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ABSTRACT

The norm of an elementary operator has been investigated over long pe-
riod by several mathematician under various special circumstances. Ti-
money working on algebra of bounded linear operators on Hilbert spaces,
established the lower bound of norms of eleementary operators on Calkin
algebra.

Similary, mathieu studied norm properties of elementary operators on
Calkin algebra and established a result whose key basis is the Haagerup
tensor norm. We joined results from these eminent mathematicians to
establish norms of elementary operators, particularly determine the lower

bounds of elementary operators.



Chapter 1

Introduction

1.1 Background Information

Here, we introduce essential concepts and relevant definitions we shall use in
the sequel. We have also presented a review of literature. We conclude the

chapter by a brief on the methodology we have used.

Definition 1.1.0: Field
A field is a set K, containing at least two elements, together with two binary
operations, called addition (denoted, +) and multiplication (denoted, x) for
which the following hold:
(a) K is an abelian group under addition,
(b) The set K* of all nonzero elements in K is an abelian group under mul-
tiplication,
(c) (Distributivity), Va,b,c,d € K :
(@) (a+b)c=ac=bc
(i) c(a+b) =ca+cb



Definition 1.1.1: Algebra
Let K be a field, and let A be a vector space over K equippked with an
additional binary operation from A x A to A, denoted here by juxtaposition
(i.e if z and y are elements of A, then zy is the product of z and y). Then
A is an algebra over K if the following identities hold for any three elements

z,y and z of A, and all elements (“scalars”) a and b of K:

o Left distributivity: (z + y)z = zz +yz
e Right distributivity: z(y + 2) = 2y + z2

e Compatibility with scalars: (az)(by) = (ab)(zy)

An algebra over K is sometimes also called a K-algebra, and K is called the
base field of A. The binary operation is often referred to as multiplication in

A

Definition 1.1.2: Associative algebra
An associative algebra A over a field K is defined to be a vector space over
K together with a K-bilinear multiplication A x A — A (where the image of(

X,y) is written as xy) such that the associative law holds:

e (zy)z=2z(yz) Vz,y and z € A.

If A contains an identity element, i.e an eleﬁent 1 such that 1z = 21 =z
for all x in A, then we call A an associative algebra with one or a unital
(or unitary) associative algebra. Such an algebra is a ring, and contains all
elements a of the field K by identification with al.

The dimension of the associative algebra A over the field K is its dimension

as a K -vector space.



Definition 1.1.3: An involution.

Let 2 be an algebra, a linear mapping T : Q@ — Q defined by z — z* is

called an involution on {2 if it satisfies the following conditions:

Vr,ye QA AeK
* (z+y)=2z"+y
o (A\z)* = Az*
. @) =y
.z**:z

Definition 1.1.4: C*—algebra

An algebra (Q is said to be a C*—algebra if an involution z — z* is defined
on it, which satisfy;

e (z*)*=xzVzeQ

e Dz)*=Xz*, 7€, AeC
o (zy)*=y*z* Vz,y e

o lzz* |I=lz|* VzeQ

Definition 1.1.5: A linear Map

Let X and Y be vector spaces over the same field K. A function f: X —» Y
is said to be a linear map or linear transformation if for any two vectors x

and y in X and any scalar a in K, the following two conditions are satisfied:

o f(x +y) = f(x) + f(y) additivity



e f(ax)= af(x) homogeneity of degree 1

¢
Definition 1.1.6: A linear operator. o
An operator is linear mapping of vector space X onto itself or to another

vector space.

Definition 1.1.7: A linear functional.

A functional is a linear mapping of a vector space into a scalar K(C, C).

Definition 1.1.8: Hilbert space.
A Hilbert space H, is a complete inner product space i.e a Banach space

whose norm is generated by an inner product.

Definition 1.1.9:A bounded linear operator.
A linear operator T': X — Y is called bounded if and only if there exists a
constant M > 0. .
I T(@) I< M || () || Vz € X

We denote the set bounded linear operators on X and Y by B(X,Y) . Note
also that; for a constant N, a bounded linear functional f on X satisfies the
inequality,

| f@) <N | (2) ]| Vo € X,N > 0.

Definition 1.1.10: Norm of a bounded operator.
Let T € B(X,Y). Then the norm of T is defined as

I T ||

I T ll=sup{ll Tz ||l;x € D(T), || = [|= 1} = sup{ Tzl

;z€ D(T),} < o0

That the supremum is finite follows from the fact that

I T(z) |I< M || () || Yz € X, M >0



Definition 1.1.11: Completely bounded norm.
Any operator T : B(H) — B(H) that induces a family of ‘maps A
M,(B(H)) — M,(B(H)),n > 1, defined by T,([z;;]) = [T(z;;)] for any
matrix [z;;] € M,(B(H)) is said to be a completely bounded operator if
sup,, || T || is finite.

Definition 1.1.12: Self Adjoint Transformation.
A bounded linear transformation T' € B(H) is said to be self-adjoint if T* =
T. Thus T is Hermitian and D(T') = H if and only if T is self adjoint.

Definition 1.1.13: Normal operator.
A bounded linear operator T on a Hilbert space H is said to be normal if it

commute with its adjoint i.e TT* = T™*T.

Definition 1.1.14: Unitary operator.
A unitary operator is a bounded linear operator T on a Hilbert space satis-

fying T*T = TT* = I, where I is the identity operator.

This property is equivalent to the following:

e T preserves inner product on the Hilbert space, so that for all vectors

x and y in the Hilbert ,
(Tz,ty) = (z,y)-
e T is surjective isometry(distance preserving map) i.e

IT(z =yl = Iz = )l

Definition 1.1.15: Compact operator.
An operator T' € B(H) is said to be a compact operator if for every bounded

sequence Z, in H the sequence (T'z,) contains a convergent subsequent.




Definition 1.1.16: Finite operator.
An operator T € B(H) is finite rank operator if the dimension of the range
of T is finite. -

Definition 1.1.17: Unitary element.

Let €2 be an algebra. An element v in 2 is a unitary element if v*u = vu* =1

Remark 1.1.18: if u* =1 then u is an isometry and if uu* = 1, then u
is a co-isometry. If ¢ : A — B is a homomorphism. Let X and Y be Banach
spaces and T' € B(X,Y’) which is bijection, then there exists 7' € B(Y, X).

Definition 1.1.19: Unitary element.

Let 2 be an algebra. An element x in (2 is a unitary element if x*r = zz* =1

Definition 1.1.20: Orthonormal basis.
Let V be a vector space. A subset (v, ....... ,vn) of a vector space V, with
the inner product (,) is called orthonormal if (v;,v;) = 0 i.e the vectors are
mutually perpendicular. An orthonormal set must be linearly independent
and so it’s a vector space basis for the space it spans. Such a basis is called

an orthonormal basis.

Definition 1.1.21: Trace-class operator.
Let T be an operator on a Hilbert space H. We define it’s trace-class norm

to be || T |li=|l| T |'/?||3 . If E is an orthonormal basis of it, then

1T =Y AITI()2)

zeE

If | T |li< +oo, we call T a trace-class operator.The trace of a trace-class
operator T is given by ¢.(T) = X;ce(T(z),z), where E is an orthonormal

basis.

Definition 1.1.22: Homomorphism.

A homomorphism from an algebra €}; to an algebra (2, is a linear map ¢ :



Q1 — Qo5 0(ab) = p(a)p(b)Va,b € . It’s kernel, ker ¢ is an ideal in Q; and
it’s image ¢(£2;) is a subalgebra of Q5.
Definition 1.1.23: A positive linear functional.

A positive linear functional is a functional on a Banach algebra {2 with an

involution that satisfies the condition

f(zz™) > 0Vz € Q.

Definition 1.1.24: A state.
A state on an algebra (2, is a continuous positive linear functional which

satisfies the Schwartz inequality,

| f(zy) |22 f(zez) f(3:y)-

Definition 1.1.25: Inner product space.
An inner product space X is a complex linear space together with an inner

product {,) : X x X — C such that;

o (z,y) = (y,x)
e <A$+p,y,2) =A(.’L‘,Z>+,U,(IL',Z> :z,y,zEX,u,)\EK

e (X, X)>0,with (z,z) =0=>2z=0

Definition 1.1.26: Ideal.
Let Q be an algebra. A left (respectively, right) ideal in (2 is a vector subspace
I of Q such that a € Q and b € I = ab € I (respectively, ba € I). An ideal

in € is therefore a vector sub space that is simultaneously a left and a right

ideal in .



Definition 1.1.27: Essential Ideal.
Let I be a closed ideal in an algebra 2. We say I is essential ideal in € if
al =0= A= 0Va € Q. (equivalently, Ia =0 =-a = 0Va € ) -

Definition 1.1.28: Free vector space.
Let K be a field.Given any non-empty set X,we may construct a vector space
fz over K with X as the basis, simply by taking f, be the set of all formal

finite linear combinations of elements of X

k
Jz= {Zrixi :r; €K x; GX}

i=1

Where the operations combine like terms using the rules; rz; +sz; = (r+$)z;

and r(sz;) = (rs)z;. The vector space f, is called free vector space of X.

Definition 1.1.29: Tensor product.
Let U and V be vector spaces over K and let T be a subspace of the free

vector space fu X v generated by all vectors of the form
r(u,v) + s(v,v) = (ru+ su’,v)

r(u,v) + s(u,v’) = (u,rv + sv')
Vr,s € F,u,u’ € Uandv,v' € V

The quotient space fu x v/T is called Tensor product of U and V and is
denoted by U ® V.

Definition 1.1.30: Matrix numerical ranges.

For a tuple (¢, ca......... , ¢n) of operators ¢; € B(H), we denote by W,,(c1, ca......

the ”matrix numerical range”

Won(C, ey ca) = (S}, N = 1: C € H, || ¢ |= 1} € M,



(where M, is the positive semi definite n X n matrices.) Now, a subset of
the closure of W, which we call the ’extremal matrix numerical range’ and

<

denote by

Definition 1.1.31: Semig'roups.
A semigroup is an algebraic structure consisting of a set closed under an
associative binary operation. It is denoted as a pair (X, *x) where X is a set -
and binary function % : X X X — X which is called the operation of the

semigroup.The application of the operation is required to be associative i.e

(z*xy)*xz=zx(y*x2)Vr,y,2€ X

Examples of semigroups
(a) Positive integers with addition
(b) Any ideal of a ring, given multiplication. Thus any ring including integers,
rational, real and complex numbers.
(c) Any subject of a semigroup closed under the semigroup operation.

(d) Any monoid, and therefore any group

Definition 1.1.32: SubSemigroups.
A subset Y of a semigroup X is called a subsemigroup if it is closed under

the semigroup operation, that is Y*Y is a subset of Y.

Definition 1.1.33: Positivity of a projection.

A projection P is to be positive if

(Pz,z) >0Vz e H



Definition 1.1.39: Multiplier algebra.
Let 2 be a non-unital C*— algebra. Then there is a uniquek (up to iso-
morphism) C*— algebra which contains € as an essential ideal and is maximal
in the sense that any other algebra can be embedded in it. This C*— algebra
is called multiplier algebra and denoted by M ().

Definition 1.1.40: Convex set.
Let X be a linear space. A subset M of the linear space X is convex if for all

z,y € M, for any positive real number ¢ satisfying 0 < ¢ < 1 we have

tr+(1—t)y e M.

Definition 1.1.41: Convex hull.
If M is a subset of a linear space X, then a convex hull M, represented
by Co(M) is the smallest convex subset of X containing M and it is the
intersection of all the convex subsets of X that contain M.
If X is a linear topological space then the set W called the closed convex

hull of M, is the intersection of all closed convex sets containing M.

Properties of Co(M) and Co(M)
Lemma
Let M and N be arbitrary sets in a linear space X, then
(a) Co(aM) = aCo(M) and Co(M + N) = Co(M) + Co(N)
If X is a topological space, then
(b) Co(M) = Co(M)
(c) Co(aM) = aCo(M)
(d) If Co(M) is compact then Co(M + N) = CoM + CoN

Remark 1.1.42:

The intersection of any convex subset of x also convex.

11



Definition 1.1.43: Irreducible.
A Representation (H,T),where T : H — H, of a C*— algebra Qkis said to be
irreducible if the algebra T (2) acts irreducibly on H.If two representation
are unitarily equivalent. then irreducibility of one implies irreducibility of
the other. Further, if H is a one dimensional Hilbert space,then the zero

representation of any C*— algebra on H is irreducible.

Definition 1.1.44: Diagonal matrix.
The matrix D = [d;j] € M, is called diagonal if d;; = 0 whenever j # 3.
Conventionally, we denote such a matrix as D = diag(dy, ......dpn) or D=

diagd, where d is the vector of diagonal entries of D.

Definition 1.1.45: Triangular matrix.
The matrix T = [t;;] € M, is said to be upper triangular if t;; = 0 whenever
j<i.
Analogously, T is said to be lower tm’angular if its transpose is upper trian-

gular.

Definition 1.1.46: Unitary equivalent.
A matrix B € M,, is said to be unitary equivalent to A € M, if there is a
unitary matrix U € M,, such that B = U*AU.
If U may be taken to be real, then B is said to be orthogonally equivalent
to A.

Definition 1.1.47: Binary relation.
A binary relation or simply a relation from a set A to a set B is a subset

RC Ax B.

Definition 1.1.48: Trace.
The trace of an n x n square matrix A = (a;;) is defined to be the sum of

the elements on the main diagonal (the diagonal from the upper left to the

12



lower right) of A i.e.,

tr(A) ==an+an+...+ 0, = Zaii &

=1
where o;; represents the entry on the ith row and jth column of A.

Definition 1.1.49: Rank.
The rank of a matrix A is defined as the order of the largest square array in

A with a non zero determinant.

Definition 1.1.50: A Hilbert-Schmidt operator.
Hilbert-Schmidt Operator is a bounded operator T on a Hilbert space H with
finite Hilbert-Schmidt norm, meaning that there exists an orthonormal basis

{e; : i € I} of H with the property
Z | Te; ||*2< oc.
i€l
If this is for one orthonormal basis, it is true for any other orthonormal basis.

Let A and B be two Hilbert-Schmidt operators. The Hilbert-Schmidt inner

product can be defined as

(A,B)us = tr(A"B) = (Ae;, Be;)
iel
The induced norm is called the Hilbert-Schmidt norm:

I AlEs=>_ Il Ae: |I”

iel

Definition 1.1.51: Trace class operator.
Trace class operator is a compact operator for which a trace may be defined,

such that the trace is finite and independent of the choice of the basis.

13



Properties of trace class operator
(a) A self adjoint operator T is trace class if and only if it’s posiktive part T

and negative part T~ are both trace class.

(b) The trace is a linear functional over the space of trace class operators, i.e
tr(aT + BT") = atr(T) + Btr(T") Ve, €K

(c) The bilinear map (T, T") = tr(T*T) is an inner product on the trace class.

Definition 1.1.52: Semiprime algebra.
An algebra Q is to be prime if aQ2b = {0},= a =0 or b =0 and (2 is said to

be semiprime if aQ2a = {0} = a =0.

Definition 1.1.53: Let Q be non-unital C*-algebra. Then there is a
unique C*-algebra which contains () as an essential ideal and is maximal in

the sense that any other algebra can be embedded in it. This C*-algebra is
called multiplier algebra and denoted M(2).

Definition 1.1.54: If S is a subset of a Banach algebra €, the center/
centralizer of S is the set Z(S)={z € Q:2zs=sxVs e S}.

Definition 1.1.55: Completely bounded norm.
If a map o : B(H) — B(H) induces family of maps o : M,(B(H)) —
M, (B(H)), defined by o,([z;j]) = [a(z;;)] for any n X n matrix [z;;] €
M,(B(H)), (where n > 1) and sup, || o, || is finite, then « is said to be

completely bounded norm of a denoted by ||c|c.

14



1.2 Statement of the problem

Let Q be an algebra. The operator T : 2 — () defined by <

k
Tz = Zaizbi,ai,b,- e (121)

i=1
is called an elementary operator. We shall denote the class of elementary op-
erators on by ££(Q2). The problem for computing ||| has been considered
over a long period by many mathematicians and: there are some solutions

known under various circumstances . We attempt to find || T ||

when k=1,2 in (1.2.1)

1.3 Review of Related Literature.

Let © be an algebra. The operator T : 2 — 2 defined by

k
Tz = Zaimbi,aibi e, zed

i=1
is called elementary operator. We shall denote the class of elementary oper-
ators on 2 by ££(€2). The problem for computing || T' || has been considered
over a long period by many mathematicians and there are some solutions
known under various circumstances. We attempt to find || T' ||: (i) when
= 1,2 in (1.2.1). There are various results of norms of elementary opera-
tors known under special circumstances. One way the literature that relates
to the problem has been viewed is to separate two strand of problems. One
strand to concentrate on elementary operators with k = 2 in (1.2.1), and
the other, which will be of much interest to us is dealing with the case when

k=2

15



In the case k=1 in (1.2.1) we have
Tr = a;zh; <

It follows that
| Tz ||=l aazbr |<| @ [|]] &1 ||

ie

I T [l=sup{l| Tz ||: 2 € | 2 |=1} <[l ey [|]| b1 |

Therefore,

1T {I<[l @ [l b2

Mathieu [15, 16], working in the opposite direction of (1.2.1) showed that

“there is a constant C' > 0 such that
1T < C lax [l o0 ]

He even conjectured that C' = 1.Timoney [25], Stacho and Zalar [22] working
independently established that:

C=1land C=2(y/2-1)
respectively.

Theorem 1.3.1 (Timoney). If a,b € B(H) (algebra of bounded linear
operators on Hilbert space) and

Top(z) = azh+ bza

Then
| Tap =1 a Il &l

16



More generally,the same inequality holds if Q0 is a prime C*—algebra, a,b

are in the multiplier algebra of Q and )

Top(z) = azb+ bza

Remark: 1.3.2 A closed ideal I in a C*—algebra is prime if whenever j;
and j, are closed ideals of ) such that j;,jo € I, we necessarily have j; € I

or j € I.

We therefore say that an algebra (2 is a prime if the zero ideal of c* —algebra
if the zero of 2 is prime. Before we state Mathieu’s theorem, we note that
Calkin algebra is the quotient space B(H)/ K (H) where B(H) is the space
of bounded linear operators on Hilbert space and K (H) is a set of compact
operators on Hilbert spaces. ‘

Mathieu [15], working on Calkin algebras, obtained the following theorem.

Theorem 1.3.3 (Mathieu). Let T be an elementary operator on Calkin
algebra. Then,

1T lI=inf(ll Y aja; 17211 605 1)
j=i j=i

Where the infimum is taken over all representations of T
We note that Christensen and Sinclair [4] , Effros and Ruan [6] and Paulsen
[18] showed that the elementary operator norm || T || and the estimate in

terms of the Haagerup tensor norm are related as follows

k
ITISIT sl D) ai @b |ln

i=1

where the subscript h denote the Haagerup norm. By || T ||, we imply the

completely bounded norm of an elementary operator.

17



Theorem 1.3.4: Norm of an inner derivation A derivation on an

<

algebra (), is a linear map from 2 to Q2 satisfying
D(ab) = D(a)b+aD(b) Va,beQ
In particular, for a fixed a € Q, the inner derivation D(a,2) is given by

D,(b)=ab—ba Vbe®

For a fixed a € €2, the norm of an inner derivation D, is
| Dq ||=sup{|| ab—ba ||: b€ ©Q, || b||=1} = sup{|| Da(b) [|: b€ X, || b ||=1}
< 2inf{|| a —z ||: z € Z(M(Q))}

With the infimum over z in the center Z(M(€2)) of M(€2) with M(2) the

multiplier algebra.
Alternatively, Mathieu and Ara [16] showed that (for general )

| Da = 2inf{ll a — 2 |: = € Z(-M(®)

with M (2) the bounded central closure of M(2). For generalized (inner)
derivations, D(a,b)(z) = ax—axz, there are results that are less comprehensive

than for D(a). In particular, Stampfli [23] established that
| Dap ll=inf {ll e = A [l +[|b=A];A € C}

when Q = B(H).

18



1.4 Objective of Study

We consider an elementary operator =~

k
T, = Zaifl?bi; a;,b; € Q

=1

and investigate the operator norm || T || for the case when k = 1,2.

1.5 Significance of study

The study will provide knowledge on the existing relation between norms
of elementary operators and the norms of inner derivations. It’s also hoped
that, it will provide a wider avenue for research on the norms of elementary

operators.

1.6 Methodology

For the research to succeed, knowledge of elementary operators on Calkin
algebras, Banach spaces, norms of tensor product and Hilbert spaces was
necessary. A good library, a lot of hardwork and patience was also required.
Wide consultation with the supervisors,colleagues and other experts in the

field was done. The internet facility came in handy.

19



Chapter 2

Elementary Operators on

semi-prime algebras

2.1 Introduction

In this chapter we determine the norm pll'operties of Haagerup estimate.

We also considered a set of bounded linear maps called double centralizers
on a C*— algebra and define a norm on them.

Further, we show that the set of commuting operator on Hilbert space yield
convexity on matrix numerical range.

Finally, we investigate the concept of elementary operators on semigroups,

semiprime algebras and polynomial algebras.

20



2.2 Haagerup norm

Let € be a prime C*—algebra and and 7" : @ — 2 an elementa:r'\y operator.

Then T is representable as
Tx = Z )\ia;:l:ai
3 =1

with a; € Q linearly independent Vi = 1,2, ......,n and );(1 < ¢ < n) non-zero
real numbers, see[14]. Since T is a hermitian preserving elementary operator,
the existence of linearly independent operators a; € ) that saﬁsfy above
equation is guaranteed by ([14], corollary 4.9)4. Since hermitian operators are
self adjoint, an elementary operator defined from these operators is either
self adjoint or not. If the elementary operator is self adjoint, then by ([25],
Lemma 3.11 and Theorem 3.12),

n n 1/2
1Tl = [ITlles = {ll > ad] || Db I|} :
=1

=1

the Haagerup norm formula. The Haagerup norm of an element 7' € B(H) ®

B(H) (algebraic tensor product) is defined as follows,

n . 1/2
HTH=hﬁ{H§:m@HH§:@mH}
=1 i=1

=hﬁ{H§:w®@H}

To show the Haagerup norm defines a norm;
(i) Clearly || T ||> 0.
(i) Also || T ||=0<=T =0.

21



(iii) To show that Vo € K
e =l T I,

we have,

n n 1/2
| T ||=inf {“ > (ea)(aa) ||| Y bib: ||}
Ci=1 =1
n n 1/2
=inf {ll > il 11 (ki) (abs) ”}
=1 =1 H
n n 1/2
- mf{| a Pl aa Il Y bib: ||}
=1 =1
n n 1/2
= |a|inf {H > asar (|11 bb: ||}
=1 =1

= lal I T

(iv)Lastly ,we show that if T,T" € B(H) ® B(H) then

IT+T NN T+ 11T |

We have,|| (T + T )(a; ®b;) ||

| T(a: ®b;) + T (a; @ b) ||
= inf{” D 0, ®b;, + Y a;, b, II}
=1 =1
< inf {” Za‘il ®bi1 “} + inf {” Za'iz ®bi2 ”}

i=1 =1

_ inf{u S au, | uzb;b,m} B inf{u o, | | zb;;bhn}
=1 =1 =1 =1

— 1T ® bl + 1T (0 © )]

22
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,Wﬁ
\ A
e

Thus,
IT+TN<IT I+ 11T |

L

Therefore, Haagerup tensor norm defines a norm.

Definition 2.1.1: BILINEAR MAPS
let U, V and W be vector spaces over K. A function f : UXV — W is
bilinear, if it’s linear in both variables U and V separately.
To show it’s linear in U, we let v, € U and ;s € K. Now by universal

property of tensor product we know that,
fw,v) =u®v
Thus,
flru+su' ,v) = (ru+su) Qv
= (ru®v) + (su' ®)
=r(u®v) + s(u ®v)
= rf(u,v) + sf(u,v)

Hence, f : UXV — W is linear in U.
To show linearity in V, let v,v' € V and r, s € K.
Therefore,

flu,rv+sv) =u® (rv+ sv)
=@u®r)+uesv)
- r(q@ v)+s(u®v)
=rf(u,v) +sf(u,v)

Hence f : UXV — W is linear in V. .

23




Thus it is a bilinear map. The set of all bilinear map. The set of all bilinear

functions from )

UXV — W

is denoted by B(U,V;W).

Examples

(1) A real inner product {,) : UXV — R is a bilinear form on U X V (2) If
Q) is an algebra, the product map

u:XQ — Q

defined by
u(a,b) =ab Va,be

is bilinear.

Definition 2.1.2: LINEARITY OF AN OPERATOR ON A TENSOR
PRODUCT
From the universal property of tensor product, we know that to each bilinear
function f : U x V. — W, there corresponds a unique linear function « :
U®V — W, through which f can be factored (that is f = aot) (U,V,W are

vector spaces). This establishes a map
¢:BU,V;W) — LURV,W)
given by ¢(f) = a, In other words, ¢(f) is the linear map for which
H):UQV —W;

UV =[(U,V)
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Thus
Il o(NU V) =l FU, V)]

L

<

Now to show that ¢ is linear. Let f,g € B(U,V;W), and r, s € K then

r$(f) +sp(g)(U @ V)

— réf(U,V) + s9(U,V)
— §(rf +39)(U,V).

thus ¢ is linear.

Definition 2.1.3: DOUBLE CENTRALIZER
A double centralizer for a C*— algebra ) is a pair (L,R) of bounded linear
maps on £, such that Va,b € 2, L(ab) = L(a)b, R(ab) = aR(b) and R(a)b =
aL(b). For example if ¢ € Q and L, R, are the map on ) defined by L.(a) = ca
and R.(a) = ca then (L., R,) is a double centralizer on 2. Now for all c € Q
we have,

e ll=sup|f b &]<1,
I ¢ ll=sup| be -] bfI<1

and therefore || L. |=|| R. ||=]| ¢ ||
Lemma 2.1.4
If (L,R) is a double centralizer on a C*—algebra € then, IIL|| = || R|
Proof
Since [laZ(5)]l = I R(@)ll <I| B [l a [l ] -
We have, ,
Il L(®) [l= sup{ll aL(®) ||]| a |[< 1} <[| R || & |
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and therefore, .

ILI<IR]. c (221)
Also, || R(a)b [|=[| aL(®) [[<|| L ||l a Il &
=>|| R(a) ||= sup{|| R(a)b ||]| b [|< 1}
<IN Ll alliel Ra) I<I LIl el
Thus, .
IRI<IL]. (22.2)

From (2.1) and (2.2), we have || R ||=|| L || . If Q is a C*— algebra, we
denote the set of it’s double centralizers by M(2). We define the norm of the
double centralizer (L,R) tobe | L ||| R || .

It is easy to check M((2) is a vector subspace of B(Q2) ® B().

For, if we let (uy,v1), (ug,v2) € M(Q) VYuy,ug,v1,v2 € Q then, (uy,v;) +
(ug,v2) = (u1 +ug,v1 +v2) € M(Q). Also, let (r,u) and (s,u)e M(Q) Vr,s €
K and u,v € Q, then, (r,u)(s,v) = (rs,uv)e M(€Q) which gives the desired
results. If (Ly,Ry) and (L2, Ry) € M(2), we define their product to be
(L1, R1) (L2, R) = (Lng, Ry R,). This product is also a double centrahzgr of
Q i.e Vaq, as, b1, by € Q, we have,

{(Lh Rl)(ab bl)}{(L27 R_Z)(a% b2)}
= {L1(a1,b1), Ri(a1, b1) H{ L2(az, b2), Ra(as, b2) }

= Ly(ay,b1)La(az, b2), Ra(az, ba) Ryi(a1,b1) € M(R).

If L:Q— Q, define L* : @ — Q, by setting L*(a) = (L(a*)*, then L* is

linear.
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For if Vo, 8 € K and a,b € 2, we have L*(aa + b) = (L(aa)* + L(Bb)*)* =
E (L(ca)* + L(Bb)*)* = aL*(a) + BL*(b), thus L* is linear. The map L — L*
f is an isometric conjugate linear map from Banach algebra to itsé[f such that
_ L* =L and
| (LiLy)* = L.

If (L,R) is a double centralizer on €2, so is (L, R)* = (R*,L*) we can eas-
ily verify that the map (L,R) — (L, R)* is an involution to M(Q). For,
(L, R)")* = (R*, L*)* = (L, R)* = (R*, L")

Theorem 2.1.5 ‘
If Q is a C*—algebra, then M(f2) is a C*—algebra under the multiplication,
involution and norm defined above.
Proof
We only need to check that if T = (L; R) is a double centralizer, then ||
T*T =l T |*. I || @ |< 1, then || L(a) ||*=|| (Z(a))*L(a) ||

=[ L*(a*)L(a) |

=l L*(@")L(a) =]l a*R*L(a) ||<|| R'L |}=| T°T | .

So,
I T |I*= sup{|| L(a) [* a |I< 1} <| T*T |I<|| T |I?

and therefore, | 7*T ||=|| T ||? . The algebra Q@ — M(),
a — (Lg, R,), is an isometric *— homomorphism, and therefore we can, and

do identify Q as a C*— subalgebra of M(2)

Theorem 2.1.6
Let I be a closed ideal in a C*—algebra €2. Then there is a unique *—homomorphism
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a : Q — M(I) extending the inclusion I — M(I). Moreover, a is injective
if I is essential (2.
Proof

<

Since the inclusion map I — M(I) admits a *—homomorphic extension

a :  — M(I). Suppose that 9 : @ — M(I) is another such extension.

If a € Q and b € I, then a(a)b = a(ab) = ab = ¥(ab) = 1(ba). Hence,
(a(a) —1(a))I =0, so a(a) - t(a). Since I is essential in M(I). Thus a = 9.
Suppose now that I is essential in 2 and let @ € ker(€2). Then al = L,(I) = 0.

So a=0. Thus, « is injective. The results tell us that the multiplier algebra
M(I) of I is the largest unital C*—algebra containing I as an essential closed
ideal.

Deﬁnition 2.1.7

For a Tuple (C}, Cs, ..., Cy,) operators, C; € B(H), we denote by W,,(C1, Cs, ..., C,,)

the matrix range.
Wm(01,021 --"JC‘n) = {((0;0167 5)):_1:1 : E € H7 “ & |I= 1} L= M‘n

(where M, is the positive semidefinite n X n matrices.) Now, a subset of
the of W,,, which we call the ’ extremal matrix numerical range’ and denote

by;

Wine(C1,Cs, ..., Cr) = {a € Wil(C1, Co, ..., ) : trace(a) =|| Y C;C: ||}
=1

Theorem 2.1.8

Let H be an Hilbert space. Consider a set of bounded linear operators(7;)?~_, €
B(H). Denote by T, = (T)*, ®i, € M,(B(H)) = B(H™) that is the block
diagonal n X n matrix with 7%, in the diagonal blocks. Let 7™ denote the
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corresponding n-tuple of (T)* ;. Then,
n n E
Wn(T™) = {thaj 0 € Wal(T),4; 20, t;= 1}

(the set of convex combinations of k elements of wy,(T’))

Proof. Consider z, ........ , T, € T which are unit vectors, then
n

(tr)z, () = Z t"'<Aix;c7Aj$;c>a

i1j1k:1

where tr(z, 7x) = ||zx||? and z; is the unit vector in the direction of z;, and
A € B(H). Alternatively, if we denote by z} ® z; the rank one operator on
H given by 0 z; ®@z; — (0, z;)x;. Let as take R=) - | z; @ =;, we can see
that such R is a positive operator of trace 3on, |lz:||* = 1. Every such R can

be written in the form || 37 | z* ® z; || . Moreover,
((T1)=, (T71)2))ij= = (trace(AL, AR))
To show that W,,,(T™) is convex, we need only show that,
Wea(T™H) = Wi (T™)
And if n = dim H, then that is clearly true. For k£ = n < dimH. Now take

7 = (trace(z;z: R,))} =y = Wa(T™)

where R, = E?:ll z;®x, which is positive, and rank at most n+1. If the rank
of R, is < k+1 we are done and so we assume that the rank is n+1. We will

work within the span of the z; by taking P to be the orthogonal projection
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onto the span, temporarily restricting H to P(H) and considering A;; =

PA;A;P € B(P(H)) in place of A} A;. Note that A;; = Aj;;. C?nsidering,

<

Sny1 ={R € B(PH) : R > 0,traceR = 1,trace(4; ;,z) = 6;;}

for 1 < 14,7 < k Note that this set is compact (a closed a subset of the trace
one and positive definite matrices).The total number of real linear equations
to be satisfied by R € S,41 is 1+ k? and we are working inside the hermitian
elements of B(PH),a space of dimension dim(PH)? = (K + 1) > 1+ K2

More precisely, we have
Sk, C {R=R* € B(P(H)), traceR = 1}

= [In41, an affine space of dimension (k+1)2—1. S, is the intersection of the
convex set ), ., of positive element of [, with an affine subspace of [, ;
of co-dimension k?. Sp11 # ¢ because of Rp. Thus S, must contain some
point R which is not a relative interior point of ) ., of positive elements of
IT...: - Such an R must have rank < n and so ¢(trace(T;T;, z))f; C Wn(T™)

O

Remark 2.1.9
The argument above is a proof of a remnant of convexity for the joint (spatial)
numerical range of the finite list of operators on B(H).The Toeplitz-Hausdorff
theorem (see [1]), asserts that the numerical range of a single operator is
convex. That is known to be false in general for the numerical range of two

operators

{({(Thz,z), (Thz,x)) :z € H, || z ||=1}

though it is for two hermitian operators 71, 75. The argument above shows

that the set of all convex combinations of n elements of the joint numerical
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range of k operators Ty, T, ....... ,T,, € B(H) is convex provided (n+1)% > 1+d
where d is the dimension of the real span of the real and imaginary parts of
the T(or n=dim H).There is a case where the joint numerical ra.;lgge is known
to be convex i.e for a commuting n-tuple of normal operators (73, T5....... s+ L)
It follows that if T'T; are commuting operators then W,,,(T') is convex.
Notation.The cb norm of a linear map 7' : Q — Q is defined as || T ||a=
supes || T [le=I T* || and

T*Mi(2) — Mi(Q)
(M} (€2) means that the n x n matrices with entries in 2) is defined via

T*(zi5)s, (T(zi5));

ij=1— i,j=1

If Q@ C B(H) then we can regard My(2) = Q2 ® M as a C*- subalgebra of
B(H) ® My, = B(H ® C*) = B(H").

Theorem 2.1.10

Let 2 be an algebra. Let 2 = B(H) and T € £/B(H). Then we have equality

in

1 = . S .
ITHI<IT o< 5 {Il AR DI H} Va;,b; € B(H)
j=1

=1

if and only if the intersection

Wine(@5, oooennes @) [ Win,e (b1, ooonry b) # 0

Proof(see[25])

Consider first the case when H is finite dimensional and the intersection is
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non-empty. Thus there exist unit vectors x,y with

(aj0;z,7) = (bjbiy, y) -

for 1 <i,57 <mnand

n

> (ajaiz, ) =Y (Bbiy,v) =l D aa} =] Y bbi ||
g=1 =1

=1 =1

Now, U(b;y = a;x) specifies unique unitary map from the span of b;y to the

span of a;y.We can then extend U to a unitary map on H and compute that,
(TU)y,z) =Y (Uby,a;z) = (a:a]y, )
i=1 i=1

=| 3oii aia} lI=ll 222, b7bi || - Thus we have || T [|> (1\ 2)(]| X2i; aiaf |
+ 1 52825 1) 20 T la>ll T |h=|| T || forcing equality all round in this
case. When H is infinite dimensional we have to modify the argument only
slightly to take account of that fact that we can only find unit x and y so as
to get arbitrarily close approximations (a;a;z,z) = (bjby,y) for 1 <4, <n

and

n ; n n
> (aaiz, @) =D " asal [|=1 D bib; ||
=1 Ti=1

i=1
We can then say that our ||T’|| will have norm approximately 1. For the
converse, that is if || Y-, a;af ||#]| Doy 5; || - A well known estimate due

to Haagerup states that,

ITNSIT o< o[ 1Y aaay Y020 (2.2.3)
=1 =1

where || T || is the completely bounded norm of T. The Haagerup estimate
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(2.3) can be derived from the following matrix formulation

Tz = [al, az, ..... (ln]($ ® In)[blbzbn] =~

Taking ay, ..., ¢, = (a;)%, and by, ..., b, = (b))%, then we have T, = a;(z ®
I,)b; where (z ® I,)b; is the block diagonal element of My(Q) = Q ® M,
with x’s along the diagonal. From T, = a;(z ® I,)bi(z € Q),TH(X) =
aF(X ® in)bF(X € My(Q)) where

and

bf = [bl ® Ik7 ---- 7b'n ® Ik]

We get the eéthnate (2.3) from
T <l @ I G2 =l 1 87
From (2.3)we get,
I7 = /200 3 1+ 3000 1) (2:24)
i= =1

Therefore, for the converse, || Y, a;a} ||[#]| Yoi, bfb; ||, then we have strict
inequality between the right hand sides of (2.3) and (2.4).So we may suppose
equality and normalize '

1Y asad)” 1= Y bibi =1
=1 =1

We know that || 7" ||= sup || 7'(u) || over u unitary (by the Russo—Dye

theorem [20], or the more elementary fact that each element of the open unit
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ball of B(H) is an average of unitaries [22]). Now,

| T(u) ||= sup {R(T(uw)z,y)} ~

over unit vectors z,y € H and we note that, R(T(u)z,y) = X, R{ub;z, a}y).
Let ry = ubjz, 72 = ajy

Now, ({re;,71,)) € Wp(a}). Clearly,

R(T(u)z,y) = > R(ri,,r2,) <> | r, |l ma, |l
i=1 =1

P<1

=1

< J Z Il 1, IPJ > lir

(r1m,))ism = ((r2 72,0)i 21 € Wine(07) N Wine(b) # ¢

Rank one operators on Hilbert space .

We recall that | T ||<|| a; ® b; || in term of the Haagerup norm on
B(H) ® B(H). Equality of this upper bound holds in case the operators a;a}
commute and operators b’;b,- also commute as shown by theorem 2.1.5. For
z,y € H we use the notation z,y* € H for the rank one operator on H with
(z,y%)(0) = (0, y)x which is a linear operator.

To show it’s linearity we let oy, 00 € K and z;,z3 € H,y},y5 € H* then

(171 ® auy) + (0222 ® 023)(0) = (121 ® 1) (0) + (22 ® 02y3) ()

I

a1(z1 ® Y1) + aa(z2 @ y3)(0)

= m <07 y;>$2 o a2<07 y;>x2
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Therefore, the operator

(z®y")(0) = (0,y)x

is linear.

Lemma 2.1.11:
Let H be a Hilbert space and B(H) an algebra of bounded linear operators
on H. For T € El(B(H)), T(z) = X ,a;xzb;Va;,b; € B(H), then '

T = SuPam I ZPla'z ®b; P ||n

i=1

where Py, Pz € b(H) are rank one projections (P? = P, = P;) We will show

that || 7" || above is a norm.

e It’s clear that || T ||= 0 imply that Pja; ® b;P, =0
e It’s also clear that || 7" ||= 0 < (Pia;) @ b;P, =0

e To show that | AT ||=| A ||| T || . We let A € K,therefore,

| AT || = sup || Z(/\Plaz) ® (Ab: %) ||n

P1,P2 =1

= sup | Y A(Pia)) @ AbiPy) [In

P1,p2 =1

= sup || AZ(Pla'z) ® (b: %) ||n

p1 7172

~ [ A]zop ] Z(Pla, ® (b:P2) In

= I/\|||TII
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Thus, || AT |I=| A | T ||

\

e (iv) Finally, we show that for T, 7" € B(H) ® B(H), we hive

IT+T NN TN+ 11T

i.e triangle inequality. Let

1T ll=sup || }_(Piai) ® (b, P2) Iln

T R —

and

I T ||=sup || Y _(Pras,) ® (b;, P5) s

P1,p2

=1
It follows that
| (T+T)(Pas)(b:Ps) || = || T(Pia:) ® (5:P) || + || T'(Prai) ® (i) ||

= sup{|| D_(Prai,) ® (b, P2) + (Pias,) ® (b3, P2) ||n}
I )

< sup || Y (Piai,) ® (b, Py) [ln +
R
SUDpyps || Y (Prai;) ® (b, o) [

=1
= [|TI+1T1|"

Therefore, | T+ 1" ||<|| T || + || 7' ||. This implies || T ||= sup,, ,, |l

¥ Pia; @ b;P; || is a norm.

Notation 2.1.12
Let H be a Hilbert space. For u,v € H we use the notation u ® v for the
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rank one operator on H with the property that (u ® v*)(#) = (6, v)u. This

specifically is a linear operator "

<

T:z— ((Tru,v))v@u*

ie

Tpy,p2(z) = Z Pya;(z)b; P;.

=1
Linearity of this operator can easily seen; Let o, f € K and z,y, € H.
It follows that,

{T(az+ By)u,v)}v@v* = {{(aTz+ fTy)u,v)}v@v*
= {((aTz)u+ (BTy)u,v)}v @ v*

= <(04T51?)U, v)v @ v + ((BTy)u, v)v  v*

Which gives the desired results. For this operator (Pia;)(Pia;)* are
commuting and so are (b;P2)*(b;P,). To prove commutativity,we note that

Tp,(z) = Pyaj(x) and Tp, = (Pia;)*(z)Vz € H. Thus

” Tm (:L‘) “2= (TPI ("E)’TPI (.’L‘)) = <T;1TP1 (x)’ (‘T»

Since P, € B(H) and P, = P} = P? (rank one projection operator), we have,
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ITa@ I = TaTh@) @)
— (T3,(X), T, (@)
= I T@ P
= ((2), Tn(@)) = (T3 (@), T (@)
= (TaTS () (@)

= (T5Tp(2), (x))

T Tp, = Tp, T}, ie (Praj)(Pra;)” = (Pia;)(Praj).

2.3 Concept of elementary operators on semi-

groups

Let H be a semigroup. A double centralizer on H is an ordered pair (T,T"
of maps of H into itself satisfying z(Tz) = (T")yVz,y € H. Let us denote by
EL(H) the set of all ordered pairs M, M* of linear maps of H into itself that
satisfy the following identities

M(z(M*y)z) = (Mz)y(Mz) (2.31)

M*(z(My)z) = (M*z)y(M*2)Vz,y,z € H (2.3.2)

We now state some basic properties of ££(2)(H)
(a) Defining multiplication by (M, M*)(N, N*) = (MoN, N*oM) (here o de-
note composition maps)EL(H) becomes a semigroup with identity element.

Moreover, defining (M, M*)* = (M*, M), E¢(H) becomes a semigroup with
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involution.

(b) The set of all pairs (a M b,b M a) where a,b € H is a subs:,emigroup of
EL(H). Now let ©; and Q5 be algebras over a field K. By 83(919;) we denote
the set of all ordered pairs

(M, M*) where M : Q; — Qs and M* : Q; — 2, which are linear maps such
that (2.5) holds for all z, z € 2, and (2.6) holds for all z,z € Qz,y € O
Linearity of M, M* can be easily shown. For, if we let o, € K and

T1T2, 21, 22 € 112 € (o we have,

M{a(z,(M™y1)z1) + B(za(M™y2)z2)} = Mo(z121) + MB(zo(M*y2)20)
= af(Mz1)y1(Mz1)} + B{Mz3)y(Mz)}
= M{o(z:(M*y1)z1) + B(z2 (M y2)22) }

hence linearity of M : {2y — ),. Further, for
T1, T2, 21,22 = 927 Y1, Y2 € Ql

and a, f € K. We have,

M*{a(z1(My1)z1) + B(za(Mya)22) } M*o(z1(My1)21) + M*B(z2(Mys2) )
= a((M*z)y1(M*21)) + B((M™z3)y2(M* 2,))

= aM*(z:(My1)z1) + BM*(z2(Myz)22)

Hence linearity of M* : Qy — Ql

Further, £4€2,(2, denote the set of all pairs (X7, M;, X7, M;") where M;, M;EL(Sh(2s).
The elements of ££(£2,(2) called elementary operators of an algebra Q;to an
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algebra (). Considering every pair of the form (aMb,bMa) with a,b € ©,

we have that the pairs, ¢

<

(i a; Mb;, z": biMai) Va;, b; €

=1 =1

belonging to ££(£2;). We can make the following observations concerning
these sets.

(1) Defining addition and scalar multiplication by,

(ZM,,ZM*) (ZN,,ZN*) _ (ZM+ZNJ,ZM*+ZN*>

i=1 =1 j=1

= (ZM,,ZM*) VAeK

i=1

= (Z AM,ZAM:‘>
’ =1 =1

then ££(;, ;) becomes a vector space.

(ii) Defining multiplication by

(gMgM*) (ZN,,ZN*) ZMNJ,ZN*M*

]=1 z,j_.

then £4();) becomes an algebra without identity element.

2.4 Elementary operators on semiprime alge-

bra

Lemma 2.2.1

Let Q; and €, be any algebras. Let v € Q;, (M, M*), (N, N,) € ,Q; and
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deﬁneP:Ql—>Qz,P*:Qz—>Ql by

<,

Pz = M(z(N*)v) — (Mz)w(Nv), P'x = —M*(w(Nv)z) + (N w)v(M*z)

respectively. Then (P, P) € ££(:5)

Proof. For x,z € )y we have,

P(a(P*y)2) = P(—aM*(w(No)y)2) +a(N*w)u(M*y)z
= M(~sM*(w(No)y)=(N*w)v) + M(e(N"w)u(M*y)z(N"w)v) +
M(eM" (w(Nv)y)2)w(Nv) — M(e(N"w)o(M"y)z)w(Nv)
= —(M)u(NVyM(N"w)) + M(z(Nw)olyM((N"u)v) +
(Mayw(NoYy(Mz)w(Nv) — M(z(N*w)o)y(Mz)uw(Nv)
= M(e(N*w)v) — (Me)yw(No))y(M(z(N*w)v) — (Mz)uw(Nv))
= (Po)y(P)

Similarly,we have -
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P'(Py)z = PoM(y(N*wu)z — z(My)w(Nu)z o
= M (M{y(N*w)u)2(Nu)z) — M*(z(My)w(Nu)2(Nu))
+ M (zM(y(N*w)w)2)u(N*z) + M* (@(My)w(Nu)2)u(N"z)
= M (ay(N*w))uM((Nu)z) — M*(@(My)wjuN*((Nu)z)
(M 2)y(N*w)u(M2)yu(N"z) + M* (@(My)w)u(N*2)u(N"z)
= M (z(Ny)w) + (M*z)y(M w)u — N*(2(Nu)z) — (N 2)u(N")
= (Pz(P)
S (P P) € E£0Q,0)

0O

The following theorem shows that the sum of elementary operators and
that of their adjoints are equivalent on semiprime algebras (see [2]). Let
Q; and 5 be semiprime algebras.If (M;M}") € £6(Q,Qp),7 = 1,.....
X2, M; =0, then X2 M =0

,n and

2.5 Elementary operators on polynomial al-

gebras

We shall determine elementary operators on the algebra K[X] of polynomials
coefficients in a field K.

Theorem 2.2.3

A linear operator T' € E£4(K[X]) if and only if there exist a(X) € K[X]
and a, 8 € K, @ # 0,such that ()T(fX) = a(X)f(aX + B) ()T*(f(X)) =
a(a™ta~'pB) f. Therefore,every operatorT € ££(K[X]) is of the form T(f(X)) =
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ay(X)f(aa X +B1) + oo +as(X) f(asX + Bs) where a;(X) € K[X], s, 85 €
K, a, # 0. ‘ ¢

<

proof(see [3])
LetT € &L(K[X]) and set a(X) = T(1), b(X) = T*(1), ¢(X) = T(X). If
a(X) =0, then T*(f(X))?

— T*(f(X) xa(X) x (X)) =0 Vf(X) € K[X],

so that T = T* = 0. Therefore,there is no loss of generality in assuming
that a(X) # 0,and similarly, b(X #) = 0. Given any f(r) € K[X], we have
T(f(X)T*(1)1) =T(f(X))1T(1). That is,

T(B(X)f(X)) = a(X)T(F(X)) (2.5.1)
Clearly (2.7) implies that
THX)1X™) = a(X)";lT(X") (2.5.2)

for any positive integer n. We can claim that T'(b(X)"1X™). Indeed, by
definition,this is true when n=1, and assuming that it is also true for n-1,we

obtain
T(BX)" ' X™) = T(X *b(X) * b(X)'”_2X"“1) =T(X) *1xT(b(X)"2X"1)

= c(X) * c(X)" ! = (X)) | (2.5.3)

Comparing equation (1.14) and (1.15) we arrive at

e(X)"T(X™)  (254)

43



for every positive integer n.Inparticular, a(X)"! divides ¢(X)",n = 2,3, ...
We claim that this yields that a(X) divides ¢(X).Writing ¢(X) ='aPi(X)*.....P.(X)*,
where a € K, P; are irreducible, and first using the that a(X) divides c¢(X)?,
it follows that
a(X) = BP(X)5....P(X)*

where 8 € F and 0 < s; < 2k;. However, since a(X)" ! divides c(X" for
every positive integer n,we have that (n — 1)s; < nk;, which clearly gives
s; < k;. Therefore,c(X) = a(X)d(X) for some d(X) € K[X].Now (1.16)gives
a(X)"IT(X)" = ¢(X)" = a(X)"d(X™), so that T(X™) = a(X)d(X)".But

then, since T is linear,

T(f(X)) = a(X)f(d(X)) (2:5.5)
for any f(X) € K[X].By symmetry, there is d* € K[X] such that

T™(f(X)) = b(X)f(d*.(X)) (2.5.6)
for any f(X) € K[X]. Consider T(T*(X)). On the one hand we have

T(T*(X)) =T(1*T*(X).1) = T(1)XT(1) = A(X)?X, (2.5.7)
and on the hand, using (2.10,2.11and2.12),respectively we get
T(T") = T(b(X)d* (X)) = a(X)T(d"(X))

= a(X)2d*(d(X)) (2.5.8)

Comparing (2.14)and (2.15) we have d*(d(X)) = X. By symmetry ,d(d*(X)) =
X .Thereforeby computation we haved(X) = aX + f and d*(X) = o~ la” 13
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for @, 8 € K, a # 0. Finally,from b(X)? = T*(1 * T(1) * 1) = T*(a(X))

&

=b(X)a(a'X — a71p). -

We conclude that
b(X) =a(e'X —a7'B).

Thus we have proved indeed that every T € ef(F[X]) is of the form

T(f(X)) = a(X)f(eX + B),

with ,
T"(f(X) =a(e™'X —a7'f)f(a' X — a™'B)
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Chapter 3

Elementary operators on prime

C *-algebra

3.1 Introduction

In this chapter we establish the norm of elementary operator on prime C* -

algebra

Theorem 3.1.0: Let  prime C* -algebra, therefore
| My =1 T I T I VT, T € M(@)
Proof. For T, T("), X € M(Q2), we have that
My X =TXT .

Therefore,

| My X |I=Il TXT < T I X T

Taking sup on both sides we have,
| My (I T INT |
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Consequently,

e

| Mg ISIT T - (3.1.1)

If T,T' € M(Q) are arbitrary, the inequality

ITIPIT I* = 1T T|ITT|
= ” M T, 7' T'* I MT,T’ “
< ” MT‘T’* “”

< NTIT N Mpg |

ie. | T PN T IP<Il T Il T |l Mpy || - Dividing both sides by
1T I T ||, we have
I My 20T T (3.1.2)

Comparing equations(3.1)and(3.2), we have

N Mpp 1= T N T VLT € M(9).

3.2 Elementary operators and the maximal

numerical range

Definition 3.2.0: Let H be an Hilbert space and B(H) an algebra of bounded
linear operators on Hilbert space. The Maximal numerical range, W,(T) of

an operator T € B(H) is the set,

Wo(T) = {A: (T, zn) = A || Zn =1 and || Tzl —| T I}
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and the normalized maximal numerical range, Wy (A) of the operator A to
be the set W,(A/ || A||) for A#0
Lemma 3.2.1

|T|=llzll=1 and || Tz|?<(1—¢€) then || (T*T 1)z ||< 2

{

<

Proof.
0 < [(T'T-Dz|?

= ((T"T - Dz, (T"T — Nx)(T*Tz — 2,T"Tz — x)

= (T"Tz,T"Tz) — (T*Tz,z) = (2, T*Tz) + (z,z)

= (T"Tz,T*Tz) — 2(Tz,Tz) + (z, )

= | TTz | 2| Tz | + | z |P< Q- | Tz ||)* < 2

O
Lemma 3.2.3

The set W,(T) is convex.
Proof(See [9])

Let A\, u € W,(T).We assume without loss of generality that || T' ||= 1.

Assume also that,

I Zn =1l g 1= 1, (T2, 20) — A

(TYn, Yn) — .

Consider, T,, = P,TF,, Where P, is the projection on H of z,,y,. Let
& be a point on the line segment joining A and . Then for each n, it

is possible, by the Toeplitz-Hausdorff Theorem to choose 3, such that
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(T, upn) = (Tntn, un) — € and || u, ||= 1, where u, = oz, + Bryn. Note
that |(z,,y — n)| < 0 < 1, for n sufficiently large; that is, the ang}e between
z, and y — n is bounded away from 0. Thus, there exist a constaiit M such
that |a,| < M and |3,] < M for large n,where| anz, + Bnyn ||= 1. By
lemma3.2.1, | Tu, ||*>= (T*Ttun, tn) = (Ttn, Tu,) =|| Tu, ||?]| v ||2 —2me,,
where €, — 0, and thus it follows that || T'u, ||— 1, since (Tun, u,) — £ Now,
for T, T' € B(H), we define elementary operators as My (z) = TzT ,(z €
B(H)). We shall give necessary and sufficient conditions for any pair of op-
erators T and T” to satisfy the equation || I + My ||=1+ || T || T || where -
I is the identity operator on H.

Theorem 3.2.4:
For T, T' € B(H) the following are equivalent
@) [ T+ Mrp |=1+ | T ||| T |l
(b) Wn(T*) NWN(T') # ¢

Proof. See([12] for part of the proof.) (a) => (b), suppose that | I+Mr 1 ||=
1+ || T |||l T" ||, then we can find two sequences {X, C B(H)} and {z, C H}
with || X,, ||=|| z. ||=1 for each n:

im || Xoz + TXaT'%n |? = lim || (Xa + TXaT")za |

= m(XnTn + TXT'Zn, XnT + TXpT'T0)

— 1i111n(Xn:l:n,ann) + (XnZn, TX,T'x,)

= HTX T T, XnZn) + (TXuT Tn, T X T 220)

= || XaZn, X 12 +2R(XTr, TXoT' T+ || TXuT 70 |2

= 1+ITHT I
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Since

| Xnzn + TXo Tt |<|| Xnzn || + | TXo T2 ||«

<

It follows that lim,, || TX,.T"z, ||=|| T ||| " ||-
Consequently, we derive that lim, (X, z,, TX,T"'z,) =|| T |||| 7" ||. Thus

im || T*Xpzn =) T\ and lim || XpT'z, [|=[ 7" |

because

| (anmTXnT"Dn> I<Il hfl | T* Xnzn |||l XoT'zy I

For each n > 1 we have, | M- ,_1 || >|| T*Xp+X,T' ||2|| T* Xp20+XnT 2, ||
, since limy, || T*Xnzn + XoT'zn |=| T || + | T" || and || Mz |I<|| T |
+1T .

We conclude that || M« g ||=|| T || + || T’ ||. Thus it follows from
Stampfli [23], that Wy (T™*) N Wy (T") # ¢ (b) — (@) (This solution is found
in Stampfli [23]). Let p € Wy (T*)NWx(T"). Then there exist two sequences
Tn and yn in H such that || zn [|=[| ya |= 1, lLimg, || Tz, [|=|| T ||, limn, |
Ty =0T N, Vimn(T* %, @) = p || T || hmn(T"yn, yn) = p || T" ||-

Set T*z, = @ Zn + Bnln, where ay,, B, € K, U, € H with u, =1 and

(%, Un) = 0. We may choose uy, so that (T™z,,u,) = 6, >0V n.

Set also T'yp, = YnYn + 0nZn Where v,,6, €K, || v, [|=1, (Yn,vn) =0
and (T"Yn, v) = 8, > 0.

Define a sequence {X,}, C B(H) by X, = (*,Yn)Zn + (%, un)uy,. Then
clearly || X, ||= 1V n, we have (X, ¥n, TX, T ¥n) = (T*Yn, Yo Tt + Opttn) =
0nYn + Bron.

By the definition of the sequences /a:n and y,, we derive that lim, |a,|? +
|Bal? =II T ||* and limy, o] = |} | T |} -

Thus lim, 8, = v/1 — |p|? || T ||- In a similar way we obtain,
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lim, 6, = v/1— |ul? || T || - Hence,

Em(XpYn, T XnYn) = limonyn + Brbn

P I T I )+ = P T I
= T

From this we conclude that lim, || TX.T"y. |I=Il T Il 7" ||. Now, we .

have for each m > 1,

HTHT N 2 |1+ M|

> || Xo+TXT ||

= " Xnyn <+ TXnTyn “
Therefore,
| Xntn + TXaT'% | = LHITINT |
< |1+ Mrg ||
< =+[TIT
Consequently,

|1+ Mrg =1+ 1T Tl -
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Chapter 4

CONCLUSION

4.1 Concluding remarks.

The study of norms of elementary operators has emerged that,for general
elementary operators, a full description of their properties is rather intricate
since these are often interwoven with the structure of underlying algebra.
In our th&si_s, we used the theory of tensor norms of Hilbert spaces and tensor
product of operators to work out the lower bound of elementary operators.
The study also investigated elementary operators on prime C* -algebra. Un-
der both circumstances, the value of the constant C' i.e. the greatest lower
bound of norms of elementary operators, and for any arbitrary k (where
k=1,2,...,n) is less than one.

There are still many results of elementary operators in terms of multiplica-
tion operators or tensor products of operators v;fhjch other researchers can

pursue.
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