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ABSTRACT

The study of elementary operators has been of great interest to many

mathematicians for the past two decades. Of special interest has been to

determine the norms of these operators. The norm problem for elementary

operators involves finding a formula which describes the norm of an ele-

mentary operator in terms of its coefficients. The upper estimates of these

norms are easy to find but approximating these norms from below has

proved to be difficult in generaL Several mathematicians have produced

known results for special cases on the lower estimates, for example, Math-

ieu found that for prime C*-algebras, the coefficient is ~, Stacho and Zalar

obtained 2(v'2-1) for standard operator algebras on Hilbert spaces, Cabr-

era and Rodriguez obtained 20!I2 for JB* -algebras while Timoney came up

with a formula involving the tracial geometric mean to calculate the norm

of elementary operators. An operator T: A ~ A is called an elementary

operator if T can be expressed in the formZ'[z) = L~=Iaixbi, \j x E A

where A is an algebra and tu, b; fixed in A. The norm of an operator T

is defined by IITII= sup{IITxll : x E H, Ilxll = I} where H is a Hilbert

space. The purpose of this study therefore, has been to determine the,
lower estimate of the norm of the basic elementary operator on a' C*-

algebra through tensor products. To do this we needed to have a good

background knowledge on functional analysis, general topology, operator

theory and C*-algebras by understanding the existing theorems and rele-

vant examples especially on tensor product norms. We used the approach

of tensor products in solving our particular problem. We hope that the

results obtained shall be useful to applied mathematicians and physicists

especially in quantum mechariics.
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Chapter 1

INTRODUCTION

The study of elementary operators has been a subject of many papers

most of which have been on the norms of elementary operators. They

first appeared in a series of notes by Sylvester [7}in the 1880's, in which

he computed the eigenvalues of the matrix operators on the n x n-matrices.

The term elementary operator was coined by Lumer and Rosenblum in

the late 1950's [7]. An operator T : A - A .is called an elementary oper-

ator if T can be expressed in the form T(x) = I:~1Ujxbi, where A is an

algebra and Uj,bi (1 ::Si ::Sn) fixed in A. For A, a C*-algebra , one may

allow e, and b, to be in the multiplier algebra M(A) of A [10, 14].

Properties of elementary operators have been investigated in the past. two

decades and there are many excellent surveys and expositions of certain

aspects.

Elementary operators on C*-algebras were extensively examined by Ara

and Mathieu [7]. Curto [7]gave an exhaustive overview of spectral proper-

ties of elementary operators, Fialkow [7] comprehensively discussed their

structural properties (with an emphasis on Hilbert space aspects and

methods), and Bhatia and Rosenthal [7] dealt with their applications to
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operator equations and linear algebra. Mathieu [11] surveyed some re-

cent topics in the computation of the norm of elementary ~perators and

"-'elementary operators on the Calkin algebra. Through all these studies, it

has emerged that for general operators, a full description of their prop-

erties is rather intricate since these are often intimately interwoven with

the structure of the underlying algebras. Therefore, no general formula

describing the norm of an arbitrary elementary operator has been found

even for simple algebras such as B{H)(the algebra of bounded linear op-

erators on a Hilbert space H). For details see [7, 14, 19, 20, 25, 26 ].

The first chapter is composed of basic results which are used in the sub-

sequent chapters. Here, we also present terminologies and symbols in

addition to some definitions regarding elementary operators.

In chapter two, we investigate tensor products and tensor norms. We

look closely at tensor products of vector spaces and functionals, Hilbert

spaces, operator spaces, normed spaces and C*-algebras. We also give

some results on tensor norms, specifically on projective norm, Haagerup

norm, spatial norm and maximal C*-norm. Lastly, we establish the rela-

tionship between spatial norm and maximal C*-norm.

In chapter three, we investigate elementary operators and give results on

the lower estimates of the norm of the basic of elementary operators.

Finally, in the last chapter we give a summary of our work and recom-

mendations.
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1.1 Background Information

"-'
We first introduce some essential concepts involving definitions and other

notions used in the sequel.

1.2 AIgebras,Operators and Functionals

Definition 1.2.1. A Field is a set K together with two operations (+)

and (-) for which the following conditions hold:

i. (Closure) for all a, b E K, the sum a + b and the product a.b again

belong to K;

ii. (Associativity) for all a, b,c E K, a+(b+c) = (a+b)+c and a· (b·c) =

(a·b)·c;

iii. (Commutativity) for all a, s e K, a + b = b+ a and a· b = b- a;

iv. (Distributive laws) for all a,b,c E K, a· (b + c) = a· b + a· c and

(a+b)·c=a·c+b·c;

v. (Existence of an additive identity) :3 0 E K for which a + 0 = a and

o + a = a for all a E K;

vi. (Existence of a multiplicative identity) :3 1 E K with 1 =1= 0 for which

a . 1 = a and 1 . a = a for all a E K;

vii. (Existence of additive inverses) for each a E K :3 x E K: a + x = 0

and x + a = 0, x = -a is the additive inverse of K (the equation

x + a = 0 and a + x = 0 has a solution x E K denoted by -a);
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viii (Existence of a multiplicative inverses) for each a E K, with a =1= 0

the equations a . x = 1 and x . a = 1 have a solution ~ E K, called

"-'the multiplicative inverse of a, and denoted by a:-l.

Definition 1.2.2. A vector space over the field K is a set X on which

two operations are defined, called addition and scalar multiplication, and

denoted by (+) and (.) respectively. The operations must satisfy the

following conditions;

i. (Closure) for all a E K and all u, v E X, u + v and the scalar product

a . v are uniquely defined and belong to X;

ii, (Associativity) for all a, b E K and all u, v, w EX, u + (v + w) =

(u + v) +wand a· (b· v) = (a· b) . Vj

iii. (Commutativity of addition) for all u, v EX, u + v = v + u;

iv. (Distributive laws) for all a, b E K and all u, v E X, a· (u + v) =
(a· u) + (a· v) and (a + b) . v = (a· v) + (b· v)j

v. (Existence of an additive identity) 3 0 E X for which v+O = v = O+v

for all v E Xj

vi. (Existence of additive inverses) for each v E X, 3 x E X: v+x = 0 =
x + v, x = -v is the additive inverse of X (the equation x + v = 0

and v + x = 0 has a solution x E X denoted by -v)j

vii (Unitary law) for all v E X, 1· v = v.

Definition 1.2.3. Given a vector space X over a field K, a subset W

of X is called a subspace if W is a vector space over K and under the

operations already defined on X.
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Definition 1.2.4. Let M be a non-void subset of a linear space (X, K).

The set of all linear combinations of elements of M is called the space
<..-

spanned by M and is represented by [M]. That is,

[M]={alxl+···+anxn}:nEN,Xi EMandCti EK (i=l, ... ,n).

Definition 1.2.5. Let X be a vector space over C. A mapping

(.,.) : X x X ~ C is called an inner product if V x, x' and Y E X and

a E C, the following conditions are satisfied:

(i) (x, x) ~ 0 and (x, x) = 0 if and only if x = 0,

(ii) (x + x', y) = (x, y) + (x', y),

(iii) (ax, y) = a(x, y},

(iv) (x, y) = (y, x).

The pair (X, (.,.») is called an inner product space over C.

Definition 1.2.6. A real valued function '11.11 : V ~ JR, where V is a

vector space over the field JK: is called a norm if it satisfies the following

conditions: i.e V x, y E V, and a E JK:,

(1) IIxll ~ 0 and IIxll = 0 if and only if x = 0,

(2) IIax II = lalllxll,
(3) IIx + ylI ~ IIxli + lIylI·

Definition 1.2.7. An operator is a mapping of a vector space X onto

itself or to another vector space.

Definition 1.2.8. Let X and Y be linear spaces. Then a function T :

X ~ Y is called a linear operator if and only if V x, Y E X and

a,{3 E K, T(ax + (3y) = aT(x) + (3T(y).
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Definition 1.2.9. Let X, Y be linear spaces. A linear operator T: X -+

Y is called bounded if and only if there exists a constant, C > 0 such
o

that IITxll ::; Cllxll·

Definition 1.2.10. Let B(X, Y) be the set of bounded linear operators

mapping elements of X to Y Let T E B(X, Y) then the norm of Tis

defined as:

IITII = sup { 1I~~~f II : x i= o} .
Definition 1.2.11. A basis S for a vector space X is a nonempty set of

linearly independent vectors that span X.

Definition 1.2.12. Let (X, K) be an inner product space. Then \I z, y E

X, x and y are said to be orthonormal if (x, y) = 0 and IIxll = lIylI = l.

An orthonormal set of all vectors of the form x and y which form a basis

is called an orthonormal basis.

Definition 1.2.13. A Hilbert space is a complete inner product space

i.e a Banach space whose norm is generated by an inner product.

Definition 1.2.14. Let X be a vector space with a scalar field K, an

algebra is a vector space X together with a bilinear map X x X -+ X

defined by (a, b) -+ ab \I a, bE X such that a(bc) = (ab)c \I a, b, c E X.

Definition 1.2.15. A subalgebra of an algebra A is a vector subspace

B such that \I b, 11E B we have blI E B.

Definition 1.2.16. A norm 11.11on an algebra A is said to be sub-

multiplicative if it satisfies lIabll ::; lIalillbll \I a, b E A. An algebra A with

the norm 11.11which is sub-multiplicative, is said to be a normed algebra.
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Definition 1.2.17. ITa normed algebra A admits a unit e such that

ae = ea = a V a E A and lIell = 1, then we say that ~ is a Unital
<...-

normed algebra, otherwise it is non-unital.

Definition 1.2.18. A complete normed algebra A is called a Banach

algebra.

Definition 1.2.19. An algebra A is called commutative (abelian) if

ab = 00, V a, b E A. It is non-abelian if the product is non-commutative.

Definition 1.2.20. Let A be an algebra. A mapping from A -+ A defined.

by a 1---+ a* V a, a* E A is called an involution on A if V a, b E A and

a E K, it satisfies the following four conditions:

(i) (a + b)* = a* + b*

(ii) (aa)* = aa*

(iii) (ab)* = b*a*

(iv) a** = a.

Definition 1.2.21. An algebra A with an involution i.e a 1---+ a* is called

a *-algebra.

Definition 1.2.22. A Banach algebra A with an involution a 1---+ a* sat-

isfying the property lIall = lIa*lI, Va E A is called a Banach *-algebra.

Definition 1.2.23. A Banach *-algebra A with the property

lIa*all = lIall2, Va E A is called a C*-algebra.

Example 1.2.24. We consider B(H), the set of all bounded linear operators

on a Hilbert space H. We prove that B(H) is a C*-algebra.

Proof B(H) is an algebra:

Let T E B(H) where T : H -+ H. Now, multiplication is defined point-
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wise in B(H). Thus, ST(x) = S(T(x)) V S, T E B(H) and x E H.

B(H) is a normed algebra:

B( H) is a normed space, consequently, a normed algebra. For if we let

T E B(H) then IITII satisfies the axioms of a norm as below;

(i) Clearly, IITII 2 0 and IITII = 0 if and only if T = o.

(ii)

II.aII = sup {1I(aT)xll : x i= o}
-lIxll

= sup {"a(Tx)1I . x i= o}
IIxll .

sup {lalllTxll . x i= o}
IIxll .

= [o] sup {IITxll . x i= o}Ilxll .
= lalllTII·

(iii)

IIT+SII _ sup {lleT + S)(x)1I . x i= o}
IIxII .

= {IITX+Sxll }
sup IIxll : x i= 0

< { IITxll IISxll }sup W+W:xi=O

{ IITxll } { IISxll }< sup W: x i=0 +sup W: x i=0

= IITII+ IISII·
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(iv)

/lTS/I _ sup {/I(TS)(X)/I . x =I -l
IIx/l .

= sup {/IT(SX)/I . x =I o}
IIxll .

_ sup {IIT(S(x))IIIIS(X)1I : S(x) =I 0, x =I o}
. IIS(x) II IIxll

< sup {IIT(Sx)1I . S(x) =I o} sup {IIS(x)1I . x =I o}
IIS(x) II . IIxll .

= IITlllIslI·

B(H) is a *-algebra:

Since B(H) is an algebra and T E B(H), it has an involution from B(H)

to B(H) defined by T t-+ T*, where T* is the adjoint of T (see definition

1.2.32) But T is a bounded linear operator so we have,

(i) (T + S)* = T* + S· .

But, (T + S)x, y) = (x, (T + S)*y), V x, Y E H.

Also,

(T + S)x, y) - (Tx + Sx, y)

- (Tx, y) + (Sx, y)

- (x, T*y) + (x, S*y).

Thus, (x, (T + S)*y) = (x, T*y + S*y) , V x, y E H.

(ii) (aT)* =aJ'*.

Now,

(aT)x,y) = (x, (aT)*y). (1.2.1) _
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Also,

«(aT)x, y) = a(T(x), y) = (x, (aT)*y) = (x, ar*(y). '-- (1.2.2)

Equations (1.2.1) and (1.2.2) shows that (x, (aT)*y) = (x, aT*(y).

(ill) (TS)* = S*T*.

Since

(TS)x = T(S(x)),

«(TS) (x) , y) - (T(S(x)), y)

- (Sx, T*y)

- (x, S*(T*(y)))

- (x, (s*T*)(y).

On the other hand, «(TS)(x), y) = (x, (TS)*(y»

i.e (TS)* = S*T*

(iv) T** =T.

Now (Tx, y) = (x, T*y) = «(T*)*x, y).

So «(T -T**)x,y) = 0 V x,y E H.

Therefore, T - T** = 0 and hence T** = T.

B(H) is a Banach *-algebra.

For all T E B(H), IITII = IIT*II.
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Now, VxE H,

1IT*(x) 112 - (T*x,T*X)

- (T(T*(x», x)
< IIT(T*(x»lIl1xll
< IITIIII(T*(x»lIl1xll

1IT*(x) II < IITllllxll

i.e

IIT*II $IITII· (1.2.3)

Also, IIT** II $ IIT* II, but T** =T. Therefore,

(1.2.4)

and hence by (1.2.3) and (1.2.4), IITII = 111:*11.

B(H) is a C*-algebra.

We need to show that it satisfies the property IIT*TII = IITII2, V T E

B(H).

Now, IIT*T(x)1I $ IIT*lIl1xllIlTIl = IITII211xll

(1.2.5)
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Also, \;f x E H,

IITx II2 - (Tx, Tx)
= (T*Tx,x)

< IIT*Txllllxll
< IIT*Tllllxll2

i.e

IITII2 'SIIT*TII. (1.2.6)

By (1.2.5) and (1.2.6), IIT*TII = IITII2, so B(H) is a C*-algebra. 0

Definition 1.2.25. Let X be a vector space over K(C or JR). A mapping

I :X ~ K is called a functional.

Definition 1.2.26. A functional I on a vector space X over K is called

a linear functional if I :X ~ K is a complex-valued linear operator.

Definition 1.2.27. A linear functional I is said to be bounded if and

only if there exists a constant C> 0 such that I/(x)1 :::; Cllxll \;f x E X.

Definition 1.2.28. Let I be a bounded linear functional on X. Then

the norm of I is defined as 11/11= sup {'~~il': x =J= o}.
Definition 1.2.29. Let X be a vector space and X* the set of all linear

functionals on X then X* is called the dual space of X.

Definition 1.2.30. A positive linear functional is a linear functional

on a Banach algebra A with an involution that satisfies the condition

I(aa*) ~ 0, \;f a E A.
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Definition 1.2.31. Let A an algebra with involution. Then the linear

functional f is called a state on A if f is positive and IIfll = f(e) = 1
<..-

where e is a unit element in A.

Definition 1.2.32. IfT E B(H, K), where H and K are Hilbert spaces,

then the linear operator T* E B(K, H) satisfying (Tx, y) = (x, T*y)

V x E H and V y E K is called the (Hilbert space) Adjoint of T.

Definition 1.2.33. A bounded operator T E B(H) is said to be self-

adjoint if T* = T. Thus, T is Hermitian and 1>(T) = H if and only if

T is self-adjoint.

Definition 1.2.34. A bounded linear operator T on a Hilbert space H

is said to be normal if it commutes with its adjoint i.e TT* = T*T.

Definition 1.2.35. A unitary operator is a bounded linear operator

U on a Hilbert space satisfying: U*U = UU· = I, where U* is the adjoint

operator.

This property is equivalent to the following:

(i) U preserves inner product on the Hilbert space, so that for all vec-

tors x and y in the Hilbert space H, (Ux,Uy) = (x,y).

(ii) U is a surjective isometry (distance preserving map) i.e

IIU(x - y)1I= IIx - ylI·

Definition 1.2.36. IT H is a Hilbert space, then an operator T E B(H)

is a finite rank operator if the dimension of the range of T is finite,

and a compact operator if for every bounded sequence {xn} in H, the

sequence {Txn} contains a convergent subsequence.
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Definition 1.2.37. Let D = (Aj,,) (j, k = 1, ...,n) be an n-rowed square

matrix. Then the sum of its eigenvalues equals to the trace,of D, that is,
<...-

the sum of the elements of the principal diagonal: trace D = All + ' ..+
Ann.

Definition 1.2.38. A bounded linear operator P : H -+ H on a Hilbert

space H is a projection if and only if P is self-adjoint iP" = P) and

idempotent (P2 = P).

Definition 1.2.39. Let H be a Hilbert space and B(H) the algebra of

bounded linear operators on H. Then T : B(H) -+ B(H) is called an

elementary operator ifT has a representation T(x) = L~=l a;,xbiwhere

ai and b, are fixed in B( H).

Definition 1.2.40. Let H be a Hilbert space and T : H -+ H be a linear

operator then:

(i) A number A E C is called the eigenvalue of T if there is a non-

zero x E H such that Tx = AX; the vector x is then called an

eigenvector for T corresponding to the eigenvalue A.

(ii) The set WeT) = {(Tx, x) : x E H, IIxil = I} is called a numerical

range if T E B(H).

Definition 1.2.41. Let X be a linear space. A subset M of the linear

space X is convex if for all x, y E M and for any positive real number t
satisfying 0 < t < 1 we have tx + (1 - t)y E M.

Definition 1.2.42. If M is a subset of a linear space X, then a convex

hull M, represented by conv(M) is the smallest convex subset of X con-

taining M and it is the intersection of all the convex subsets of X that

contain M.
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Definition 1.2.43. For a tuple (ct, ... , en) of operators Gi E B(H), we

denote Wm(ct, ... , en) the matrix numerical range by:

The closure of Wm is called the extremal numerical range defined by:

n

Wm,e(Cl>... , en) = {a E Wm(ct, ... , en) : trace(a) = IIL <Gill}·
i=l

Definition 1.2.44. The rank of a matrix D is defined as the order of

the largest square array in D with a nonzero determinant.

Definition 1.2.45. Let X be a non-empty set and K be the field of real

or complex numbers. Let Kx be the set of all finite linear combinations

of elements of X such that Kx = n:::::l aixi: Xi E X, ai E K} where

the operations are as oz, + f3Xi = (a + f3)Xi and a(f3xi) = (af3)xi. Then

the vector space Kx over K is called the free vector space.

Remark 1.2.46. The term free is used to connote the fact that there is no

relationship between the elements of X.

Definition 1.2.47. Let X and Y be two vector spaces over K, and let

T be the subspace of the free vector space KxxY generated by all the

vectors of the form a(x, y)+f3(x', y) -(ax+f3x', y) and a(x, y)+f3(x, y')-

(x, ay + f3y') Va, f3 E K and x, x' E X, y, y' E Y. Then the quotient

space KxxY IT is called the tensor product of X and Y and is denoted

byX®Y

An element of X ® Y has the form L ai(xi, Yi) + T. The coset (x, y) + T

is denoted by x ® y and therefore any element /.t of X ® Y has the form
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Definition 1.2.48. If x and Y are elements of a Hilbert space H we define

the operator x@y on H by (x@y)(z) = (z, y)x.

Lemma 1.2.49. If x and Y are elements of a Hilbert space H then for

the operator x@y on H, IIx@ylI = IIxllllYIl.

Proof From the above definition, (x @ y)(z) = (z, y)x. Since y is fixed,

let us denote (x @y)(z) by Tyz.

Now, by the definition of an operator norm,

IITyl1 - sup{IITyzll: z E H, IIzl!= I}

= sup{l!(x@y)(z)lI: z E H, IIzll= I}

sup{lI(z,y)xl! : z E H, IIzll = I}

- sup{l(z,y)llIxll: z E H, IIzll = I}

= IIxllsup{l(z,y)l: z E H, IIzll = I}.

But I(z, y) I is maximum when z = tJr with y f= O.

Hence,

Therefore, IIx@ylI = IIxlillylI· o

Definition 1.2.50. Suppose A is a complex algebra and f is a linear
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functional on A which is not identically zero. Then if f(a, b) = f(a)f(b)

'Va, b E A then f is called a complex homomorphism 0I.1 A.

"-'
Definition 1.2.51. Suppose A and B are C*-algebras. A mapping ¢> :

A -+ B is said to be a C*-homomorphism if for any a, {3E C and

a, b E A the following conditions are satisfied:

(i) ¢>(aa + (3b) = a¢>(a) + (3¢>(b)

(ii) ¢>(ab) = ¢>(a)¢>(b)

(iii) ¢>(a*) = (¢>(a»*

(iv) ¢> maps a unit in A to a unit in B.

Further, if ¢> is 1 - 1 we say that the mapping ¢> is a C*-isomorphism.

i.e. for all a, s e A and a =J b we have ¢>(a) =J ¢>(b) and so A and B are

isomorphic.

Definition 1.2.52. A representation of a C*-algebra A is defined as

the pair (H, ¢», where H is a complex Hilbert space and ¢> is a *-morphism

of A into B(H). The representation (H, ¢» is said to be faithful if and

only if ¢> is a *-isomorphism between A and ¢>(A).

The space H is called the representation space, the operators ¢>(a) are

called the representatives of A and by implicit identification of ¢> and the

set of representatives, we say that ¢> is a representation of A on H.

1.3 Completion of normed spaces

Definition 1.3.1. Let {xn}, {Yn} be Cauchy sequences in (X, d) then

{xn} is said to be equivalent to {Yn} denoted by {xn} rv {Yn} if and

17



only if

The collection of all equivalence classes in this case is denoted by X*.

See details of equivalence relations and classes in [8].

Definition 1.3.2. A mapping A : X --+ Y where X, Y are normed linear

spaces is said to be a congruence if it is simultaneously an isometry and

an isomorphism.

Let (X, d) be an arbitrary metric space. Then the complete metric space

(X*, d*) is said to be a completion of (X, d) if:

1. (X, d) is isometric to a subspace (Xo, d*) of (X*, d*).

2. The closure of Xo, Xo is all of ,X· i.e Xo =X*.

Statement (2) is equivalent to saying that Xo is dense in X., that is,

every point of X" is either a point or limit point of Xo ( i.e for any point

x E X*, 3 {xn} E Xo that converges to x) [9].

The two properties above are proved in the theorem below.

Theorem 1.3.3. Every metric space (X, d) has a completion (X·, d*)

and furthermore, if (X**, d**) is also a completion of (X, d) then (X., d*)

is isometric to (X**, d**), i.e the completion of a space is unique to within

an isometry. See proof in [2].

Equipped with Theorem (1.3.3) we can now look at the completion of a

normed linear space.
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Theorem 1.3.4. For every normed linear space X there's a complete X*

such that X is congruent to a dense subset Xo of X* and, the norm on

X* extends the norm on X.

Proof. (From [2]) Let X be a normed linear space and consider the dis-

tance function d defined by taking

d(x, y) = IIx - yll, V x, y E X.

We call d as a norm derived metric.

From Theorem (1.3.3), we have (X, d) as a metric space and it's comple-

tion (X*, d*) also a complete metric space.

We identify x E X with its isometric image in X*. Our prime aim is to

show that, after defining vector addition and scalar multiplication, X·

will be a complete normed linear space with the property that not only is

X isometric to a dense subset of X* but is .also isomorphic to this dense

subset.

Further, we show that the norm on X* will extend the norm on X, the

extension made by the above identification in mind.

Thus we exhibit Xo c X* such that

i. Xo = X*,

ii. X is isomorphic and isometric to Xo i.e X and Xo are congruent.

Now let x*, y* E X* (i.e equivalence classes of Cauchy sequences of X).

Let

(1.3.1)
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We define x* + y* to be the equivalence class containing {xn + Yn} and

we call it z".

Now we show that {xn + Yn} is a Cauchy sequences.

To show this, we note that

We now show that the operation is well defined.

Suppose xn rv Xn and fin rv Yn then we recall from definition (1.3.1) what

is meant for two sequences to be equivalent and we can show that

by noting that

Let a E K. With {xn} E x* as in equation (1.3.1), we define ax" to be

the class containing {axn}.

Therefore, {axn} isa Cauchy sequence and that the operations of scalar

multiplication is well defined. Hence X* with these two operations is,

indeed a linear space.

Now we introduce a norm on X*.

With {xn} E x* as in equation (1.3.1), we define

(1.3.2)

We show that the limit in equation (1.3.2) exists.
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Since

it is easy to see that the sequence of real numbers {II Xn II} is Cauchy and

hence the limit exists.

We suppose that Xn rv xn• Since

and the term on the right goes to zero, the norm in equation (1.3.2) is

well defined.

Now we show that the mapping in equation (1.3.2) is truly a norm.

AE,in equation (1.3.1),

(i). The mapping is non-negative and equals to zero if and only if x* = 0*.

Suppose IIx*1I= 0, =? liII1n-+ooIIxnll = 0. This implies Xn -+ 0.
Thus {xn} rv (0,0,0, ...) or {xn} E 0* and x* = 0*.

(ii). lIax*1I = liII1n-+oolIaxnll = lalliII1n-+ooIIxnll = lalllx*lI·
(iii). IIx* + Y*II = liII1n-+ooIIxn + Ynll :5liII1n-+ooIIxnll + liII1n-+ooIIYnll
or

IIx* + Y*II :5 IIx*1I + IIY*II·

Hence equation (1.3.2) determines a norm on X· .

Next we show that X· is complete with respect to the distance function

determined by this norm, denoted by dN. i.e we need to show that dN

and d* agree (d* as in Theorem (1.3.3)).
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Now

dN(x*, y*) = IIx* - Y*II

- lim IIxn - Ynll
n-+oo

- d*(x*,y*)

hence we conclude that X* is a complete normed linear space.

AB in Theorem (1.3.3), we have an isometry A between X and Xo of X· :

The set of all equivalence classes of X· containing all elements of the form

(x,x,x, ...) E X, x E X.

We show that A establishes an isomorphism between X and Xo. Its al-

ready known that A is onto Xo, and since its an isometry, it is one-to-one.

So we only need to show that it preserves linear combination.

Suppose z, Y E X and let Ax = x and Ay = 11.
Now consider

A(x + y) = (x + y),.

Since

(x+y, x+y, ...) E (x+y)'

and

(x + y, x + y, ...) = (x, z, ...) + (y, y, ...)

we can say by our rule for addition, that

(x + y)' = x' + y'
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and A preserves vector addition.

For scalar multiplication, let a E K and x EX.

Now, let Ax = 31. So for a E K,

A(ax) = a(Ax) = ax'

and

(ax, ax, ... ) E (ax)'

so we can say by our rule for scalar multiplication, that

(ax)' = ax'

and A preserves scalar multiplication. o

1.4 Literature review

The term elementary operator came as a result of basic elementary op-

erators [4, 5]. If A is an algebra, then given a, b E A we define a basic

elementary operator Ma,b : A ~ A by Ma,b(X) = axb. Therefore, an

elementary operator is the sum T = L~=lMa;,b; of the basic ones, see

definition (1.2.39). On detailed study of the norm of elementary op-

erators, a number of results have been shown. Trivially, for the basic

elementary operator, IIMa,bll ::; 2l1allllbll. For the Jordan elementary op-

erator U = IIMa,b + Mb,all, IIMa,b + Mb,all ::; 211allllbil for the upper esti-

mate. Considering the lower estimates, Mathieu proved that for prime

C*- algebras, IIMa,b + Mb,all ~ ~lIallllbll, Cabrera and Rodriguez proved
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that for JB* algebras, IIMa,b+ Mb,all 2 20!1211allllbll while Stacho and

Zalar [21] proved that for standard operator algebras on Hilbert spaces

IIMa,b+ Mb,all 2 2(V2 - l)lIalillbll· Recently, Timoney [24,'-'25] showed

that IIMa,b+ Mb,all 2 Ilalillbll and further came up with a formula for

calculating the norm of a general elementary operator involving matrix

numerical range using the notion of tracial geometric mean [27].
The tracial geometric mean of the positive (semi-definite) n x n-matrices

D, E is tgm(D, E) = trace VvfJ5EvfJ5 where.;: denotes the positive

square root.

Theorem 1.4.1. For a = lab ... , an] E B(H)n (a row matrix of operators

ai E B(H)), b = [bl, ... , bn]t E B(H)n (a column matrix of operators

b, E B(H)) and Tx = L~=I aixbi an elementary operator, we have

IITII = sup{tgm(Q(a*,~),Q(b,11)) : ~,11 E H, II~II = 1,111111= 1}. For

proof, see [27}.

Through the idea of tensor products [1, 6], the norm of elementary opera-

tors can be determined. The Haagerup norm, for example, of an element

wE B(H) 18) B(H) (of the algebraic tensor product) is defined by

where the infimum is taken over all possible representations

n

W= L~l8)bi.
i=1

A well known estimate of an operator T due to Haagerup states that if

T = L~=I ai 18) b; then liT II < IITlicb < {II L~=I aiailill L~I bibill}~ where
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IITlicb is the completely bounded norm of T. We have shown that the

Haagerup norm is actually a norm in chapter two.

Theorem 1.4.2. Let A = B(H) (where A is an algebra) and let

T E C£(B(H)) be as above then

if and only if Wm,e(ai, ... , a~) nWm,e(bi, ... , b~) is nonempty. See proof in

[26].

Agure and Nyamwala [14] also used the .spectral resolution theorem to

calculate the norm of an elementary operator induced by normal operators

in a finite dimensional Hilbert space.

Lemma 1.4.3. Let T be a normal operator such that T : H ---7 H where

H is a finite dimensional Hilbert space then-

where Aj are distinct eigenvalues of T for corresponding eigenspaces (Mj,

j = 1, ... , m). See [14} for proof.

Theorem 1.4.4. Let Ta,b : B(H) ---7 B(H) be an elementary operator

defined by Ta,b(X) = L~la.xb, where ai a:"'dbi are normal operators and

H a finite dimensional Hilbert space then
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where ai,j and fJi,j are distinct eigenvalues of ai and bi respectively. See

[14} for proof.

Our main interest therefore, has been to further investigate the norm of

elementary operators where we precisely aimed at determining the norm of

the basic elementary operatorMa,b : B(H) -t B(H) defined by Ma,b(X) =
axb V x E B(H), a, b fixed in B(H), the algebra of all bounded linear

operators on a Hilbert space H (see example 1.2.24).

1.5 Statement of the problem

Let H be a complex Hilbert space, T : H -t H be a bounded linear

operator and B (H) the set of bounded linear operators on H. B (H) is

an algebra, in fact a C*-algebra. The norm of T is defined as:

{IITxll }IITII= sup W: x -1= 0 .

In our study we include the basic elementary operator Ma,b : B(H) -t

B(H) defined by Ma,b = axb, V x E B(H) and a, b fixed in B(H). The

upper estimate of the norm of a basic elementary operator are easy to find.

Therefore, we determine IIMII, specifically, we concentrate on determining

the lower estimate of this norm through tensor products.
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1.6 Objective of the study

The purpose of this study is to determine the lower estimate ~f the norm

of the basic elementary operator through tensor products.

1.7 Significanceof the study

The results obtained are a contribution to the field of elementary oper-

ators and a motivation for further research to aspiring mathematicians

in this particular field of study. Further, we hope that the results ob-

tained shall be useful to applied mathematicians and physicists especially

in quantum mechanics.

1.8 Researchmethodology

For a successful completion of this research, we developed a good back-

ground knowledge of the theory of operators, especially C*-algebras, Gen-

eral Topology and FUnctional Analysis . We have restated some known

results which we found useful to our work however, for most parts of this

work we omitted the proofs. Instead, we indicated where the proofs may

be found. In some cases we provided alternative proofs to the known re-

sults by taking advantage of the operator theory results constructed here.

Lastly, we used the technical approach of tensor products in solving the

stated problem. We initially examined the algebraic properties of ten-

sor products, their norm properties and applicability in our case before

applying it in finding a solution to our problem.

27



Chapter 2

TENSOR PRODUCTS AND

TENSOR NORMS

2.1 Introduction

In this chapter we study tensor products and tensor norms. We look

closely at tensor products of vector spaces and functionals, Hilbert spaces,

operator spaces, nonned spaces and C*-algebras. We also give some re-

sults on tensor norms, especially on projective norm, Haagerup norm,

spatial norm and maximal C*-norm. Lastly, we establish the relationship

between spatial norm and maximal C*-norm.

2.1.1 Bilinear maps and tensor products.

Let X and Y be vector spaces over K. A function f : X x Y -+ K is

bilinear if it is linear in both variables separately, that is,
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and

for all X, XI, X2 E X and y, Yl, Y2 E Y.

We write B(X, Y; K) to denote the set of all bilinear functions from X x Y

to K. A bilinear function f :X x Y ~ K with values in the base field is

called a bilinear form on X x Y. See [6, 13] for more details on bilinear

forms.

Lemma 2.1.1. Let f be a mapping from a cartesian product space to the'

tensor product space i.e f :X x Y ~ X 0 Y. Then f is a bilinear map.

Proof. Let X, XI, X2 E X and y, YI, Y2 E Y. Also let a, (3 E K. To show

that f is bilinear, it suffices to show that it is linear in each vector space

X and Y separately. To show linearity in X, let f(x, y) = X 0 y. Then,

(axl + (3X2) 0 y

(axl 0 y) + ((3X2 0 y)

a(xl 0 y) + (3(X2 0 y)

af(xl 0 y) + (3f(X2 0 y).

Hence f is linear in X.

To show linearity in Y,

X 0 (aYl + (3Y2)

(x 0 aYl) + (x 0 (3Y2)

a(x 0 Yd + (3(x 0 Y2)

af(x 0 Yl) + (3f(x 0 Y2).

29



Hence f is linear in Y and therefore, f is a bilinear map. o

2.1.2 Universal property of tensor products

The space of all bilinear maps from X x Y to another vector space Z is

naturally isomorphic to the space of all linear maps from X 0 Y to Z.

This is built into the construction; X 0 Y has all the relations that are

necessary to ensure that a homomorphism from X 0 Y to Z will be linear.

Theorem 2.1.2. Let X and Y be vector spaces over the same field K.

There exists X 0 Y called tensor product of X and Y with a canonical

bilinear homomorphism f : X x Y -+ X 0 Y distinguished up to isomor-

phism by the following universal property; Every bilinear homomorphism

</J : X x Y -+ Z lifts to a unique homomorphism ¢ : X 0 Y -+ Z such

that </J(x,y) = ¢(x 0 y) for all x E X 'and y E Y. See {23} for proof.

2.2 Tensor products of vector spaces

The tensor product,· X 0 Y, of the vector spaces X and Y can be con-

structed as a space of linear functionals on B(X x Y) in the following way;

for x E X, Y E Y we denote by x 0 y the functional given by evaluation

at the point (x, y). In other words,

(x 0 y)(f) = (f, x 0 y) = f(x, y)

for the bilinear form f on X x Y. The tensor product X 0 Y is the subspace

of the dual B(X x Y)* spanned by these elements. Thus, a typical tensor
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in X ® Y has the form u = L~=laixi ® Yi where n is a natural number,

ai E K, Xi E X and Yi E Y.
e-

We note a few elementary facts about tensors. First, if u = L~=laixi ®Yi

is a tensor and f a bilinear form, then the action of u on f is given by:

u(J) ~ \!, t,a;Xi 0 Yi) ~ t,a;!(Xi, Yi)

We note that mapping (x, y) I--t X ® Y is multiplicational on X x Y with

values in the vector space X ® Y. This product is itself bilinear, so we'

have, for example,

(i) (Xl + X2) ® Y = Xl ® Y + X2 ® y,

(ii) X ® (YI + Y2) = X ® YI + X ® Y2,

(iii) ax ® Y = (ax) ® Y = X ® (ay),

(iv) 0 ® Y = X ® 0 = O.

Theorem 2.2.1. Let X and Y be vector spaces.

(a) Let EI and E2 be linearly independent subsets of X and Y respectively,

then {x ® Y : X E EI, Y E E2} is a linearly independent subset of X ® Y.

(b) If EI = {ei : i E I} and E2 = {ej : j E J} are bases for X and Y

respectively then EI ® E2 = {ei ® ej: e, E EI, ej E E2} is a basis for

X ® Y. (original proof in [15]).

Proof. (a) Suppose L~=lai(xi ® Yi) = 0 v:rhere Xi E E, and Yi E E2. Let

<fJand cp be linear functionals on X and Y respectively.

Consider the bilinear form defined by f(x, y) = <fJ(x)cp(y). We have

u(J) = 0
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and so

Since this holds for every sp E Y*, we can conclude that

n

L aA>(Xi)Yi = 0,
i=l

and so by the linear independence of E2 we have O!i<l>(Xi)Yi= 0 for every

<p E X*. But, by the linear independence of E1, each Xi is nonzero and it

follows that ai = 0, Vi.

(b) From (a) we only need to show that E1 (8) E2 spans X (8) Y.

Let X (8) Y E X (8) Y such that x = L:~=1~iei and Y = L:7=1(3jej.

We therefore have

x(8)y
n m

Lai·ei (8) L{3jej
a=eI j=l
m n

L{3j(L ai'ei (8) ej)
j=l i=l
m n

L (3jL ai(ei (8) ej)
j=l i=l
n m

L L ai{3j(e, (8) ej).
i=l j=l

Since x (8) Y was picked arbitrarily in X (8) Y, any vector in X (8) Y can be

expressed as a linear combination of the vectors e. (8) ej. We deduce that

E1 (8) e. spans X (8) Y. Therefore, E1 (8) E2 is a basis of X (8) Y. 0

Theorem 2.2.2. The following are equivalent for u = L:~=1Xi (8) Yi E

X(8)y.

(i) u = 0
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(ii) L~=l </J(Xi)CP(Yi) = 0, V </J E X*, cP E Y*.

(iii) L~=l </J(Xi)Yi = 0, V </J E X*.

(iv) L~l CP(Yi)Xi = 0, V ip E Y*. (original proof in (15))

Proof (i) =* (ii)

Since u = L~l Xi ® Yi, we note that

° u(J)\', t,x; ® y;)
n

Lf(Xi' Yi)
i=l
n

L </J(Xi)CP(Yi), V </J E X*, cP E Y*.
i=l

(ii) =* (iii)

Now,
n

L </J( Xi)CP(Yi) = 0, V </J E X*, ip E Y*.
i=l

n

=* L</J(Xi)Yi = 0, V </J E X*.
i=l

(iii) =* (iv)

From
n

L </J(Xi)Yi = 0, V </J E X*
i=l
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we have

So
nI>/>( Xi)<p(Yi) = 0, V </> E X*, II' E Y*.

i=l

But,

n

~L <p(Yi)Xi = 0, V II' E Y*.
i=l

(iv) ~ (i)

Suppose 2::~=1<p(Yi)Xi = 0, V II' E Y*. Let f E B(X x Y). Further, let

E, F be the subspaces of X, Y respectively spanned by {Xl, ... , xn}, {Yl, ... , Yn}

respectively and let B denote the restriction of f to E x F.

Choosing bases for the finite dimensional space E, F and expanding the

bilinear form B relative to these bases yields' a representation for B of the

form B(x, y) = 2::;:1 7rj(X)Tj(Y) where 1fj E E* and Tj E F*. See [7].

Now we may extend the domain of 1fj, Tj to all of X, Y respectively in

the following manner: choose algebraic complements, P, Q for E, F re-

spectively, so that X = E E9P and Y = F E9Q. Then, if X = Xl + X2 E X

with Xl E E, X2 E P, let 1fj(x) = 1fj(Xl). The functionals Tj are defined

in Y in a similar way.

We now consider B as a bilinear form on X x Y by using the representa-

tion of B given above. Now f and B may be different bilinear forms on
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x x Y, but they agree on E x F. Thus we have

n

u(f) = "L!(Xi,Yi)
i=l
n

"LB(Xi,Yi)
i=l
n m

"LL7rj(Xi)7j(Yi)
i=l j=l

(fyy (iv)).

Thus u(f) = 0, V! E B(X x Y). o

Theorem 2.2.3. Let X and Y be finite dimensional vector spaces. Then

X* Q9y* ~ (X Q9Y)* via the isomorphism 7 :X* Q9Y* ---+ (X Q9Y)* defined

by 7(if> Q9<p)(x Q9y) = if>(x)<p(y).

Proof (From [23]) We need to show that 7 is an isomorphism. Let us fix

if> E X* and sp E Y*, and consider the map a"" <p: X x Y ---+ K defined by

a",,<p(x, y) = if>(x)<p(y).

This map is bilinear, and so by the universal property of tensor products

implies that there exists a unique linear map fj"" <p: X Q9Y ---+ K for which

fj",,<p(X Q9y) = a""<p(x, vv= if>(x)<p(y).

Thus fj",,<p E (X Q9Y)*. Now we define a map a : X* x Y* ---+ (X Q9Y)*

by

a{if>, <p) = fj",,<p.
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This map is also bilinear. For instance,

<y(a</J + (3cp, 'IjJ)(x 0 y) (O!</J + (3cp)(x)'IjJ(y)

O!</J(x)'IjJ(y) + (3cp(x)'IjJ(y)

O!<Y(</J,'IjJ)(x, y) + (3<y(cp, 'IjJ)(x, y)

[O!<Y(</J,'IjJ) + (3<y(cp, 'IjJ)](x, y)

and so

which shows that <Y is linear in its first coordinate. Similarly, it's linear

in it's second coordinate and hence bilinear. Therefore, the universal

property implies that there exists a unique linear map T : X* 0 Y* -+

(X 0 Y)* for which

T( </J 0 cp) = <Y(</J, cp)

that is,

T(</J 0 cp)(x 0 y) = <Y(</J0 cp)(x 0 y) = o-<p®<p(x0 y) = </J(x)cp(y).

To show that T is an isomorphism, let ~ = {hi} be a basis for X, with

the dual basis ~' = {CPi}, and let tt = {Ci} be a basis for Y, with the dual

basis e = {'ljJi}. Then

and so T(CPi 0'IjJj) E (X 0 Y)* is a dual basis vector to the basis {bx 0Cy}

for X 0 Y. Thus, T takes the ,basis {CPi 0 'ljJj} for X* 0 y* to the basis
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{T( <Pi 18)1Pj)}. Hence T is an isomorphism. o

2.3 Tensor products of Hilbert spaces

Definition 2.3.1. Let H, K be Hilbert spaces. The pair (H 18) K, #),

where # : H x K -- HI8) K is a bilinear operator acting by the rule

(x, y) I---t X 18) y, is called the Hilbert tensor product.

Theorem 2.3.2. Let Hand K be Hilbert spaces. Then there is a unique'

inner product (., .) on H 18) K such that

(x 18) y, x' 18) y') = (x, x')(y, y') (x, x' E H, y, y' E K).

Proof (From [13]) If T and p are conjugate-linear maps from H and K,

respectively, to C, then there is a unique conjugate-linear map T0 p from

H 18) K to C such that

(T 18) p){x 18) y) = T{X)p{y) (x E H, y E K).

If x is an element of a Hilbert space, let Tx be the conjugate-linear func-

tional defined by setting Tx{Y) = (x, y).

Let X be the vector space of all conjugate-linear functionals on H 18) K.

The map H x K -- X, (x, y) I---t Tx 18) Ty, is bilinear, so there is a unique

linear map 7r : H x K -- X such that

7r{x 18) y) = Txl8)Ty, Vx,y.

The map (.,.) : (H 18) K) -- C, (z, z') I---t 7r{z){z') is a sesquilinear form on
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H Q9K such that

(x Q9y, x' Q9Y') = (x, x')(y, Y') (x, x' E H, y,y' E K).

If z E H Q9K, then z = L:;=l XjQ9Yj for some Xb ... , Xn E Hand Yb , Yn E

K. Let el, ... , em be an orthonormal basis for the linear span of Yb , Yn.

Then z = EJ=lXj Q9ej for some x~, ... , x~ E H, and therefore

(z, z) E7,j=l(x~ Q9e., x~ Q9ej)

E7,j=l(x~, x~)(ei' ej)

E';lllx~1I2 -.

Thus (.,.) is positive, and if (z, z) = 0 then xj = 0 for j = 1, ... , m. So

z = o. Therefore, (.,.) is an inner product. 0

Theorem 2.3.3. Let Hand K be Hilbert spaces and H Q9K be the tensor

product between Hand K such that x Q9Y is an element of H Q9K where

x E Hand Y E K. Then IIx Q9Yll = IIxllllylI·
Note: This theorem was given in [13} as a note thus we have provided its

proof below.

Proof We prove that Ilx Q9YII satisfy all the axioms of a norm.

(i) Clearly, Ilx Q9yll ~ 0 and Ilx Q9yll = 0 ¢::::::} x Q9Y = 0

(ii) lIa{x Q9y) II = lalllxllllylL \;/x E H, Y E K and a E K.
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We note that,

IIx ~ yII2 _ (x ~ y, x ~ y)

- (X,X)(y,y)

IIxII211yII2

and by algebraic properties of tensor products we have

a(x~y) = (ax~y) = (x~ay). So,

lIa(x~Y)1I2 - (ax~y,ax~y)

= (ax, ax)(y, y)

lal211xl1211yll2
_ lal211x ~ Y1l2.

Therefore, lIa(x ~ y)1I2 = lal211x ~ Y1l2.
Taking square root of both sides we have, lIa(x ~ y)1I = lalllxllllylI·
(iii) V Xl, X2 E H and YI, Y2 E K we have

= (Xl ~ YI, Xl ~ YI) + (Xl ~ YI, x2 ~ Y2).+ (X2 ~ Y2, Xl ~ YI) + (X2 ~ '!h, X2 ~ Y2)

- (X}, XI)( YI, YI) + (Xl, X2)(YI, Y2) + (X2, XI)(Y2, YI) + (X2, X2) ('!h, Y2)

= IIxl1l211Ylll2 + IIx2 112U'!h 112+ (XI,X2)(YI,Y2) + ((XI,X2))((YI,Y2})

= IIxl1l211Yl1l2 + IIx211211Y2112+ 2Re(Xl' X2)(YI, Y2}.
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So by Cauchy-Schwarz inequality,

II(Xl 0 Yd + (X2 0 Y2)1I2 < IIxlll211Ylll2 + IIx211211Y2112+ 211xl~lIx21111Yl1I11Y211
(IIXI II IIx211+ IIYIIIIIY211)2.

Taking square roots on both sides we obtain

Remark 2.3.4. If H and K are as in Theorem (2.3.2), we shall regard

H 0 K as a pre-Hilbert space with the above inner product. The Hilbert

space completion of H 0 K is denoted by H ®K, and called the the Hilbert

space tensor product of H and K.

Lemma 2.3.5. Let H, K be Hilbert spaces and suppose that u E B(H)

and v E B(K). Then there is a unique operator (u®v E B(H®K) such

that

(u®v)(x 0 y) = u(x) 0 v(y) (x E H, Y E K).

Moreover, Ilu®vll = lIullllvll·

Proof. (From [13]) The map (u, v) 1-+ U 0v is bilinear, so to show that

u 0 v : H 0 K 1-+ H 0 K is bounded, we may assume that u and v are

unitaries [13], since the unitaries span the C*-algebras B(H) and B(K).

If Z E H 0 K, then we may write z = ~f=lXi 0 Yi where Yl, ... , Yn are
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orthogonal. Hence,

n

L U(Xi) 0 V(Yi)
i=l
n

L IIU(Xi) 0 V(Yi)112 (since V(Yl), ... , v(Yn) are orthogunal)
i=l
n

2

II(u 0 v)(z)1I2

L II(Xi) 112II(Yi) 112
i=l

IIz1l2.

Consequently, lIu 0 vII = 1.

Thus, for all operators u, v on H, K respectively, the linear map U 0 v is

bounded on H 0 K and hence has an extension to a bounded linear map

u®v on H®K.

The maps B(H) -+ B(H®K) defined by U I-t U 0 idk (where idK is

identity in K) and B(K) -+ B(H®K) defined by v I-t idk0v (where idH

is identity in H) are *-homomorphisms and therefore isometric. Hence

lIu®idll = lIuli and lIid®vll = IIvll. Therefore,

lIu®vll II(u®id)(id®v) II
< lIu®idlillid®vll

lIullllvll·

If t: is a sufficiently small positive number, .and if u, v -=I 0, then there are

unit vectors x and Y such that

lIu(X)1I > lIull- e > 0
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and

IIv(Y)1I > IIvll- 10 > O.

Hence,

II(u0V)(X Q9y)11 lIu(x) IIIIv(y) II
> (liull - f)(lIvll - f)

=> lIu0vll > (IiUIl- f)(lIvll - f).

As 10 -t 0 we obtain IIU0vll ~ lIullllvll. o

Theorem 2.3.6. Let T : HI -t H2 and S : KI -t K2 be bounded opera-

tors between Hilbert spaces. Then there exists a unique bounded operator

T0S: HI0KI -t H20K2 such that (T0S) (XQ9Y)= T(x)Q9S(y) V x E HI

and V Y E KI. Moreover, IIT0S11 = IITIlIiSIi. (original proof in [8)}

,

Proof Since the algebraic tensor product HI Q9K, is dense in H2 Q9K2,

there may exist at most one bounded operator satisfying the desired con-

dition. Further, by the identity IIx Q9Yll = IIxlillYIl for the norm in the

Hilbert tensor product, for this hypothetical operator T Q9S we would

have from the definition of norm,

IIT0S11 > sup{II(T0S)(x Q9Y)II : x E BHll Y E BK1}

sup{IIT(x)IIIIS(y)1I : x E BHll Y E BK1}

IITIlIISII·

We must show that this operator indeed exists and IIT0S11 S; IITIlIiSIi.

We state the following lemma which gives a solution.
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Lemma 2.3.7. There exists a bounded operntorT®l : HI®KI ~ H2®KI

such that (T®1)(x0Y) = T(x) 0y for all x E HI and Y E K]. Moreover,
"-'

Proof. Consider the bilinear operator R: HI X KI ~ H2®KI: (x, y) t-7

T(x) 0 y. Suppose R' : HI 0 KI ~ H2®KI. Take u E HI X KI, and a

representation u = :E~=lxi0Yi. Without loss of generality, we can assume

that the system Yb , Yn E KI is orthonormal.

The system Xl 0 Yb , Xn 0 Yn E HI 0 KI and T(xd 0 YI,...,T(xn) 0'
Yn E HI 0 KI is orthogonal in H2®KI. Therefore, using the Pythagorean

equality we have

n 2
11R'(u)112 LT(Xi) 0Yi

i=l
n

L IIT(xi) 0 Yill2
i=l- n

L IIT(xi)II2
i=l

n
< IITII2Lllxill2

i=l
n

L IIxi0Yill2
i=l
IIT1I211u1l2.

Thus, R' is a bounded operator from the pre-Hilbert space Hl0KI to the

Hilbert space H2®KI, and IIRII ::; IITII. Extending this by continuity to

the whole HI ®Kb we obtain the operator T®l with required properties.

o
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Now we complete the proof of the theorem. Similarly to the lemma,

we obtain a bounded linear operator l®S : H2®Kl -t H2®~2 such that
<..-

(l®S)(x (8)y) = x (8)S(y) for all x E H2 and y E K, and 1110S11::; IITII·
Put T®S:= (1®S)(T01) : H10Kl -t H20K2.

By the multiplicative inequality for the operator norm, this operator is

bounded and IIT®SII ::; IITIlIiSIl but from the definition,

IIT®SII ~ IITIlIISIl so IIT®SII = IITIlIISII· o

2.4 Tensor products of operators

Let X, X', Y ~ Y' be vector spaces over the same field and T :X -t X',

S :Y -t Y' be operators. Then there is a unique linear operator

T 0 S : X (8)y' -t X' (8)Y'

defined by

(T 0 S)(x (8)y) = T(x) (8)S(y), V x E X, Y E Y. (2.4.1)

The function f: X x Y -t X'(8)Y' defined by f(x, y) = T(x) (8)S(y) is

bilinear and so by the universal property of tensor products, there exists

a unique linear operator T0S for which equation (2.4.1) holds. The map

T 0 S is called the tensor product of T and S.

Thus, we have a map r : £(X, Y) x £(X', Y') -t £(X (8)Y, X' (8)Y')

defined by

-ci; S) = T 0 S. (2.4.2)
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r
<

This map is bilinear so there is a unique linear operator

() : 'c{X, Y) I8l ,C{X', Y') -+ 'c{X I8l Y, X' I8l Y') '-'

satisfying

(){T I8l S) = T 0 S.

Lemma 2.4.1. Let () be as defined above, then () is injective.

Proof (From [23]) First we note that any nonzero vector 'r/E 'c{X, Y) I8l

,C{X', Y') has the form
n

'r/ = L'li I8l s.
i=l .

where both T!s and S~s are linearly independent. It suffices to show that

ker{()) = {O}.

Suppose

Then
n

L'li{x) I8l Si{Y) = 0, \/ x E X, Y E Y
i=l

(2.4.3)

Let us choose x E X so that 'li{x) =1= 0, and suppose that T1{x), ...,Tm{x)

is a maximal linearly independent set among T1{x), ...;Tn{x). Thus, for

scalars ru,j,

m

Tu{x) = L ru,j1j{x) for u = m + 1, ...,n.
j=l
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Hence equation (2.4.3) gives

o t. T; '" S;(y) +=t., (t,r".J1j(X)) '" S,,(;)~

t. T;(x) '" S;(y) +t,1j(x) '" Ct,r"Js,,(y))

t.T;(x) '" (s;(y) +=t.,r"Js,,(y))

and since T1{x), ... , Tm{x) are linearly independent, we must have

n

Si{Y)+ L ru,jSu{Y) =0, Vi~l, ... ,m and VyEY.
u=m+l

Hence
n

s, + L ru,js; = 0
u=m+l .

which contradicts the fact that S~sare line~ly independent.

Hence (}(-,,)=1= 0 and so () is injective. o

Remark 2.4.2. We note that if all vector spaces are finite dimensional,

then () is also surjective, and hence is an isomorphism [23].

Theorem !2.4.3. Let T E £(X, X') and S E £(Y, Y'). There is a unique

linear operator T 0 S E £(X ® y, X' ® Y'), called the tensor product of

T and S satisfying (T 0 S){x ® y) = T{x) ® S{y). Moreover, there is a

unique injective linear operator

(): £(X, Y) ® £(X', Y') -+ £(X ® Y, X' ® Y')
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satisfying

()(T <8>S) = T 0 S.

See [23} for proof.

Properties of the operator T 8s.
The operator T 0 S is both linear and bounded.

(i) Linearity.

The map T 0 S :X <8>Y ~ X' <8>Y' is defined by

Let a, f3 E K and L:~=1Xi <8>Yi, L:~1 x~ <8>~ E X <8>Y Then

T 0 S (atXi <8>Yi) + T 0 S (f3 t x~ <8>Y:)
.=1 =1

n n

a'LT(Xi) <8>S(Yi) + f3 LT(x~) <8>S(y:)
i=1 i=1

«r 0 S (t,z, ® y.) + /3T0 S (t,x: ® y:) .
(ii) Boundedness.

We need to show that there exists a constant M > 0 such that,
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Now,

T 0 S (t,X; 0Y;)
n

0

= LT(Xi) 0 S(Yi)
i=l

n

< LT(Xi) 0 S(Yi)
i=l
n

< L IIT(xi)IIIIS(Yi)1I
i=l
n

< L IITllllxilillSIIIIYili
i=l

n

< IITIlIiSIl L IIxilillYili
i=l

n

< IITlllIsll1l LXi 0 y;ji.
i=l

(ill) The norm property of T 0 S

By definition,

IIT0S11

supIIL~=lxi@Yill=l

IITIlIISII·

<

Therefore,

liT 0 SII ::; IITIlIISII· (2.4.4)

On the other hand,

liT 0 SII = sup IIT~tt:~:;;,~t(;)II,V L~l Xi 0 Yi E X 0 Y and L~l Xi 0
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Yi i o. It follows that

V L:~=l Xi (8)Yi E X (8)Y and L:~=l Xi (8)Yi i O.

Hence

liT 08112: IIT111I811· (2.4.5)

So by equations (2.4.4) and (2.4.5), we obtain

IIT0811 = IIT1I1I811·

2.5 ·Tensor product of normed spaces

Like in vector spaces, maps between normed spaces are bilinear. If

X, Y, Z are normed spaces over a field K, -then B(X, Y; Z) is the set

of bounded linear mappings from X x Y to Z.

Definition 2.5.1. Let X, Y be normed spaces over K with dual spaces

X', Y'. Given X E X and Y E Y, let X (8)Y be the element of B(X', Y'; K)

defined by

X (8)Y = f(x)g(y) (J EX', 9 E Y').

The algebraic tensor product of X and Y is defined to be the linear span

of {x(8)y: X E X, Y E Y} E B(X', Y'; K).
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2.5.1 Projective tensor norm

Definition 2.5.2. Given normed spaces X, Y, the projective tensor

norm p on X ® Y is defined by

p(U) = inf{L IIxillllYil1 : U = LXi ® Yi}
i i

where the infimum is taken over all (finite) representations of u.

Lemma 2.5.3. The projective tensor norm p is a norm on X ® Y and

(i) p(u) 2: w(u) (u E X ® Y), w is weak tensor norm;

(ii) p(x ® y) = IIxllllyll, x E X, Y E Y. For proof see [12].

Remark 2.5.4. The completion of (X ®Y,p) is called the projective tensor

product of X and Y and is denoted by X ®p Y

2.5.2 Haagerup norm

The Haagerup norm is a very important operator space cross-norm. The

motivation was the consideration of operators of the form </J( a) = ~f=IUiaVi

for a E A where UI, ... , Un, VI, ..• , Vn are some fixed elements in A [1,6].

These operators result from the action Of~~IUi®Vi E A®AOP on A(where

AOP is the C*-algebra A with the reversed product). If A ~ B(H) then for
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~,"1 E H where II~II = 1, 11"111= 1, the Cauchy-Schwarz inequality implies

I(¢(alt,~) I ~ ( t. ",avit, ~)

(t.aVit,u;~)

< (t."av;t"'r (t."U;~II'r
Further, Ilavi~11 :s lIallllvi~1I and

n

Lllvi~112
i=l

n

L(Vi~, Vi~)
i=l
n

L(~,V;Vi~)
i=l

n

< LV;Vi 11~1I2.
i=l

Similarly,
n n

L Ilu;"1112:s LUiU; 11"1112.
i=l i=1

So,
1
2 n

L IIV;Vi
i=1

1
2

11~1I1I"111·

Hence, 1I<p11:S II L~l uiu:II~11 L~ll1vivill~·
For the reverse inclusion, we may also allow infinite (countable) sequences
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Therefore, the natural definition following from these considerations is

We show that Haagerup norm is actually a norm. To do this, we show

that it satisfies the properties of a norm.

(i) We note that IItlih = inf {IIL~=l ai 0 bill}· So clearly, IItlih 2: 0 and

Iltlih = 0 if and only if t = O.

(ii) We show that V a E K, lIatlih = lailltilh.
Now,

lIatli. in! {t,(aa;)(aa;)' t,b;b, r
inf {t,a;a; t,(ab;) (ab,)r
in! {Ial' t,a;a; t,b;bo r
lalin! { t,a;a; t,b;b,r
lailltilh.

(iii) 1ft, t' E B(H)0B(H) then Vt = L~=l ai10bi1 and t' = L~l ai20bi2,
lit + t'llh < Iltllh + 1Jt'lih'
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Now,

lit + t'llh inf { (t.~,®bH) + (t.~®b~)1I)
< inf {

< inf { t.~,® b.,
Iltlih + Ilt'lih.

n

L:ai1 0 bi1
i=l

+ t.~2 ®b;2}
} + inf {

(iv) If t, t' E B(H) 0 B(H) then 1Itt'lih ~ Iltllhllt'lk
Now,

. IItt'llh inf { (t.~, ®b.,)(t.~'®b~) }
inf {

n n }< L:ai10bii L:ai2 0 bi2
i=1 i=l

inf {
n }mi{ n }< L:ai10bi1 L:ai2 0 bi2

i=l i=l
IItllhllt'lih.

The upper bound therefore, is given by IITII ~ 11:E~=1ai 0 bill in terms of

the Haagerup norm 1I.lIhon B(H) 0 B(H). The equality holds when the

operators aiai commute and bibi commute [27].

In the next theorem we use the following notations. For TJ, ~ E H we use

TJ 0 ~* for the rank one operator on H with (TJ 0 e)(O) = (0, ~)TJ·

Theorem 2.5.5. For T E d(B(H)), Tx = :E~1 aixbi, we have

n

IITII = sup L:(P1ai) 0 (biP2)
P}'P2 i=l
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where PbP2 E B(H) are mnk one projections (if = Pi = P; (i = 1,2))

(original proof in {27]}.

Proof Let Pl = ~® ~* and P2 = T/ ® T/* be one dimensional projections

(where T/, ~ E H are unit vectors). We look at the operator

n

Tp1,P2(x) = L(Plai) ® (biP2),
i=l

an operator with a one dimensional range. Specifically it is the operator .

x ~ ((Tx)T/, ~)~ ® T/*

and thus a linear functional.

For this operator, (Plai)(Plaj)* are commuting and so are (biP2)* (bjP2).

Hence
n

IITp1,P211 = L(Plai) ® (biP2)
i=l h

Alternatively, the norm of a linear functional is the same as its completely

bounded norm, hence IITpl,P2II = IITpl,P2l1cb = the Haagerup tensor norm

for T of the form T = L:~=l a; ® b..

Clearly,

IITII sup {IITxll : x E B(H), IIxll ::; 1}

sup{R((Tx)T/,~) : x E B(H), IIxll::; 1, T/, ~ E H, II~II= liT/II= 1}

sup{R((Tpl'P2X)T/,~) : x E B(H), Ilxll::; 1, T/, ~ E H, II~II= liT/II= 1}

sup IITpl,P2II·
Pl,P2
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IITII = sup 2)Plai) ® (biP2)
PbP2 i=l

n

o

2.6 Tensor product of C*-algebras

Theorem 2.6.1. Let A, B be normed algebras over K. There exists a

unique product on A ® B with respect to which A ® B is an algebra and

(a ® b)(c ® d) = ac ® bd (a, c E A, b, dEB). See {13} for proof.

We note that A ® B endowed with multiplication is called the algebra

tensor product and A ® B together with an involution the *-algebra

tensor product [12].
The norm of a C*-algebra is unique in the sense that on a given *-algebra

A there is at most one norm which makes A into a C*-algebra [13]. We

consider two types of norms and we determine the relationship between

them.

2.6.1 Spatial norm

The norm 11.1171" defined by the inclusion A ® B ~ B(H) ® B(K) ~

B(H0K) is called the spatial norm, assuming that A and B are faith-

fully represented on Hilbert spaces H and K respectively. This norm was

introduced by T. Turumaru in,1953. The definition does not depend on
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particular representations of A and B, that is, V tEA 0 B

IItll7r = 1100 -D(t)IIB(H®K)

for any two faithful representations 0 of A on H and -D of Bon K.

First,we show that the spatial norm is actually a norm. V tEA 0 B, we

have Iltll7r = 1100 -D(t)IIB(H®K) which defines a norm.

(i) Clearly, Iltll7r ~ 0 and Iltll7r = 0 if and only if t = O. i.e

11(00 -D)tIIB(H®K) ~ 0 and

11(00 -D)tIlB(H®K) = 0 if and only if t = O.

(ii) We show that Ilatll7r = lallltll7r, Va E K.

Now,

lIatll7r = 11(00 -D)(at)IIB(H®K)

lIa(O 0 '!9)(t) IIB(H®K)

lalll(O 0 '!9)(tJIIB(H®K)

lallltll7r·

(iii) We show that lit + 8117r ::; IItll7r + 118117r.

lit + 8117r 11(00 '!9)(t + 8)IIB(H®K)

11(00 '!9)(t) + (00 '!9)(8)IIB(H®K)

< 11(00 '!9)(t)IIB(H®K) + 11(00 '!9)(8)IIB(H®K)

IItll7r + 118117r·
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(iv) Lastly, we show that IItsll,,-~ IItll,,-lIsll,,-·

11(0® 1?)(ts)IIB(H0K)

11(0® 1?)(t)(O ® 1?)(s)IIB(H0K)

< 11(0® 1?)(t)IIB(H0K) 11(0® 1?)(s)IIB(H0K)

lit11,,-IIsll,,-·

2.6.2 Maximal C*-norm

The second natural norm on A®B was introduced in 1965 by A. Guichardet.

It is the maximal C*-norrn 1I.lIydefined as:

IItlly = sup{IITtll : T is a subtensor representation of A®B}, for t E A®B.

Next, we need to show that maximal C*-norm is actually a norm i.e it

must satisfy all the properties of a norm.

(i) Clearly, IItlly = sup{IITtIlB(H)} ~ 0 and IItlly = 0 if and only if

t = 0, V tEA ® B.
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(ii) We show that Ilatliv = lailltllv, Va E K.

lIatliv sup{lIaTtll : T is a subtensor representation of A"--0B}, for tEA 0 B.

sup { ccr tX;0Y; }

sup { t"",(X;) 0T,(y;) }

1"1 sup { t T, (x;) 0 T,(y;) }

lailltllv, Va E K.

(iii) We let Xi, X~ E A, Yi, ~ E B, then for t = L~=lXi 0 Yi and

s = L~l ~0~,we have,

sup{IIT(t + s)11 : T subtensor representation of A 0 B}, for tEA 0 B.

sup{IIT(t) +T(s)IIB(H)}

sup { [tT, (x;) 0 T,(y;) 1 + [tT, (x:) 0 T,(y:) 1 }
< sup{ tT'(X;)0T'(Y;) } +sup{ tT'(CX:)0T,(V,) }

lit IIv + Ilsllv·

(iv) Lastly, we show that IItsllv :::;Iltllvllsllv. We let Xi, X~ E A, Yi, Y~ E B,
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then for t = L:~l Xi ® Yi and s = L:~=1:Z;® 1h' we have,

Iltsliv = sup{IIT(ts)ll: T subiensor representatian of A ® E}, far tEA ® B.

sup{ IIT(t)T'( s) IIB(H)}

suP{IIT (t,Xi 0 Y;) T' (t,x; 0 Y;) IIB(H)}

sup{ [t,T1(X;)0T'(1!;)] [t,T;(X;)0T;(YD] }

< sup { t, T1(x;) 0T,(y;) } sup { t,,;(X;)0 -I,(yD }

Iltllvllsllv.

2.6.3 Relationship between spatial norm and maxi-

mal C*-norm

Theorem 2.6.2. Let A, B be C*-algebras. There is a minimal C*-norm

(IItll,,-) and maximal norm (IItllv) such that any C*-norm (IItl!) on A ® B

must satisfy Iltll,,-::; IItll ::; IItliv. (This is a kmoum result but no proof has

been found).

Proof. We denote by A®,,-B (resp. A®vB) the completion of A ®,,- B for

the norm (1Itll,,-)(resp. A ®v B for the norm (1Itllv)).

The maximal norm is described as Iltliv = sup 114>(t)IIB(H)where the

supremum is taken over all possible Hilbert spaces H of all possible =,
homomorphisms;

4>: A ® B ~ B(H).

For any such 4> there is a pair of *-homomorphisms 4>i : A ~ B(H)
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f,

(i = 1,2) with commuting ranges such that,

Conversely, any such pair <l>i: A -? B(H), <l>i: B -? B(H) (i = 1, 2)

of *-homomorphisms with commuting ranges determine uniquely a *-

homomorphism <1>:A 18) B -? B(H) by setting <I>(Xi18) Yi) = <l>I(Xi)<I>2(Yi)'

Thus we can write for t = L~I Xil8)Yi E AI8)B, Iltliv= sUP{L~=l <1>1(Xi) </>2(Yi)}

where the supremum runs over all possible such pairs. The inequality

follows by considering Gelfand- Naimark embedding of the completion of

(A 18) B, IItll) into B(H) for some H [13]. The minimal norm can be de-

scribed as follows; embedding A and B as C*-subalgebras of B(Hl) and

B(H2) respectively. Then for any t = L~=l xil8)Yi E AI8)B, IItll7r coincides

with the norm induced by the space B(HI 18)11'11 H2) that is, we have an

embedding (an isometric *-homomorphism) of the completion denoted by

A~7rB into B(HI 18) H2)'

In other words, the minimal tensor product operator spaces, whenre-

stricted to two C*-algebras coincides with the minimal C*-tensor prod-

uct.

Let (CJ, D2) be another pair of C*-algel?ras and consider completely

bounded maps II:A -? C and h :B -? D. Then fl 18) h defines a com-

pletely bounded map from A~7rB to CI8)D with IIfll8)f211cb = IIflllcbllhllcb.

In sharp contrast, the analogous property does not hold for maximal ten-

sor products. However, it does hold if we assume further, that II and h
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are positive and then the resulting map /1 ~ h is also completely positive

(on the maximal tensor product) and we have

o
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chapter 3

NORMS OF ELEMENTARY

OPERATORS

3.1 Introduction

In this chapter we concentrate on the norms of elementary operators,

especially on the lower estimate of these norms. We refer the reader

back to the introductory chapter for historical background on elementary

operators and other important definitions used in this chapter.

Definition 3.1.1. Let H be a Hilbert space and B(H) the algebra of

bounded linear operators on H. Then T : B(H) -+ B(H) is an elementary

operator if T has a representation T(x) = L~laixbi where ai, b, are fixed

in B(H).

Remark 3.1.2. An elementary operator is a bounded linear operator.

To see this, let x, y E B(H) and o, f3 E K then for ai, b, fixed in B(H)
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we have,

Tioa: + {3y)
n

L ai(aX + {3y)bi
i=1
n

L(aaix + {3aiy)bi
i=1
n

L(aaiXbi + {3aiybi)
i=1
n n

L aaixbi + L {3aiybi
i=1 i=1

n n

a L aixbi + {3L aiybi
i=1 i=1

aT(x) + {3T(y).

Hence the operator is linear. To prove that T is bounded, we need to show

that there exists a constant M > 0 such that IIT(x)1I :s: Mllxll, V x E H.

Now,

n

IIT(x)II Laixbi
i=1
n

< L lIaixbili
i=1
n

< L lIaililibillllxll·
i=1

So
k

IIT(x)1I < L lIaililibillllxll· (3.1.1)
i=1

Let 2:~1lIaililibili in equation (3.1.1) be M, then the equation reduces
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to IIT{x)1I ::;Mllxll v x E H. Therefore, T is a bounded linear operator.

3.2 Overview of the norm problem

The norm problem for elementary operators involves finding a formula

which describes the norm of an elementary operator in terms of its c~

efficients. Therefore, finding the norm of elementary operators has been

considered by many authors (see [3, 4, 22, 26]). Timoney [27] came up.

with a formula for the norm of an elementary operator on a C*-algebra,

involving matrix valued numerical ranges and a kind of tracial geometric

mean. Our concern has been be to investigate the lower estimate of these

norms since the upper estimates are easy to find as we observe in the next

lemma.

3.3 Main results

Lemma 3.3.1. Let T : B{H) -t B{H) be the elementary operator such

that T has a representation T{x) = :E~laixbi where ai, b, are fixed in

B{H) and x E B{H). Then IITII ::;:E~llIaillilbili.
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Proof. We have

IIT(x)11
n

LaiXbi
i=l
n

< L IlaiXbil1
i=l
n

< L Ilaililibillllxll·
i=l

o

Example 3.3.2. Let Ua,b(X) = axb+bxa be an elementary operator where

n = 2 then IIUII ::; 211allllbli.

To see this, we note from Lemma (3.3.1) that,

IIU(x)11 Ilaxb + bxall
< lIaxbli + IIbxalL

< Iiall IIxII IIbll + Ilbllllxllllall·

Clearly, IIUII ::; 211allllbll·

3.3.1 A general norm inequality

For two C*-algebras A and B a linear operator T : A -+ B is called

positive if Ta 2: 0 whenever a E A. For other conditions on positivity

of T, see [28]. The following lemma introduces us to a general norm

inequality.
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IITII ::; max{lIall, Ilbll}+ llell·

Proof. We write

(3.3.1)

By the definition of maximal norm of matrices [16, 17, 18], if Mn, m is the

set of all n x m matrices over (C or ~), then for D E Mn,m,

IIDllmax= max.;,j lai,jl where ai,j ED (i = 1, ...,n, j = 1, ... ,m).

Now,

[
a 0] [0 c*]IITII = 0 b .+ c 0 (3.3.2)

(3.3.3)

[an °b]Therefore,

r
oc co*]Similarly,

= max{llall, IIbll}·

= max{llell, 11e*11}= llell (since llell = Ilc*ll)·

Hence IITII ::; max{lIall, IIbll}+ llell· o

Remark 3.3.4. The norm of the operator Ma,b + Mc,d is usually very
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difficult to compute (see [25, 26, 28]). The following theorem gives a

more useful insight.

Theorem 3.3.5. If a, b, c and d are operators in B(H), then

See [5} for proof.

Theorem (3.3.5) leads to the following important properties of operators ..

Corollary 3.3.6. If a, s e B(H), then the following properties hold:

(1) Iia + bll2 < 2 (max{lIaIl2, IIb1l2}+ IIb*all),

(2) lIaa* + bb*11:::; (max{lIaI12, IIb1l2}+ IIb*all)·

Proof. The inequality in (1) follows from theorem(3.3.5) by letting b =
d = I. The second inequality follows by letting b = a* and d = c* in the

same theorem. o

Theorem 3.3.7. If a, s e B(H), and let a (8) b denote the tensor product

of a and b then lIa (8)b + b (8) all :::;J211al1211bll2 + 21Ib*aI12.

Proof.

(a (8) b + b (8) a, a (8) b + b (8) a)

(a (8) b, a (8) b) + (a (8) b, b (8) a) + (b (8) a, a (8) b) + (b (8) a, b (8) a)

(a, a) ( b, b) + (a, b) (b, a) + (b, a) (a, b) + (b, b) (a, a)

IIal1211bll2+ IIbll211all2+ (a, b)(b, a) + ((a, b))( (b, a)), far (a, b) = (b, a)

IIal1211bll2+ IIbll211all2+ 2Re(a, b)(b, a)
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So by Cauchy-Schwarz inequality,

II(a Q9 b) + (b Q9 a)112 < IIal1211bll2+ IIbll211all2+ 211allllbmlblillall

211all211bll2 + 21lallllbllllbllllall·

Therefore,

But IIbll = IWII so replacing IIbll by IWII in the second summand on the
right hand side of equation (3.3.4), we g~t

Taking the positive square root on both sides yields

Alternatively,

lIa Q9 b + b Q9 al12 = 2 (max{lla Q9 b112,lib Q9 a112}+ II(b Q9 a)*(a Q9 b) II)

< 2 (max{llaI12I1bIl2, Ilb11211a112}+ II(b* Q9 a*)(a Q9 b) II)

< 211all211bl12+ Ilb*a Q9 a*bll

< 211al1211bll2+ IIb*alllla*bll
< 211all211bl12+ 2I1b*aIl2•
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Taking square root on both sides we have,

o

Lemma 3.3.8. If a, s « B(H), then

IIUa,bll ~ [(llallllbll + Ilab*II)(llallllbll + IIb*all)l~· (3.3.5)

In particular, if ab* = b*a = 0, then IIUa,bll= Ilalillbll. See [5) for proof.

3.3.2 . The Complex Hilbert space case.

In this subsection we concentrate on a complex Hilbert space over the field

K. We show that for a basic elementary operator M, IIMII = Ilallllbli.

Definition 3.3.9. Let </>E H* and ~ E H. We define (</>(8)~) E B(H) by

(</>(8)~).,.,=</>(,,)~,V E H.

Theorem 3.3.10. Let H be a complex Hilbert space, B(H) the algebra

of bounded linear operators on H. Let Ma,b : B(H) --T B(H) be defined by

Ma,b(X) = axb, "Ix E B(H) where a, b are fixed in B(H). Then IIMa,bll =
lIallllbll·

Proof By definition, IIMa,bIB(H)11 = sup {IIMa,b(x)1I : x E B(H), Ilxll = I}.

This implies that IIMa,bIB(H)1I ~ IIMa,b(X)IL Vx E B(H), IIxll = 1.

So "IE> 0, IIMa,bIB(H)II- E <: IIMa,b(x)lI, Vx E B(H), IIxll = 1.
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But, IIMa,bIB(H)II - E < IIaxbli ~ IIallllxllllbil = IIalillbll·
Since E is arbitrary, this implies that

On the other hand, let ~, ", E H, II~II = 11",11= 1, <fJE H*.

Now,

IIMa,bIB(H)II 2 IIMa,b(X)II : "Ix E B(H), IIxil = 1.

But,

IIMa,b(X) II sup {II (Ma,b (x))", II : V", E H, 11",11= I}

= sup{II(axb)",II: ",EH, II",II=l}.

Setting a = (<fJ0 6), "16 E H, 11611= 1 and

b= (<p06), "16 E H, 11611= 1, we have,

IIMa,bIB(H)II > IIMa,b(X)II 2 II(Ma,b(X))",II
II(axb)",11
II((<fJ0 6)x(<p 0 6))",11
II(<fJ0 6)x(<p(",)6)II

= II(<fJ0 6)<p(",)x(6)II
l<p(",) III (<fJ.06)x(6)II

- 1<p(",)III<fJ(x(6))611
I<p(",)I1<fJ(x(6)) I116II

IIalillbll·
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Therefore,

Hence by inequalities (3.3.6)and (3.3.7),

This completes the proof.
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Chapter 4

CONCLUSION AND

RECOMMENDATION

In this last chapter, we draw conclusions and make recommendations

based on our objective of study and the results obtained.

4.1 Conclusion

We summarize our work by highlighting the results obtained in our study

pertaining to the problem stated in section 1.5_.-.~-~..•. , ' ~"

Our objective was to determine the lower estimate of the norm of the

basic elementary operator through tensor products as stated in section

1.6. In chapter one, we gave basic definitions and concepts which were

essential to our study. In chapter two, we considered the spatial norm,

projective norm, Haagerup norm and the maximal norm. We have shown

the relationship between spatial and the maximal norm.

Lastly, we have shown that for the basic elementary operator M,

IIMII = lIallllbll·
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4.2 Recommendation.

e-

Norms of elementary operators is a very interesting area of study in

mathematics and has not been exhausted. In our case we considered

a basic elementary operator. Efforts thus can be directed on determin-

ing the lower estimate of the norm of the Jordan elementary operator

(Ua,b(X) = axb+bxa) acting on two or higher dimensional Hilbert spaces.
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