-

ues and ranged from .05 to .89 (Table 4). Further, the strength

and direction of genotypic correlations were broadly similar to

the trends observed for estimates of phenotypic correlations.

For example, genotypic correlations between SAUDPC and

all the other traits ranged from −.16 (with EH) to −.87 (with

SGR) with all these values being significant (P < .05) except

for SAUDPC with LP and EH (Table 4). Negative, moderate

(−.31) to strong (−.87), and significant (P < .05) genotypic

correlations were observed between SAUDPC and all agro-

nomic traits except with EH (r = −.16; P > .05). In contrast,

genotypic correlations between LP and agronomic traits were

all positive, weak, and nonsignificant except those with SGR,

where coefficient was the strongest and significant (r = .42;

P < .01).
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NYANAPAH ET AL. 11Crop Science

T A B L E 3 Mean, standard error (Std error), and estimates of broad-sense heritability (H2) for gray leaf spot (GLS) resistance assessment and

agronomic traits for 48 elite maize inbred lines artificially infected with Cercospora zeina in western Kenya

H2a

Variable Mean Std error
Pooled over all 9
environments

Pooled over 3 least GLS
favorable environments

Pooled over 3 most GLS
favorable environments

GLS assessmenta

SAUDPC 51.7 8.4 .67* .75* .72*

ρ 0.01 0.10 .56* .62* .59*

FPDLA 63.2 10.3 .69* .67* .59*

CDSG 2.2 0.4 .64* .69* .61*

PDLAIP 37.4 4.4 .22* .17* .13*

LP 23.6 4.9 .33* .41* .31*

Agronomic traitb

SGR 95.3 9.8 .45* .51* .43*

DTM 0.35 0.02 .52* .53* .45*

EH/PH 60.1 5.7 .47* .42* .38*

DTS 12.6 1.1 .57* .55* .46*

LPP 104.0 11.3 .78* .80* .67*

PH 51.5 5.6 .70* .69* .64*

DTA 32.1 2.9 .61* .62* .56*

SMI 36.4 3.7 .51* .49* .42*

EH 95.3 9.8 .45* .51* .43*

aE3, E4, and E5 were the three moderately favorable environments, whereas E1, E2, and E7 (See Table 1) were the three most favorable environments for disease

development.
bSAUDPC is standardized area under disease progress curve; ρ is the weighted mean absolute rate of disease increase; FPDLA is final percent diseased leaf area; CDSG

is CIMMYT (1985) disease severity grade; PDLAIP is percent diseased leaf area at inflection point; and LP is latent period.
cSGR is the Stay-green characteristics; DTM is days to maturity; EH/PH is ear height relative to plant height; DTS is days to silking; LPP is number of leaves per plant;

PH is plant height; DTA is days to anthesis; SMI is silking-physiological maturity interval; and EH is ear height.

*Significant at the .05 probability level.

Genotypic correlations of the remaining disease variables

with agronomic traits followed the same trends as those

between SAUDPC and agronomic traits but were slightly

lower except for correlation of FPDLA with DTM and LPP

for which the coefficients were much higher (r = −.65 and

r = −.42, respectively; Table 4). The strongest genetic cor-

relation between disease variables and agronomic traits was

observed between SAUDPC and SGR (|r| = .87; P < .01),

whereas the weakest correlation was between LP and SMI

(r = .05; P > .05; Table 4). Among disease variables,

coefficients of genotypic correlation were strongest between

SAUDPC and ρ (r = .71; P < .01) and weakest between

PDLAIP and LP (|r| = .18; P > .05). Genotypic components

of covariance involving SAUDPC were strongest with DTM

(estimate = −77.90) and weakest with EH (estimate = −4.62)

(Supplemental Table S3).

3.6 Coheritability estimates

Trends in coheritability followed a pattern similar to those

of phenotypic and genetic correlations, with coheritability of

SAUDPC with agronomic traits being negative and signifi-

cant except for coheritability of SAUDPC with EH and LPP

(Table 5). Coheritability values involving LP and agronomic

traits were all positive and nonsignificant. Similarly, coheri-

tability of ρ, FPDLA and CDSG with SGR while negative,

were nonsignificant. The highest estimate involving SAUDPC

occurred with DTA (|𝐶ℎ𝑥𝑦
| = 0.46; P < .05), whereas the

lowest was between LP and LPP (𝐶ℎ𝑥𝑦
= 0.09; P > .05).

The disease variable that had the strongest 𝐶ℎ𝑥𝑦
with a given

agronomic trait varied within the study. For example, coheri-

tability of SAUDPC were strongest with DTA (|𝐶ℎ𝑥𝑦
| = 0.46;

P < .05), whereas those of ρ were strongest with SMI

(|𝐶ℎ𝑥𝑦
| = 0.44; P < .05; Table 5). Similarly, absolute val-

ues of coheritability of FPDLA were strongest with DTM

(|𝐶ℎ𝑥𝑦
| = 0.48; P < .05), whereas those of ρ were strongest

with SMI and DTM (|𝐶ℎ𝑥𝑦
| = 0.43; P < .05) (Table 5).

3.7 CMA model fit indices

The adjusted goodness-of-fit for the revised CMA model was

higher (R2 = 89.2%) than that of either the basic path analysis

model (R2 = 81.9%) or the tentative CMA model (R2 = 45.3%;
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NYANAPAH ET AL. 13Crop Science

T A B L E 5 Estimates of coheritability of gray leaf spot severity resistance assessment with agronomic traits among 48 elite maize inbred lines

artificially infected with Cercospora zeina across nine environments in western Kenya

Disease assessment variableb

Agronomic traita SAUDPC ρ FPDLA CDSG PDLAIP LP
SGR −.29* −.14 −.17 −.14 −.27* .16

DTM −.40** −.42** −.48** −.43** −.30* .20

EH/PH −.43** −.30* −.43** −.33* −.29* .19

DTS −.42** −.37* −.44** −.36** −.28* .12

LPP −.21 −.31* −.38* −.25* −.27* .09

PH −.39* −.39* −.40* −.33* −.22* .19

DTA −.46** −.38* −.43** −.41* −.29* .20

SMI −.40** −.44** −.41* −.43* −.35* .23

EH −.20 −.19 −.18 −.20 −.16 .18

aSGR is the Stay-green characteristics; DTM is days to maturity; EH/PH is ear height relative to plant height; DTS is days to silking; LPP is number of leaves per plant;

PH is plant height; DTA is days to anthesis; SMI is silking–physiological maturity interval; and EH is ear height.
bSAUDPC is standardized area under disease progress curve; ρ is the weighted mean absolute rate of disease increase; FPDLA is final percent diseased leaf area; CDSG

is CIMMYT (1985) disease severity grade; PDLAIP is percent diseased leaf area at inflection point; and LP is the latent period.

*Significant at the .05 probability level. **Significant at the .01 probability level.

T A B L E 6 Estimates of goodness of fit indices from basic path

analysis, tentative causal mediation, and revised causal mediation

modeling of association of agronomic traits with partial resistance to

gray leaf spot among 48 maize inbred lines evaluated across nine

environments in western Kenya

Model configuration

Fit statistica

Basic path
model
(Figure 1)

Tentative causal
mediation
model (Figure 2)

Revised causal
mediation
model (Figure 4)

AGFI 0.819 0.453 0.892

AIC 27.944 30.864 23.621

BCFI 0.689 0.784 0.906

RMSEA 0.066 0.011 0.030

SRMSR 0.035 0.042 0.042

aAGFI is adjusted goodness of fit; AIC is Akaike information criterion; BCFI

is Bentler’s comparative fit index; RMSEA is root mean square error of

approximation; and SRMSR is standardized root mean square residual.

Table 6). In addition, model fit statistics indicated a better fit

to the data for the revised causal model (AIC = 23.6) than

either the basic path model (AIC = 27.9) or the tentative

model (AIC = 30.8). Similarly, BCFI values were substan-

tially higher for the revised model than either the basic path or

tentative causal model (Table 6). Further, errors for the revised

CMA model (RMSEA < 0.05) also indicated good fit to the

data. Thus, the revised CMA model (Figure 3) was used to

determine the effect of exogenous and endogenous agronomic

traits on disease resistance.

Exogenous agronomic traits, DTA (P = .0322) and DTM

(P = .0022) had a significant positive direct effect on disease

resistance (Supplemental Table S4), with the effects of DTM

(estimate = .302) being about two times higher than the effect

of DTA (estimate = .143; Table 7). While the exogenous vari-

able DTS had a significant positive genetic correlation with

SAUDPC (Table 4), its direct effect on resistance was not sig-

nificant (P = .6353) in the revised causal mediation model

(Table 7). Within the revised model, the effects of endogenous

variables mediated the effects of exogenous variables or other

endogenous variables. For example, the endogenous variable

SMI significantly mediated the effects of DTS (P = .0042)

and DTM (P = .0494) on disease resistance (Table 7). Simi-

larly, the endogenous variable SGR significantly (P = .0223)

mediated the effects of DTA on disease resistance. The effects

of the endogenous variables EH, PH, and LPP were all medi-

ated by EH/PH. However, the sum of indirect effects of DTA

through these endogenous variables (estimate = .081) was

slightly less than its direct and/or unmediated effect (esti-

mate = .143) on disease resistance. While an increase in DTA

increased LPP, most of the additional leaves were produced

above the ear, thus decreasing EH/PH. Overall, exogenous

effects on resistance were mainly driven by their indirect

effects, particularly those mediated by EH/PH and SMI. How-

ever, the direct effect of DTM on resistance was nearly the

same as the cumulative indirect effects of all endogenous

variables (Table 7).

4 DISCUSSION

4.1 Consistency of partial resistance
measurements

Estimates of repeatability show the reliability of pheno-

type prediction based on previous measurements and set the

upper bounds of heritability (Falconer & Mackay, 1996). In
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14 NYANAPAH ET AL.Crop Science

T A B L E 7 Standardized estimates of direct and indirect effects of agronomic traits on gray leaf spot resistance from revised causal mediation

modeling of association of agronomic traits with partial resistance (RES) among 48 maize inbred lines evaluated across nine environments in

western Kenya. Std error, standard error

Patha Effecta Estimate Std error t-value P-value
DTA −−−−→ RES Total .158 0.015 4.275 .0042

Direct .143 0.013 4.252 .0322

Indirect (sum) .115 0.014 2.863 .0524

via EH and EH/PH .017 0.020 7.436 .0051

via PH and EH/PH .050 0.017 5.788 .0064

via LPP and EH/PH −.014 0.002 4.078 .0141

via SGR .062 0.015 4.594 .0223

DTS −−−−→ RES Total .146 0.016 8.042 .0080

Direct .000 0.000 0.000 .6353

Indirect via SMI .146 0.014 6.699 .0042

DTM −−−−→ RES Total .409 0.015 1.886 .0931

Direct .302 0.017 6.956 .0022

Indirect via SMI .137 0.013 3.640 .0494

aDTA is days to anthesis; DTS is days to silking; DTM is days to maturity; EH is ear height; PH is plant height; EH/PH is ear height relative to plant height; LPP is

number of leaves per plant; SGR is the stay-green characteristic; and SMI is silking-physiological maturity interval. Exogenous variables are DTA, DTS, and DTM,

whereas endogenous variables are EH, EH/PH, PH, LPP, SGR and SMI. RES = resistance computed as inverse of standardized area under disease progress curve (i.e.,

RES = 1/SAUDPC).

this study, we observed moderate to high repeatability of

SAUDPC, CDSG, and FPDLA (Table 2). Thus, these dis-

ease variables have higher heritability compared with other

disease assessment variables. The lower repeatability of LP

relative to other disease variables suggests that uncharacter-

ized random perturbations of environmental variations had

stronger influence on phenotypes of LP. Thus, genotype ×
environment interactions resulted in a weaker correlation

between LP across environments. Often, the precise mea-

surement of highly repeatable traits improves only marginally

with repeated measurements. However, the accuracy of traits

with low repeatability is usually greatly increased with

multiple measurements. Thus, few duplicated measurements

should be sufficient for assessment of SAUDPC, but delin-

eation of inbred lines based on LP would require more trial

environments or replications per environment. The highest

repeatability of SAUDPC occurred in an environment where

inbred reactions to GLS were most diverse (Figure 4) rather

than in an environment with the largest mean disease sever-

ity (Table 2). Thus, phenotypic variation was more responsive

to the range of GLS severity among inbred lines than to the

average GLS severity pooled over all inbreds. Consequently,

environments with broader entry reactions to GLS should

be more appropriate for evaluation of genotypes those with

the largest overall GLS severity. This is probably because

the former allows for a more accurate rating of resistance

and increased detection of significant differences between

genotypes.

4.2 Phenotypic correlates of resistance to
GLS

The weak phenotypic correlation between resistance and PH

observed in this study was somewhat unexpected since biotic

or abiotic stress is expected to decrease plant height. This

observation suggests that covariance of resistance with PH

is driven by physiological mechanisms activated by genetic

and/or environmental cues not associated with PH. The sig-

nificant negative correlation of SAUDPC with DTA as well

as EH/PH (Table 4) indicates that genotypes that shed pollen

later or those whose ears were relatively farther from the

ground than they were from the tassel were more resistant

and vice-versa. Similar findings were reported by Menkir and

Ayodele (2005). However, DTA and EH/PH are likely to be

less useful predictors of resistance given the weak to moderate

correlation of these traits with GLS severity. Nonetheless, this

finding partly suggests that partitioning and/or remobilization

of photo-assimilates for plant defense is likely to increase with

increased EH and EH/PH, since leaves below the ear con-

tribute relatively less to grain fill than those above the ear

(Subedi & Ma, 2005).

In this study, the significant negative phenotypic correla-

tions of SAUDPC with DTM, DTA, and DTS are inconsistent

with findings by Balint-Kurti et al. (2008), but are in general

agreement with other reports (Pozar et al, 2009; Zwonitzer

et al., 2010). The increase in GLS severity with increased

plant earliness could be due to either: (a) termination of
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NYANAPAH ET AL. 15Crop Science

disease intensification by premature plant senescence, (b)

concurrent response of both traits to similar environmen-

tal cues, or (c) regulation of the two traits by identical or

related genetic systems. The likelihood of the first explanation

is supported by increased transcription of factors associated

with senescence following exposure of plants to environ-

mental stress (Robatzek & Somssich, 2002). However, the

strong negative correlation of SAUDPC with SGR suggests

that undesirable SGR ratings may confound the expression

of stress-accelerated plant senescence. The second explana-

tion is based on previous association of covariance between

genetically unrelated traits with environmental correlation,

particularly if such traits have low estimates of heritability

(Conner & Hartl, 2004). The third explanation corresponds to

pleiotropy and/or linkage of the genes (Hallauer et al., 2010)

and is the default argument whenever phenotypic correlations

closely mirror their genetic counterparts in traits with high

heritability. While we did not specifically estimate narrow

sense heritability of the agronomic traits without GLS infec-

tion in this study, broad-sense heritability estimates of the

examined traits were noticeably moderate to high (Table 3).

Further, heritability of resistance to GLS and several aspects

of maize phenology has been rated as moderate to high

(Gordon et al., 2006; Hallauer et al, 2010).

4.3 Genotypic correlates of resistance to
GLS

Absolute values of nearly all coefficients of genotypic cor-

relation were numerically larger than the corresponding

phenotypic correlations. This suggests that the latter could

be surrogate measures of genetic correlation of GLS with

agronomic traits. Thus, there is no need for elaborate mating

designs to generate genotypes with known family structures

for estimation of genetic correlation, which makes sampling

of large sets of genetic materials unnecessary (Holland, 2006).

In addition, the weaker covariance of genotype × environment

and error effects suggest that genetic mechanisms underly-

ing resistance and the examined agronomic traits are largely

similar and, thus, resistance should respond to selection tar-

geting the agronomic traits. This observation could be due to

(a) low heritability of one or both of the correlated traits, (b)

regulation of the physiological pathways conditioning the cor-

related traits by similar genetic and environmental factors, or

(c) insufficient sample size and, hence, large sampling errors

typical of estimates of genetic correlation (Cheverud, 1988).

The first hypothesis is less likely since due to the high esti-

mates of H2 for SAUDPC (Table 3). Although the second and

third propositions cannot be directly tested based on design

of the present study, large differences between genotypic and

phenotypic correlations can be caused by both phenomena

(Cheverud, 1988).

The strongest genetic correlations were recorded between

SAUDPC and SGR, followed by those between SAUDPC and

DTM and EH/PH (Table 4). Other studies have suggested

that similar genetic mechanisms condition GLS resistance and

some agronomic traits in maize (Clements et al., 2000; Menkir

& Ayodele, 2005). This is probably due to linkage disequi-

librium or pleiotropic effects. Previous mapping of QTL for

both resistance to GLS and plant maturity to regions on chro-

mosomes 2, 3, 4, and 8 of the maize genome (Bubeck et al.,

1993) appear to validate this hypothesis. In addition, Clement

et al. (2000) identified QTL on chromosome 1 that regulated

both GLS resistance and EH/PH. Similarly, Pozar et al. (2009)

mapped a QTL for both GLS resistance and plant maturity

on chromosome 3, whereas QTLs for resistance and flow-

ering time colocalized on chromosome 1 (Zwonitzer et al.,

2010). Gray leaf spot progresses most rapidly after flowering

(Rupe et al., 1982), which marks the transition from chan-

neling of photo-assimilates from vegetative to reproductive

development (Subedi & Ma, 2005). This reduces the pro-

portion of metabolites devoted to plant defense. Thus, the

strong correlation of resistance with late maturity is possi-

bly due to pleiotropy of basic genes that delay grain fill and

prolong photosynthesis while simultaneously slowing down

plant senescence. This subsequently enhances and prolongs

the use of photo-assimilates for plant defense (Pozar et al.,

2009). The strong negative correlation between susceptibility

to GLS resistance (i.e., SAUDPC) and SGR (Table 4) seems

to support this hypothesis. However, colocalization of QTLs

for GLS resistance and late maturity (Zwonitzer et al., 2010)

suggests that tight linkage of loci conditioning the two traits

cannot be ignored.

Selection for increased EH/PH, DTM, and SGR should

result in a corresponding increase in GL resistance if their cor-

relation is due to linkage and/or pleiotropy. However, genetic

correlations between disease resistance and the three traits

may not necessarily lead to a greater response of resistance

to indirect selection based on indices developed using these

secondary traits. Indirect selection is more efficient only if

heritability of the primary trait is lower (Hallauer et al., 2010)

and if the secondary traits are weakly correlated with each

other. Inclusion of highly correlated secondary traits in a

selection index reduces precision of the index because sam-

pling variance associated with covariance estimates are often

higher. While we did not find studies that compared heritabil-

ity of resistance with that of EH/PH, DTM, or SGR, some

previous studies (Balint-Kurti et al., 2008; Hallauer et al,

2010) show that estimates of heritability of EH/PH and DTM

are similar to that of resistance. Additionally, the weak to

moderate correlations have previously been reported among

these three agronomic traits (Farias-Neto & Miranda, 2001).

Thus, the potential for exploitation of the observed genetic

corrections in indirect selection for partial resistance to GLS

will likely be moderate.
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4.4 Coinheritance of resistance to GLS with
agronomic traits

Coheritability estimates measure the extent of joint inher-

itance of two traits and thus, they are more useful than

coefficients of genotypic correlation that reflect the genetic

relationship between traits only in the current rather than

future generations. The significant coheritability of SAUDPC

with SGR (Table 5), suggests that these traits are jointly trans-

mittable in pairs across generations and are thus, amenable to

tandem selection for improvement of GLS resistance. In this

case, selection for SGR would have greater success in devel-

opment of genotypes with low SAUDPC rather than low ρ,

FPDLA, and CDSG, since coheritability estimates involving

the latter disease variables were nonsignificant and relatively

small. However, premature senescence of highly susceptible

genetic materials due to biotic stress could confound the bene-

fits of the coheritability of SAUDPC with SGR in breeding for

GLS resistance. Thus, additional studies are needed to better

establish the implication of this observation in maize breeding

programs. The extremely low coheritability of LP with agro-

nomic traits suggests it is unlikely that index selection based

on agronomic traits would improve LP. While some stud-

ies (e.g., Menkir & Ayodele, 2005) have documented genetic

correlation of GLS severity with EH/PH, DTM, DTS, and

DTA, to our knowledge, this is the first report of coheritability

resistance to GLS with agronomic traits.

4.5 Phenological basis of coinheritance of
GLS resistance with agronomic traits

Causal mediation analysis revealed that only EH/PH, DTM,

and SGR accounted for most of the hypothesized effects

of agronomic traits on resistance. Furthermore, this analy-

sis indicated that overall effect of DTA on GLS resistance

was partly due to negative mediation of its indirect effects

by LPP via EH/PH. Previous reports indicate that increased

LPP and SGR produce healthier maize due to increased mois-

ture retention and prolonged photosynthesis (Bekavac et al.,

2007). Increased SGR probably also prolongs transcription

of mRNAs and assimilation or remobilization and translo-

cation of metabolites that enhance plant defense. Moreover,

increased leafiness enhances lignification of maize stalks and

leaves (Dijak et al., 1999), which possibly constrains tissue

penetration and invasion by C. zeina.

Earlier reports indicated that leafy maize have relatively

lower EH/PH (Dijak et al., 1999). While this increased yield

and resistance to logging, it was shown to decrease parti-

tioning of leaf metabolites towards plant defense. Our results

suggest that increased LPP would reduce EH/PH (Table 7;

Figure 3). However, the latter trait was also significantly

increased by PH and EH that led to increased resistance

to GLS. Thus, cultivars with increased LPP and desirable

EH/PH for GLS resistance can only be developed by special-

ized breeding strategies such as the multiple population model

(Burdon & Namkoong, 1983) or restricted index selection

approach (Holbrook et al., 1989). The unifying theme in both

breeding concepts is the breakage of linkage drag followed by

sourcing desired alleles of the correlated traits by independent

culling within separate populations. Inbred lines can then be

developed from the diverse populations and crossed to pro-

duce hybrids with both desirable EH/PH and GLS resistance,

which would otherwise be impossible from tandem selection

within a single population. In maize, DTM has been shown

to be positively correlated with yield (Iqbal et al., 2011).

Thus, increased GLS resistance associated with the direct and

indirect effects of increased DTM should result in a comple-

mentary increase in yield. However, late-maturing maize also

increase production costs and vulnerability to drought. Thus,

the positive effect of increased DTM on resistance presents a

dilemma in breeding maize for drought escape since it would

compromise earliness.

5 CONCLUSION

Phenotypic variation in GLS resistance was more sensitive

to genetic background of the inbred lines evaluated than to

the favorability of the environment for disease development.

Genetically, the strongest agronomic correlates of resistance

were SGR, DTM, EH/PH, and DTS, of which the latter three

manifested the highest coheritability with resistance. Phe-

nologically, the genetic correlation of GLS resistance with

agronomic traits was mediated primarily by the direct effects

of DTA and DTM and indirect effects of SMI and SGR on

disease resistance.
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