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ABSTRACT

The norm of an elementary operator has been investigated over long pe-

riod by several mathematician under various special circumstances. Ti-

money working on algebra of bounded linear operators on Hilbert spaces,

established the lower bound of norms of eleementary operators on Calkin

algebra.

Similary, mathieu studied norm properties of elementary operators on

Calkin algebra and established a result whose key basis is the Haagerup

tensor norm. We joined results from these eminent mathematicians to

establish norms of elementary operators, particularly determine the lower

bounds of elementary operators.
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Chapter 1

Introduction

1.1 Background Information

Here, we introduce essential concepts and relevant definitions we shall use in

the sequel. We have also presented a review of literature. We conclude the

chapter by a brief on the methodology we have used.

Definition 1.1.0: Field

A field is a set K, containing at least two elements, together with two binary

operations, called addition (denoted, +) and multiplication (denoted, x) for

which the following hold:

(a) K is an abelian group under addition,

(b) The set K* of all nonzero elements in K is an abelian group under mul-

tiplication,

(c) (Distributivity), Va, b, c, dE K:

(i) (a + b)c = ac = be

(ii) c(a + b) = ca + cb
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Definition 1.1.1: Algebra

Let K be a field, and let A be a vector space over K equipped with an,
additional binary operation from A x A to A, denoted here by juxtaposition

(i.e if x and y are elements of A, then xy is the product of x and y). Then

A is an algebra over K if the following identities hold for any three elements

x, y and z of A, and all elements ("scalars") a and b of K:

• Left distributivity: (x + y)z = xz + yz

• Right distributivity: x(y + z) = xy + xz

• Compatibility with scalars: (ax)(by) = (ab)(xy)

An algebra over K is sometimes also called a K-algebra, and K is called the

base field of A. The binary operation is often referred to as multiplication in
A.

Definition 1.1.2: Associative algebra

An associative algebra A over a field K is defined to be a vector space over

K together with a K-bilinear multiplication A x A ~ A (where the image of(

x,y) is written as xy) such that the associative law holds:

• (xy)z = x(yz) V x, y and z E A.

If A contains an identity element, i.e an element I such that Iz = xl = x

for all x in A, then we call A an associative algebra with one or a unital

(or unitary) associative algebra. Such an algebra is a ring, and contains all

elements a of the field K by identification with al.

The dimension of the associative algebra A over the field K is its dimension

as a K -vector space.
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Definition 1.1.3: An involution.

Let n be an algebra, a linear mapping T : n -----+ n defined by x --t x* is
\

called an involution on n if it satisfies the following conditions: "--

v x, yEn, oX E ]I{

• (x + y)* = x* + y*

• (oXx)* = Xx*

• (xy)* = y*x* .

• x** = x

Definition 1.1.4: C*-algebra

An algebra n is said to be a C*-algebra if an involution x -----+ x* is defined

on it, which satisfy;

• (x*)* = x V x E n

• (oXx)* = 5.x*, x E n, oX E C

• (xy)* = y*x* V x,y E n

• II xx* 11=11 x 112 V x E n

Definition 1.1.5: A linear Map

Let X and Y be vector spaces over the same field K. A function f :X --t Y

is said to be a linear map or linear transformation if for any two vectors x

and y in X and any scalar a in ]I{,the following two conditions are satisfied:

• f(x +y) = f(x) + f(y) additivity
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• f(ax)= af(x) homogeneity of degree 1

Definition 1.1.6: A linear operator.

An operator is linear mapping of vector space X onto itself or to another

vector space.

Definition 1.1.7: A linear functional.

A functional is a linear mapping of a vector space into a scalar JK(C, C).

Definition 1.1.8: Hilbert space.

A Hilbert space H, is a complete inner product space i.e a Banach space

whose norm is generated by an inner product.

Definition 1.1.9:A bounded linear operator.

A linear operator T : X ---t Y is called bounded if and only if there exists a

constant M > O.

II T(x) II::; M II (x) II \Ix E X

We denote the set bounded linear operators on X and Y by B(X,Y) . Note

also that; for a constant N, a bounded linear functional f on X satisfies the

inequality,

I f(x) I::; N II (x) II \Ix E X,N > O.

Definition 1.1.10: Norm of a bounded operator.

Let T E B(X,Y). Then the norm of T is defined as

II Tx IIII T 11=sup{1I Tx II;x E D(T), II x 11=I} = sup{ II x II ;x E D(T),} < 00

That the supremum is finite follows from the fact that

II T(x) II::; M II (x) II \Ix E X,M > 0
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Definition 1.1.11: Completely bounded norm.

Any operator T : B(H) ---* B(H) that induces a family of maps Tn
\

Mn(B(H)) ---* Mn(B(H)), n ~ 1, defined by Tn([Xij]) = [T(x~]~] for any

matrix [Xij] E Mn(B(H)) is said to be a completely bounded operator if

sUPn II t; II is finite.

Definition 1.1.12: Self Adjoint Transformation.

A bounded linear transformation T E B(H) is said to be self-adjoint if T* =
T. Thus T is Hermitian and D(T) = H if and only if T is self adjoint.

Definition 1.1.13: Normal operator.

A bounded linear operator T on a Hilbert space H is said to be normal if it

commute with its adjoint i.e TT* = T*T.

Definition 1.1.14: Unitary operator.

A unitary operator is a bounded linear operator T on a Hilbert space satis-

fying T*T = TT* = I, where I is the identity operator.

This property is equivalent to the following:

• T preserves inner product on the Hilbert space, so that for all vectors

x and y in the Hilbert ,

(Tx, ty) = (x, y).

• T is surjective isometry( distance preserving map) i.e

IIT(x - y)1I = II(x - y)lI·

Definition 1.1.15: Compact operator.

An operator T E B(H) is said to be a compact operator if for every bounded

sequence Xn in H the sequence (Txn) contains a convergent subsequent.
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Definition 1.1.16: Finite operator.

An operator T E B(H) is finite rank operator if the dimension of the range
\

of T is finite.

Definition 1.1.17: Unitary element.

Let 0 be an algebra. An element u in 0 is a unitary element if u*u = uu* = 1

Remark 1.1.18: i.fu* = 1then u is an isometry and if uu* = 1, then u

is a co-isometry. If cp : A ---+ B is a homomorphism. Let X and Y be Banach

spaces and T E B(X, Y) which is bijection, then there exists T-1 E B(Y, X).

Definition 1.1.19: Unitary element.

Let 0 be an algebra. An element x in 0 is a unitary element if x*x = xx* = 1

Definition 1.1.20: Orthonormal basis.

Let V be a vector space. A subset (vi. ,vn) of a vector space V, with

the inner product (,) is called orthonormal if (Vi, Vj) = 0 i.e the vectors are

mutually perpendicular. An orthonormal set must be linearly independent

and so it's a vector space basis for the space it spans. Such a basis is called

an orthonormal basis.

Definition 1.1.21: Trace-class operator.

Let T be an operator on a Hilbert space H. We define it's trace-class norm

to be IIT 11t=111 T 11/211~ . If E is an orthonormal basis of it, then

IIT 111= L(I T I (x),x)
xEE

If II T lit< +00, we call T a trace-class operator. The trace of a trace-class

operator T is given by tr(T) = ExEE(T(x),x), where E is an orthonormal

basis.

Definition 1.1.22: Homomorphism.

A homomorphism from an algebra 01 to an algebra O2 is a linear map sp :
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01 -t O2; <p(ab) = <p(a)<p(b)Va, b « 01. It's kernel, ker <pis an ideal in 01 and

it's image <P(01) is a subalgebra of O2•

Definition 1.1.23: A positive linear functional.

A positive linear functional is a functional on a Banach algebra 0 with an

involution that satisfies the condition

f{xx*) 2: OVx E O.

Definition 1.1.24: A state.

A state on an algebra 0, is a continuous positive linear functional which

satisfies the Schwartz inequality,

Definition 1.1.25: Inner product space.

An inner product space X is a complex linear space together with an inner

product (,) : X X X -t C such that;

• (x,y) = (y,x)

• (AX + J.LY,z) = A(X, z) + J.L(x, z) : X, y, z E X, J.L,A E K

• (X,X) 2: 0, with (x, x) = 0 => X = 0

Definition 1.1.26: Ideal.

Let 0 be an algebra. A left (respectively, right) ideal in 0 is a vector subspace

I of 0 such that a E 0 and b e I => ab E I (respectively, ba E I). An ideal

in 0 is therefore a vector sub spate that is simultaneously a left and a right

ideal in O.
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Definition 1.1.27: Essential Ideal.

Let I be a closed ideal in an algebra O. We say I is essential ideal in 0 if
\

al = 0 ~ A = oVa EO. (equivalently, fa = 0 ~ a = OVaE 0)

Definition 1.1.28: Free vector space.

Let K be a field. Given any non-empty set X,we may construct a vector space

Ix over ]I{ with X as the basis, simply by taking Ix be the set of all formal

finite linear combinations of elements of X

k

Ix = {Lrixi: ri E ]I{,Xi E X}
i=l

Where the operations combine like terms using the rules; rXi+sxi = (r+s)xi

and r(sxi) = (rs)xi' The vector space Ix is called free vector space of X.

Definition 1.1.29: Tensor product.

Let U and V be vector spaces over ]I{ and let T be a subspace of the free

vector space [u x v generated by all vectors of the form

r(u, v) + s(u', v) = (ru + su', v)

r(u, v) + s(u, v') = (u, rv + sv')

Vr,s E F,u,u' E Uandv,v' E V

The quotient space [u x vIT is called Tensor product of U and V and is

denoted by U ® V

Definition 1.1.30: Matrix numerical ranges.

For a tuple (Cl, C2 , en) of operators e, E B(H), we denote by Wm(CI, C2·········, en)

the "matrix numerical range"
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(where Mn is the positive semi definite n x n matrices.) Now, a subset of

the closure of Wm which we call the 'extremal matrix numerical range' and
\

denote by

n

Wm,e(CI,C2 ...••..•• ,Cn) = {a E Wm(CI,C2 ,Cn) : trace (a) =11I:<£; II}
i=l

Definition 1.1.31: Semigroups.

A semigroup is an algebraic structure consisting of a set closed under an

associative binary operation. It is denoted as a pair (X, *) where X is a set :

and binary function * : X x X -+ X which is called the operation of the

semigroup.The application of the operation is.required to be associative i.e

(x * y) * z = x * (y * z)Vx, y, z E X

Examples of semigroups

(a) Positive integers with addition

(b) Any ideal of a ring, given multiplication. Thus any ring including integers,

rational, real and complex numbers.

(c) Any subject of a semigroup closed under the semigroup operation.

(d) Any monoid, and therefore any group

Definition 1.1.32: SubSemigroups.

A subset Y of a semigroup X is called a subsemigroup if it is closed under

the semigroup operation, that is y*y is a subset of Y.

Definition 1.1.33: Positivity of a projection.

A projection P is to be positive if

(Px,x) ~ 0 V x E H
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Definition 1.1.39: Multiplier algebra.

Let 0 be a non-unital C*- algebra. Then there is a unique (up to iso-
\

morphism) C*- algebra which contains 0 as an essential ideal and'Is maximal

in the sense that any other algebra can be embedded in it. This C* - algebra

is called multiplier algebra and denoted by M(O).

Definition 1.1.40: Convex set.

Let X be a linear space. A subset M of the linear space X is convex if for all

x, y E M, for any positive real number t satisfying 0 < t < 1 we have

tx + (1 - t)y E M.

Definition 1.1.41: Convex hull.

If M is a subset of a linear space X, then a convex hull M, represented

by Co(M) is the smallest convex subset of X containing M and it is the

intersection of all the convex subsets of X that contain M.

If X is a linear topological space then the set Co(M) called the closed convex

hull of M, is the intersection of all closed convex sets containing M.

Properties of Co( M) and Co( M)

Lemma

Let M and N be arbitrary sets in a linear space X, then

(a) Co(aM) = aCo(M) and Co(M +N) = Co(M) +Co(N)

If X is a topological space, then

(b) Co(M) = Co(M)

(c) Co (aM) = aCo(M)

(d) If Co(M) is compact then Co(M + N) = CoM + CoN

Remark 1.1.42:

The intersection of any convex subset of x also convex.
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Definition 1.1.43: Irreducible.

A Representation (H,T),where T : H -t H, of a C*- algebra 0 is said to be
\

irreducible if the algebra T (0) acts irreducibly on H.If two representation

are unitarily equivalent. then irreducibility of one implies irreducibility of

the other. Further, if H is a one dimensional Hilbert space,then the zero

representation of any C* - algebra on H is irreducible.

Definition 1.1.44: Diagonal matrix.

The matrix D = [ddJ E Mn is called diagonal if dij = 0 whenever j i= i.

Conventionally, we denote such a matrix as D = diag(dn, d,;n) or D ='

diagd, where d is the vector of diagonal entries of D.

Definition 1.1.45: Triangular matrix.

The matrix T = [tijJ E Mn is said to be upper triangular if tij = 0 whenever

j < i.

Analogously, T is said to be lower triangular if its transpose is upper trian-

gular.

Definition 1.1.46: Unitary equivalent.

A matrix B E Mn is said to be unitary equivalent to A E Mn if there is a

unitary matrix U E Mn such that B = U*AU.

If U may be taken to be real, then B is said to be orthogonally equivalent

to A.

Definition 1.1.47: Binary relation.

A binary relation or simply a relation from a set A to a set B is a subset

RcAxB.

Definition 1.1.48: Trace.

The trace of an n x n square matrix A = ((}:ij) is defined to be the sum of

the elements on the main diagonal (the diagonal from the upper left to the

12



lower right) of A i.e.,

n

tr(A) :=au + a22 + ....+ ann = 2::= aii

i=1

where aij represents the entry on the ith row and jth column of A.

Definition 1.1.49: Rank.

The rank of a matrix A is defined as the order of the largest square array in

A with a non zero determinant.

Definition 1.1.50: A Hilbert-Schmidt operator.

Hilbert-Schmidt Operator is a bounded operator T on a Hilbert space H with

finite Hilbert-Schmidt norm, meaning that there exists an orthonormal basis

{ei : i E 1} of H with the property

2::= II t». 111/2< 00.
iEI

If this is for one orthonormal basis, it is true for any other orthonormal basis.

Let A and B be two Hilbert-Schmidt operators. The Hilbert-Schmidt inner

product can be defined as

(A,B)HS = tr(A*B) = 2::=(Aei,Bei)
iEI

The induced norm is called the Hilbert-Schmidt norm:

II A lI~s= 2::= II Aei 112
iEI

Definition 1.1.51: Trace class operator.

Trace class operator is a compact operator for which a trace may be defined,

such that the trace is finite and independent of the choice of the basis.
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Properties of trace class operator

(a) A self adjoint operator T is trace class if and only if it's positive part T+
\

and negative part T- are both trace class. (..-

(b) The trace is a linear functional over the space of trace class operators, i.e

tr(aT + /3T') = atr(T) + /3tr(T') Va,/3 E K

(c) The bilinear map (T, T') = tr(T*T) is an inner product on the trace class.

Definition 1.1.52: Semiprime algebra.

An algebra n is to be prime if anb = {O},=} a = 0 or b = 0 and n is said to

be semiprime if ana = {O} =} a = O.

Definition 1.1.53: Let n be non-unital C*-algebra. Then there is a

unique C*-algebra which contains n as an essential ideal and is maximal in

the sense that any other algebra can be embedded in it. This C*-algebra is

called multiplier algebra and denoted M(O).

Definition 1.1.54: If S is a subset of a Banach algebra n, the center/

centralizer of S is the set Z(S) = {x En: xs = sx V s E S}.

Definition 1.1.55: Completely bounded norm.

If a map a : B(H) -+ B(H) induces family of maps a : Mn(B(H)) -+

Mn(B(H)), defined by an([xij]) = [a(xij)] for any n x n matrix [Xij] E

Mn(B(H)), (where n 2: 1) and SUPn II CXn II is finite, then a is said to be

completely bounded norm of a denoted by lIallcb.
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1.2 Statement of the problem

Let 0 be an algebra. The operator T : 0 ---t 0 defined by

k

Tx = L aixbi, ai, bi E 0
i=l

(1.2.1)

is called an elementary operator. We shall denote the class of elementary op-

erators on 0 by ££(0). The problem for computing IITII has been considered

over a long period by many mathematicians and there are some solutions.

known under various circumstances . We attempt to find II T II

when k=1,2 in (1.2.1)

1.3 Review of Related Literature.

Let 0 be an algebra. The operator T : 0 -+ 0 defined by

k

Tx = Laixbi,aibi E O,X EO
i=l

is called elementary operator. We shall denote the class of elementary oper-

ators on 0 by ££(0). The problem for computing II T II has been considered

over a long period by many mathematicians and there are some solutions

known under various circumstances. We attempt to find II T II: (i) when

k = 1,2 in (1.2.1). There are various results of norms of elementary opera-

tors known under special circumstances. One way the literature that relates

to the problem has been viewed is to separate two strand of problems. One

strand to concentrate on elementary operators with k = 2 in (1.2.1), and

the other, which will be of much interest to us is dealing with the case when

k=2
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In the case k = 1 in (1.2.1) we have

It follows that

II Tx 11=11alxbl II~II al 1111bl II

i.e

II T 11= sup[] Tx II: x E 0, II x 11= I} ~II al 1111bl II

Therefore,

IITII~lIallillblli

Mathieu [15, 16], working in the opposite direction of (1.2.1) showed that

there is a constant C > 0 such that

He even conjectured that C = 1.Timoney [25J,Stacho and Zalar [22Jworking

independently established that:

C = 1 and C = 2(J2 -1)

respectively.

Theorem 1.3.1 (Timoney). If a, s e B(H) (algebm of bounded linear

opemtors on Hilbert space) and

Ta,b(X) = axb + bxa

Then

II Ta,b II~II a 1111b II
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More genemlly, the same inequality holds if n is a prime C*- algebm, a,b

are in the multiplier algebm of nand

Ta,b(X) = axb + bxa

Remark: 1.3.2 A closed ideal I in a C* -algebra is prime if whenever i,
and j2 are closed ideals of n such that j1, j2 E I, we necessarily have j1 E I

or j2 E I.

We therefore say that an algebra n is a prime if the zero ideal of C* -algebra

if the zero of n is prime. Before we state Mathieu's theorem, we note that

Calkin algebra is the quotient space B( H) / K (H) where B( H) is the space

of bounded linear operators on Hilbert space and K (H) is a set of compact

operators on Hilbert spaces.

Mathieu [15], working on Calkin algebras, obtained the following theorem.

Theorem 1.3.3 (Mathieu). Let T be an elementary operator on Calkin

algebra. Then,

n n

IIT 11=inf(1I :Laja; 111/211:Lbjb; 111/2)
i=» i=»

Where the infimum is taken over all representations of T

We note that Christensen and Sinclair [4] , Effros and Ruan [6] and Paulsen

[18] showed that the elementary operator norm II T II and the estimate in

terms of the Haagerup tensor norm are related ~ follows

k

IIT 11:::;11T IIcb:::;11:Lai 0 bi IIh
i=l

where the subscript h denote the Haagerup norm. By IIT IIcb,we imply the

completely bounded norm of an elementary operator.
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Theorem 1.3.4: Norm of an inner derivation A derivation on an

algebra 0, is a linear map from 0 to 0 satisfying

D(ab) = D(a)b + aD(b) Va, bE 0

In particular, for a fixed a E 0, the inner derivation D(a, 0) is given by

For a fixed a EO, the norm of an inner derivation Da is

IIo; 11=sup{11ab - ba II:bE 0, IIb 11=I} = sup{1I Da(b) II:s « 0, IIb 11=I}

~ 2inf{11 a - z II:Z E Z(M(O))}

With the infimum over z in the center Z(M(O)) of M(O) with M(O) the

multiplier algebra.

Alternatively, Mathieu and Ara [16] showed that (for general 0)

IIDa 11=2inf{1I a - z II:Z E Z(CM(O))

with CM(O) the bounded central closure of M(O). For generalized (inner)

derivations, Dia, b)(x) = ax-ax, there are results that are less comprehensive

than for D(a). In particular, Stampfli [23] established that

IIDa,b 11=inf {II ~ - A II+ IIb - A IiiA E C}

when 0 = B(H).
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1.4 Objective of Study

We consider an elementary operator

k

t; = LUiXbi; ai,bi En
i=l

and investigate the operator norm II T II for the case when k = 1,2.

1.5 Significanceof study

The study will provide knowledge on the existing relation between norms

of elementary operators and the norms of inner derivations. It's also hoped

that, it will provide a wider avenue for research on the norms of elementary

operators.

1.6 Methodology

For the research to succeed, knowledge of elementary operators on Calkin

algebras, Banach spaces, norms of tensor product and Hilbert spaces was

necessary. A good library, a lot of hardwork and patience was also required.

Wide consultation with the supervisors,colleagues and other experts in the

field was done. The internet facility came in handy.
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Chapter 2

Elementary Operators on

semi-prime algebras

2.1 Introduction

In this chapter we determine the norm properties of Haagerup estimate.

We also considered a set of bounded linear maps called double centralizers

on a C*- algebra and define a norm on them.

Further, we show that the set of commuting operator on Hilbert space yield

convexity on matrix numerical range.

Finally, we investigate the concept of elementary operators on semigroups,

semiprime algebras and polynomial algebras.
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2.2 Haagerup norm

Let n be a prime C* -algebra and and T : n ~ n an elementary operator.

Then T is representable as

n

Tx = LAia;xai
i=l

with ai E n linearly independent Vi = 1,2, , nand Ai(1 :::;i :::;n) non-zero

real numbers, see[14]. Since T is a hermitian preserving elementary operator,.

the existence of linearly independent operators ai E n that satisfy above

equation is guaranteed by ([14], corollary 4.9). Since hermitian operators are

self adjoint, an elementary operator defined from these operators is either

self adjoint or not. If the elementary operator is self adjoint, then by ([25],

Lemma 3.11 and Theorem 3.12),

the Haagerup norm formula. The Haagerup norm of an element T E B(H) 0

B(H) (algebraic tensor product) is defined as follows,

To show the Haagerup norm defines a norm;

(i) Clearly II T II~ o.
(ii) Also II T 11=0 ¢:=::? T = o.
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(iii) To show that Va E K

II «r 11=' a "' T II,

we have,

(iv)Lastly ,we show that if T,1" E B(H) ® B(H) then

~ in! {II t,..,0 b" +t,..,0 b, II}
<; in! {II t,..,0 b; II} + inf {II t,..,0 1>;,II}

{
n n} 1/2 {n n} 1/2

= inf II ~ ail a:l II II ~ b:l billl + inf II ~ ai2a:2 II II ~ b:2bi2 II

= IIT(ai ® bi)1I +IIT' (ai ® bi)II
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Thus,

liT + T'II :'SII T II + II T' II

Therefore, Haagerup tensor norm defines a norm.

Definition 2.1.1: BILINEAR MAPS

let U, V and W be vector spaces over K. A function f : UXV ----t W is

bilinear, if it's linear in both variables U and V separately.

To show it's linear in U, we let u, u' E U and r; s E lK. Now by universal

property of tensor product we know that,

f(u,v)=UQ9V

Thus,

f(ru + su', v) = (ru + su') Q9v

= (ru Q9v) + (su' Q9'v)

= r(u Q9v) + s(u' Q9v)

= rf(u, v) + sf(u', v)

Hence, f :UXV ----t W is linear in U.

To show linearity in V, let v, v' E V and r, s E lK.

Therefore,

f(u, rv + sv') = u Q9(~v + sv')

= (u Q9rv) + (u Q9sv')

= r(u Q9v) + s(u Q9v')

= r f(u, v) + sf(u', v)

Hence f :UXV ----t W is linear in V.

23



Thus it is a bilinear map. The set of all bilinear map. The set of all bilinear

functions from

UXV ---t W

is denoted by B(U,VjW).

Examples

(1) A real inner product (,) : UXV ---t lR is a bilinear form on U X V (2) If

n is an algebra, the product map

/-L.: nxn ---t n

defined by

/-L(a, b) = ab Va, b « n

is bilinear.

Definition 2.1.2: LINEARITY OF AN OPERATOR ON A TENSOR

PRODUCT

From the universal property of tensor product, we know that to each bilinear

function ! :U X V ---t W, there corresponds a unique linear function a :

U i8l V ---t W, through which f can be factored (that is != aot) (U,V,Ware

vector spaces). This establishes a map

¢ :B(U, Vj W) ---t £(U i8l V, W)

given by ¢(f) = a, In other words, ¢(f) is the linear map for which

¢(f) : U i8l V ---t Wj

¢(!)Ui8lV=!(U,V)
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Thus

II ¢(f)(U Q9V) 11=11 f(U, V) II .

Now to show that ¢ is linear. Let i,9 E B(U, V; W), and r, s E K then

r¢(f) + s¢(g) (U Q9V)

= r¢f(U, V) + s¢g(U, V)

= ¢(rf + sg)(U, V)

thus ¢ is linear.

Definition 2.1.3: DOUBLE CENTRALIZER

A double centralizer for a C*- algebra n is a pair (L,R) of bounded linear

maps on n, such that Va,b E n,L(ab)'= L(a)b,R(ab) = aR(b) and R(a)b =

aL(b). For example if c E n and Le, Re are the ;'llap on n defined by Le( a) = ca

and Re(a) = ca then (Le, Re) is a double centralizer on n. Now for all c E n
we have,

II c 11= sup II cb 11:11b II~ 1,

II c 11= sup II be 11:11b II~ 1

and therefore II t; 11=11u; 11=11 c II
Lemma 2.1.4

If (L,R) is a double centralizer on a C*-algebra n then, IILII = IIRII
Proof

Since IlaL(b)11 = IIR(a)bll ~II R 1111a 1111b II·
We have,

II L(b) 11= sup{1I aL(b) 11:11a II~ I} ~II R 1111b II
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and therefore,

IlL 11::;11R II·

Also, II R(a)b 11=11 aL(b) 11::;11Lilli a 1111b II

~II R(a) 11= sup{11 R(a)b 11:11b II::; 1}

::;11 L 1111a II i.e " R(a) "::;,, L "" a "

Thus,

"R II::;" L II·

(2.2.1)

(2.2.2)

From (2.1) and (2.2), we have II R 11=11 t. II . If 0 is a C*- algebra, we

denote the set of it's double centralizers by M(O). We define the norm of the

double centralizer (L,R) to be " L "" R " .
It is easy to check M(O) is a vector subspace of B(O) ® B(O).

For, if we let (Ut,Vl), (U2,V2) E M(O) 'IIut,U2,Vt,V2 E 0 then, (Ut,Vl) +

(U2,V2) = (Ul +U2, VI +V2) E M(O). Also, let (r,u) and (S,U)E M(O) 'IIr, S E

JI{ and u, V E 0, then, (r,u)(s,v) = (rs,uv)E M(O) which gives the desired

results. If (Lt, R1) and (L2' R2) E M(O), we define their product to be

(Lt, R1)(L2, R2) = (LIL2' RIR2). This product is also a double centralizer of

o i.e 'liar, a2, bt, ~ E 0, we have,

{(Ll' R1)(at, b1)}{(L2, R2)(a2, b2)}

= {L1(al, b1), tu«; b1)}{L2(a2, ~), R2(a2'~)}

If L : 0 --t 0, define L* : 0 --t 0, by setting L*(a) = (L(a*)*, then L* is

linear.
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For if Va, (3 E K and a, bE Q, we have L*(aa + (3b)= (L(aa)* + L({3b)*)* =
(L(aa)* + L({3b)*)* = aL*(a) + (3L*(b), thus L* is linear. The ~ap L ---t L*

is an isometric conjugate linear map from Banach algebra to itself such that

L** = L and

If (L,R) is a double centralizer on Q, so is (L, R)* = (R*, L*) we can eas-

ily verify that the map (L, R) ---t (L, R)* is an involution to M(Q). For,

((L,R)*)* = (R*,L*)* = (L,R)* = (R*,L*)

Theorem 2.1.5

If Q is a C*-algebra, then M(Q) is a C*-algebra under the multiplication,

involution and norm defined above.

Proof

We only need to check that if T = (L, R) is a double centralizer, then II
T*T 11=11 T 112 . If II a II::; 1, then II L(a) 112=11 (L(a))* L(a) II

=11 L*(a*)L(a) II

=11 L*(a*)L(a) 11=11 a*R*L(a) 11::;11 R*L 11=11 T*T II .

So,

and therefore, II T*T 11=11 T 112 . The algebra Q ---t M(Q),

a ---t (La, Ra), is an isometric *- homomorphism, and therefore we can, and

do identify Q as a C*- subalgebra of M(Q)

Theorem 2.1.6

Let I be a closed ideal in a C*-algebra Q. Then there is a unique * - homomorphism
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a: 0 ---+ M(I) extending the inclusion I ---+ M(I). Moreover, a is injective

if I is essential O.

Proof

Since the inclusion map I ---+ M (I) admits a * - homomorphic extension

a : 0 ---+ M(I). Suppose that 'IjJ : 0 ---+ M(I) is another such extension.

If a E 0 and bEl, then a(a)b = a(ab) = ab = 'IjJ(ab) = 'IjJ(ba). Hence,

(a(a) - 'IjJ(a))I = 0, so a(a) = 'IjJ(a). Since I is essential in M(I). Thus a = 'IjJ.

Suppose now that I is essential in 0 and let a E ker(O). Then aI = La(I) = O.

So a=O. Thus, a is injective. The results tell us that the multiplier algebra

M(I) of I is the largest unital C* -algebra containing I as an essential closed

ideal.

Definition 2.1.7

For a Tuple (01, C2, .... ,Cn) operators, C, E B(H), we denote by Wm(CI, C2, •.. , Cn)

the matrix range.

(where Mn is the positive semidefinite n X n matrices.) Now, a subset of

the of Wm which we call the' extremal matrix numerical range' and denote

by;

Wm,(C"c" ....,c.) ~ {" E Wm(C"c" ....,c.) , trace(,,) ~II 't,c;c.lI}
Theorem 2.1.8

Let H be an Hilbert space. Consider a set of bounded linear operators(1i)f=1 E

B(H). Denote by ~l = (T)f=l ®in E Mn(B(H)) = B(Hn) that is the block

diagonal n X n matrix with ~l' in the diagonal blocks. Let T" denote the
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corresponding n-tuple of {T)f=l.Then,

(the set of convex combinations of k elements of wm{T))

Proof Consider XI, , Xn E T which are unit vectors, then

n

({t:=l)X, (tj=lX) = L tr(Aix~, Ajx~),
i,j,k=l

where tr(xk, Xk) = IIxkll2 and x~ is the unit vector in the direction of Xk and

A E B (H). Alternatively, if we denote by xi Q9 Xi the rank one operator on

H given by 0 : xi Q9 Xi ~ (0, Xi)Xi. Let as take R = L~=lXi Q9 Xi, we can see

that such R is a positive operator of trace L~=l IIxil12 = 1. Every such R can

be written in the form II L~l x* Q9 Xi II . Moreover,

To show that Wm{Tn) is convex, we need only show that,

And if n = dim H, then that is clearly true. For k = n < dimH. Now take

where R; = L~:ll Xi®X, which is positive, and rank at most n-t-L If the rank

of R; is < k + 1 we are done and so we assume that the rank is n+ 1. We will

work within the span of the Xi by taking P to be the orthogonal projection
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onto the span, temporarily restricting H to P(H) and considering A:,j =
PAjAjP E B(P(H)) in place of AjA;. Note that A:,j = Aj,i. Cpnsidering,

Sn+l = {R E B(PH): R> O,traceR = 1,trace(A,j,x) = 8i,j}

for 1 ::::;i,j ::::;k Note that this set is compact (a closed a subset of the trace

one and positive definite matrices). The total number of real linear equations

to be satisfied by R E Sn+l is 1 + k2 and we are working inside the hermitian

elements of B(PH),a space of dimension dim(PH)2 = (K + 1? > 1 + K2
.,

More precisely, we have

S!+l c {R = R* E B(P(H)), traceR = 1}

= IIn+ b an affine space of dimension (k+ 1? -1. S!+l is the intersection of the

convex set En+l of positive element of Iln+l with an affine subspace of Iln+l
of co-dimension k2. Sn+l =I <I>because of Ro. Thus Sn+l must contain some

point R which is not a relative interior point of En+l of positive elements of

Iln+l. Such an R must have rank s; n and so <I>(trace(Tj*Ti,x))tj C Wm(rn)

o

Remark 2.1.9

The argument above is a proof of a remnant of convexity for the joint (spatial)

numerical range of the finite list of operators on B(H). The Toeplitz- Hausdorff

theorem (see [1]), asserts that the numerical range of a, single operator is

convex. That is known to be false in general for the numerical range of two

operators

{((T1x, x), (T2x,x)): x E H, II x 11= 1}

though it is for two hermitian operators T1, T2. The argument above shows

that the set of all convex combinations of n elements of the joint numerical
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range ofk operators T1, T2, ,Tn E B(H) is convex provided (n+1)2 > l+d

where d is the dimension of the real span of the real and imaginary parts of,
the T(or n=dim H).There is a case where the joint numerical range is known

to be convex i.e for a commuting n-tuple of normal operators (T1, T2 , Tn).

It follows that if TrI.. are commuting operators then Wm(T) is convex.

Notation.The cb norm of a linear map T : 0 --+ 0 is defined as IIT IIcb=

SUPk~l IIT IIk=11Tk IIand

(Mk(O) means that the n X n matrices with entries in 0) is defined via

If 0 c B(H) then we can regard Mk(O) = 00 Mk as a C*- subalgebra of

B(H) 0 Mk = B(H 0 Ck) = B(Hk).

Theorem 2.1.10

Let 0 be an algebra. Let 0 = B(H) and T E EfB(H). Then we have equality

in

1 { n n}
IIT II:SIIT IIcb:S2 II~aia; II+ II~b;bj II

if and only if the intersection

Proof( see [25])

Consider first the case when H is finite dimensional and the intersection is
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non-empty. Thus there exist unit vectors x,y with

for 1 ::; i, j ::;n and

n n n n

L(aja;x,x) = L,(b;biy,y) =11 Laia; 11=11Lb;bi II
i=1 i=1 i=1 i=1

Now, U(biy = a;x) specifies unique unitary map from the span of biy to the

span of aiy.We can then extend U to a unitary map on H and compute that,

n n

(T(U)y, x) = L (Ubiy, a;x)' = L (aia;y, y)
i=1 i=1

=11 "E~=1 aia; 11=11"E~=1 b;bi II . Thus we have II T II~ (1 \ 2)(11 "E~=1 aiai II
+ II "E~=1 bibi II) ~II T IIcb~11 T 111=11T II forcing equality all round in this

case. When H is infinite dimensional we have to modify the argument only

slightly to take account of that fact that we can only find unit x and y so as

to get arbitrarily close approximations (ajaix, x) ~ (bjbiy, y) for 1 ::; i, j ::;n

and
n n n

L(aiaix,x) ~II Laiai 11=11Lbibi II
i=1 i=1 i=1

We can then say that our IITII will have norm approximately 1. For the

converse, that is if II "E~=1 aiai 11#11"E~=1 bibi II . A well known estimate due

to Haagerup states that,

n n

II T 11::;11T IIcb::; II L~ai 1111Lbibi II
i=1 i=1

(2.2.3)

where II T IIcb is the completely bounded norm of T. The Haagerup estimate
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(2.3) can be derived from the following matrix formulation

Taking ar, ..., an = (ai)f=l and b1, ... , b.; = (bi)f=l' then we have T; = ai(x 0

In)bi where (x 0 In)bi is the block diagonal element of MN(O) = 0 0 Mn

with x's along the diagonal. From Tx = ai(x 0 In)bi(x EO), Tk(X) =

af(X 0 in)~(X E Mk(O)) where

and

We get the estimate (2.3) from

From (2.3)we get,

n n

IIT IIcb~ 1/2{1I L aia; II+ IIL b;bi II}
i=l i=l

(2.2.4)

Therefore, for the converse, IIL:~=1aiai 11#11L:~=1bibi II, then we have strict

inequality between the right hand sides of (2.3) and (2.4).80 we may suppose

equality and normalize

n n

IILaia(i)* 11=11Lb;bi 11=1
i=l i=l

We know that II T 11=sup II T(u) II over u unitary (by the Russo-Dye

theorem [20], or the more elementary fact that each element of the open unit
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ball of B(H) is an average of unitaries [22]). Now,

II T(u) 11= sup {R(T(u)x, y)}

over unit vectors x, y E H and we note that, R(T(u)x, y) = L/i=lR(ubix, aiY).

n n

JR(T(u)x,y) = LJR(rli1r2.) :::;L 11 rli 1111r2i II
i=l i=l

n n

< L II rli 112 L II r2i 112 < 1
i=l i=l

Rank one operators on Hilbert space.

We recall that II T 11:::;11 aj 0 bj IIh in term of the Haagerup norm on

B(H) 0 B(H). Equality of this upper bound holds in case the operators aia;

commute and operators b;bi also commute as shown by theorem 2.1.5. For

x, y E H we use the notation x, y* E H for the rank one operator on H with

(x, y*)(O) = (0, y)x which is a linear operator.

To show it's linearity we let C¥I, C¥2E K and xI, X2 E H, y,{, yi E H* then

(C¥lXl 0 C¥lY;)(O) + (C¥2X20 C¥2Y;)(0)

C¥l(Xl 0 y~) + C¥2(X20 y;)(O)

C¥l(0, y~)X2 + C¥2(0,Y;)X2
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Therefore, the operator

(x 0 y*)(O) = (O,y)x

is linear.

Lemma 2.1.11:

Let H be a Hilbert space and B(H) an algebra of bounded linear operators

on H. For T E El(B(H)),T(x) = Ei=laixbNai,bi E B(H), then

n

II T 11=sup,P2 II L P1ai 0 biP2 IIh
PI i=l

where PI, P2 E b(H) are rank one projections (P;'2 = P; = P;.*) We will show

that II T II above is a norm .

• To show that II >.T 11=1>'111T II . We let>. E K,therefore,

n

II >.T II sup II L(>.P1ai) 0 (>.biP2) Ilh
Pl,P2 i=l .

n

sup II L >.(P1ai)0 >.(biP2) Ilh
Pl,P2 i=l

n

sup II >.L(Pl~) 0 (biP2) Ilh
Pl,P2 i=l

n

I >. I sup II L(P1ai) 0 (biP2) IIh
Pl,P2 i=l
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Thus, II >.T 11=1 >'111 T II

• (iv) Finally, we show that for T, T' E B(H) ® B(H), we have

II T+T' 11::;11T II + II T' II

i.e triangle inequality. Let

n

II T 11= sup II I)P1ai}) ® (bi2P2) IIh
P}'P2 i=1

and
n

II T' 11= sup II L)P1ai2) ® (bi2P2) IIh
P!'P2 i=1

It follows that

II T(P1ai) ® (biP2) II + II T'(P1ai) ® (biP2) II
n

sup{II L)P1aiJ ® (bi}P2) + (P1ai2) ® (bi2P2) IIh}
P}'P2 i=1

n

< sup II ~)P1aiJ ® (bi}P2) IIh+
P!'P2 i=1

n

supp!,P2 II L)P1ai2) ® (bi2P2) IIh
i=1

IITII+IIT'II·

Therefore, II T + T' 11::;11 T II + II T' II· This implies II T 11= sUPP!'P2II

~i=1P1ai ® biP2 IIh is a norm.

Notation 2.1.12

Let H be a Hilbert space. For u, v E H we use the notation u ® v for the
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rank one operator on H with the property that (u ® v*) (0) = (0, v) u. This

specifically is a linear operator

T: x -t ((Txu, v))v ® u*

i.e
n

TP1,P2(X) = L P1ai(X)biP2•

i=l

Linearity of this operator can easily seen; Let 0:, f3 E ][{and x, y, E H.

It follows that,

{(T(o:x + {3y)u,v)}v ® v* {((o:Tx + {3Ty)u, v)}v 0 v*

- {((o:Tx)u + ({3Ty)u, v)}v ® v*

((o:Tx)u, v)v 0 v* + (({3Ty)u, v)v 0 v*

Which gives the desired results. For this operator (P1ai)(P1aj)* are

commuting and so are (biP2)*(bjP2). To prove commutativity,we note that

Tpl (x) = PIaj(x) and Tpl = (P1aj)*(x)Vx E H. Thus

Since H E B(H) and PI = Pi = p2 (rank one projection operator), we have,
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{Tp1T;l (x), (x)

(T;'l (X), T;l (x)

II T;l(X) 112

(T;'l (X), T;'l (X)

(Tp1T;1 (X), (X)

{T;'lTpl (X), (X)

2.3 Concept of elementary operators on semi-

groups

Let H be a semigroup. A double centralizer on H is an ordered pair (T, r'
of maps of H into itself satisfying x(Tx) = (T')yVx, y E H. Let us denote by

t:.e(H) the set of all ordered pairs M, M* of linear maps of H into itself that

satisfy the following identities

M(x(M*y)z) = (Mx)y(Mz) (2.3.1)

M*(x(My)z) = (M*x)y(M*z)Vx, y, z E H (2.3.2)

We now state some basic properties of t:f(Q) (H)

(a) Defining multiplication by (1\1, M*)(N, N") = (lv/oN, N*oM) (here 0 de-

note composition maps)t:f(H) becomes a semigroup with identity element.

Moreover, defining (M, M*)* = (M*; M), t:f(H) becomes a semigroup with
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involution.

(b) The set of all pairs (a M b,b M a) where a, s e H is a subsemigroup of
o

&£(H). Now let 01 and O2 be algebras over a field K By &£(0102) we denote

the set of all ordered pairs

(M, M*) where M : 01 -t O2 and M* : 01 -t O2 which are linear maps such

that (2.5) holds for all x, Z E O2 and (2.6) holds for all x, Z E O2, Y E 01

Linearity of M, M* can be easily shown. For, if we let 0:, f3 E lK and

MO:(X1Z1) +Mf3(X2(M*Y2)Z2)

a{(Mx1)Y1(Mz1)} + ,B{MX2)Y2(Mz2)}

M{ a(x1(M*Y1)Zl) + f3(X2 (M*Y2) Z2)}

hence linearity of M : 01 -t O2• Further, fat

and a, ,B E lK. We have,

M*a(X1(MY1)Zl) + M*,B(X2(MY2)Z2)

a((M*xdY1 (M*Zl)) + ,B((M*X2)Y2(M* Z2))

aM*(X1(MY1)Zl) + ,BM*(X2(MY2)Z2)

Hence linearity of M* : O2 -t 01

Further, &.e0102 denote the set of all pairs (~i=lMi' ~i=lMn where Mi, Mt&£(0102).

The elements of &£(0102) called elementary operators of an algebra 01to an
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algebra O2. Considering every pair of the form (aMb, bM a) with a, b E 01

we have that the pairs,

belonging to ££(01), We can make the following observations concerning

these sets.

(i) Defining addition and scalar multiplication by,

(t,M"t,M7) + (t,N;,t,Nj) ~ (t,M' + t,N;,t,M:+ t,N;)
A (t,M" t,M;) ,VA ElK

(t,AM" t,AM; )

then ££(Ot, O2) becomes a vector space.

(ii) Defining multiplication by

then ££(01) becomes an algebra without identity element.

2.4 Elementary operators on semiprime alge-

bra

Lemma 2.2.1
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Px = M(x(N*)v) - (Mx)w(Nv), P:» = -M*(w(Nv)x) + (N*w)v(M*x)

respectively. Then (P, P) E ££(0102)

Proof. For x, z E O2 we have,

P(x(P*y)z) - P( -xM*(w(Nv)y)z) + x(N*w)v(M*y)z

M(-xM*(w(Nv)y)z(N*w)v) + M(x(N*w)v(M*y)z(N*w)v) +
M(xM*(w(Nv)y)z)w(Nv) - M(x(N*w)v(M*y)z)w(Nv)

- -(Mx)w(Nv)yM(z(N*w)v) + M(x(N*w)v)yM(z(N*w)v) +

(Mx)w(Nv)y(Mz)w(Nv) - M(x(N*w)v)y(Mz)w(Nv)

M(x(N*w)v) - (Mx)w(Nv))y(M(z(N*w)v) - (Mz)w(Nv))

(Px)y(pz)

Similarly,we have
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P*(Py)z P*xM(y(N*wu)z - x(My)w(Nu)z <..-

-M*(xM(y(N*w)u)z(Nu)x) - M*(x(My)w(Nu)z(Nu)x)

+M*(xM(y(N*w)u)z)u(N*x) + M*(x(My)w(Nu)z)u(N*x)

-M*(xy(N*w))uM(z(Nu)x) - M*(x(My)w)uN*(z(Nu)x)

+(M*x)y(N*w)u(Mz)u(N*x) + M*(x(My)w)u(N*z)u(N*x)

M*(x(Ny)w) + (M*x)y(M*w)u -:-N*(z(Nu)x) - (N*z)u(N*)

(P*x)y(p*z)

=} (P*,P) E ££(fh,02)

o

The following theorem shows that the sum of elementary operators and

that of their adjoints are equivalent on semiprime algebras (see [2]). Let

01 and O2 be semiprime algebras.If (MiMt) E ££(01, O2), i = 1, ..... , n and

2.5 Elementary operators on polynomial al-

gebras

We shall determine elementary operators on the algebra JK[X] of polynomials

coefficients in a field K

Theorem 2.2.3

A linear operator T E ££(JK[X]) if and only if there exist a(X) E JK[X]

and a, (3 E JK,a i= O,such that (i)T(f X) = a(X)f(aX + (3) (ii)T*(f(X)) =
a(a-1a-1(3)f. Therefore,everyoperatorT E ££(JK[X]) is oftheformT(f(X)) =
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al(X)f(a1X + t31) + +as(X)f(asX +t3s)where ai(X) E lK[X], as,,as E

x, as i= O.

proof(see [3])

LetT E &P(lK[X]) and set a(X) = T(l), b(X) = T*(l), c(X) = T(X). If

a(X) = 0, then T*(f(X))2

= T*(f(X) * a(X) * f(X)) = 0 Vf(X) E lK[X],

so that T = T* = O. Therefore,there is no loss of generality in assuming

that a(X) i= O,and similarly, b(X i=) = O. Given any f(x) E lK[X], we have

T(f(X)T*(l)l) = T(f(X))lT(l). That is, .

T(b(X)f(X)) = a(X)T(f(X)) (2.5.1)

Clearly (2.7) implies that

(2.5.2)

for any positive integer n. We can claim that T(b(x)n-l X"). Indeed, by

definition,this is true when n=l, and assuming that it is also true for n-1,we

obtain

T(b(x)n-l X") = T(X * b(X) * b(Xt-2 Xn-1) = T(X) * 1* T(b(Xt-2 Xn-1)

= c(X) * c(xt-1 = c(xt (2.5.3)

Comparing equation (1.14) and (1.15) we arrive at

(2.5.4)
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for every positive integer n.Inparticular, a(x)n-1 divides c(x)n, n = 2,3, ....

We claim that this yields that a(X) divides c(X).Writing c(X) =:aP1(X)kl ••••• Pr(X)kr,
"-'

where a E K, P; are irreducible, and first using the that a(X) divides C(X)2,

it follows that

where (3 E F and 0 ::; s, ::;u; However, since a(x)n-1 divides c(Xn for

every positive integer n,we have that (n - l)Sl ::; nki' which clearly gives

Si::; ki• Therefore,c(X) = a(X)d(X) for some d(X) E K[X].Now (1.16)gives

a(x)n-1T(x)n = c(x)n = a(x)nd(xn), so that T(xn) = a(X)d(x)n.But

then, since T is linear,

T(J(X)) = a(X)f(d(X)) (2.5.5)

for any f(X) E K[X].By symmetry, there is d* E K[X] such that

T*(J(X)) = b(X)f(d*(X)) (2.5.6)

for any f(X) E K[X]. Consider T(T*(X)). On the one hand we have

T(T*(X)) = T(l * T*(X).l) = T(l)XT(l) = A(X)2 X, (2.5.7)

and on the hand, using (2.10,2.11and2.12),respectively we get

T(T*) = T(b(X)d*(X») = a(X)T(d*(X))

= a(X?d*(d(X) (2.5.8)

Comparing (2.14)and (2.15) we have d*(d(X)) = X. By symmetry ,d(d*(X)) =.
X.Thereforeby computation we haved(X) = aX + (3 and d*(X) = a-1a-1(3
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for a,(3 E K,a =I- O. Finaliy,from b(X)2 = T*(l *T(l) * 1) = T*(a(X))

We conclude that

Thus we have proved indeed that every T E cf(F[X]) is of the form

T(J(X)) = a(X)f(aX + (3),

with
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Chapter 3

Elementary operators on prime

C*-algebra

3.1 Introduction

In this chapter we establish the norm of elementary operator on prime C* -

algebra

Theorem 3.1.0: Let n prime C* -algebra, therefore

II MTT, 11=11 T 1111T II vi; T' E M(O),

Proof. For T, T('), X E M(O), we have that

MTT,X = TXT',,

Therefore,

II MT,T'X 11=11 TXT' IIsll T 1111X 1111T' II

Taking sup on both sides we have,

II MT,T' IIsll T 1111T' II
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Consequently,

II Mr,r' 11:::;11 T 1111 T' II· (3.1.1)

If T, T' E M(O) are arbitrary, the inequality

II T 11211 T' 112 = II T*T 1111 T'T'* II

= II Mr*r,r'r'* II Mr,r' II

< II Mr-'!"* 1111

< II T 1111 T' 1111 MrT' II,

i.e. II T 11211 T 112:::;11 T 1111 T 1111 Mr,'!" II . Dividing both sides by

II T II II T II, we have

II Mr,r' 112:11 T 1111T II (3.1.2)

Comparing equations(3.1)and(3.2), we have

II Mrr, 11=11 T 1111 T' II \IT, T' E M(O).,

o

3.2 Elementary operators and the maximal

numerical range

Definition 3.2.0: Let H be an Hilbert space and B(H) an algebra of bounded

linear operators on Hilbert space. The Maximal numerical range, Wo(T) of

an operator T E B(H) is the set,
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and the normalized maximal numerical range, WN(A) of the operator A to

be the set Wo(AIIi A II) for A # 0

Lemma 3.2.1

If II T 11=11 x 11= 1 and II Tx 112< (1 - E) then II (T*T - l)x II::; 2E

Proof.

o < II (T*T - I)x 112
- ((T*T - I)x, (T*T - I)x) (T*Tx - x, T*Tx - x)

- (T*Tx, T*Tx) - (T*Tx, x) -:-(x, T*Tx) + (x, x)

(T*Tx, T*Tx) - 2 (Tx, Tx) + (x, x)

II T*Tx 112 -211 Tx 112+ II x 112::; (1- II Tx 11)2::; 2E

o

Lemma 3.2.3

The set Wo(T) is convex.

Proof(See [9])

Let .x, Jl E Wo(T).We assume without loss of generality that II T 11= l.

Assume also that,

II Xn 11=11 Yn 11= 1, (Tx~, xn) ~ .x

and

Consider, Tn = PnT Pn, Where Pn is the projection on H of xn, Yn. Let

~ be a point on the line segment joining .x and f-L. Then for each n, it

is possible, by the Toeplitz-Hausdorff Theorem to choose Cin(3n such that
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(Tun, Un) = (Tnun, Un) ---+ ~ and II Un 11= 1, where Un = anxn + f3nYn' Note

that I (xn, Y - n) I :s: () < 1, for n sufficiently large; that is, the angle between
\

Xn and Y - n is bounded away from O. Thus, there exist a constant M such

that lanl :s: M and lf3nl :s: M for large n.where] anxn + f3nYn 11=·1. By

lemma3.2.1, II TUn 112= tr-r«; Un) = (TUn, TUn) =11 TUn 11211U 112 -2mEn'

where En ---+ 0, and thus it follows that II TUn 11---+ 1, since (TUn, Un) ---+ ~ Now,

for T, T E B(H), we define elementary operators as MT,T'(x) = TxT', (x E

B(H)). We shall give necessary and sufficient conditions for any pair of op-

erators T and T to satisfy the equation II 1+ MT,T' ·11= 1+ II TilT II where

I is the identity operator on H.

Theorem 3.2.4:

For T, T' E B(H) the following are equivalent

(a) II 1+ MT,T' 11= 1+ II T 1111T' II
(b) WN(T*) n WN(T') =1= ¢

Proof See([12] for part of the proof.) (a) ==? (b), suppose that II I+MT,T' 11=
1+ II T 1111T' II, then we can find two sequences {Xn ~ B( H)} and {xn ~ H}

with II X; 11=11 Xn 11= 1 for each n:

lim II rx, + TXnT')xn 112
n

II x.»; x, 112+2R(Xnxn' TXnT'xn)+ II rx.r«; 112
1+ liT 1111 T' II

49



Since

It follows that limn II TXnT'xn 11=11T 1111T' II·
Consequently, we derive that liIIln(Xnxn' TXnT'xn) =11 T 1111T' II. Thus

lim II T*Xnxn 11=11TII and lim II x.r:«; 11=11T' II
n n

because

For each n ~ 1 we have, II MT"-T'II~II T*Xn+XnT' II~II T*Xnxn+XnT'xn II
, since lim., II T*x;«; + x.r«; 11=11T II + II T' II and II MT*,-T' 11::;11T II
+ II T' II·

We conclude that II MT* ,-T' 11=11 T II + II T' II. Thus it follows from

Stampfli [23], that WN(T*) nWN(T') =f <P (b) ~ (a) (This solution is found

in Stampfli [23]). Let Il E WN(T*)nWN(T'). Then there exist two sequences

Xn and Yn in H such that II Xn 11=11Yn 11= 1, lim; II T*xn 11=11T II, lim., II
T'Yn 11=11T II, liID.n(T*xn,xn) = IlI1 T 1lliID.n(T'Yn,Yn) = IlI1 T' II·

Set T*xn = anXn + f3nun, where an, f3n E OC, Un E H with Un = 1 and

(xn, un) = O. We may choose Un so that (T*xn' Un) = f3n~ 0 \;/n.

Set also T'Yn = 'YnYn+ 8nxn where "In,8n E OC, II Vn 11= 1, (Yn. Vn) = 0

and (T'Yn, Vn) = s; ~ O.

Define a sequence {Xn}n ~ B(H) by Xn = hYn)xn + (*, un)un. Then

clearly II Xn 11= 1 \;/n, we have (XnYn, TXnTYn) = (T*Yn' 'YnTYn+ 8nun) =

an'Yn+ f3n8n.

By the definition of the sequences Xn and Yn, we derive that limn lanl2 +
lf3nl2=11 T 112and limn lanl = 111111T II .

Thus lim., f3n = J1-11l12 II T II· In a similar way we obtain,
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_ 11L12II T 1111T' II +(1-11L12) liT 11111" II

- II TIIII 1" II

From this we conclude that limn II TXnT'Yn 11=11 T 1111T' II· Now, we .

have for each n ~ 1,

1+ II T 1111T II > 111 + MT,T' II
> II x; +TXnT' II

- II XnYn +~XnTYn II

Therefore,

IIXnYn+TXnT'Ynll - l+IITIIIIT'1I

< 1I1+MT,T' II
< 1+ II T 1111T' II

Consequently,

1I1+MT,T' 11= 1+ II T 1111T'II·

o
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Chapter 4

CONCLUSION

4.1 Concluding remarks.

The study of norms of elementary operators has emerged that,for general

elementary operators, a full description of their properties is rather intricate

since these are often interwoven with the structur~ of underlying algebra.

In our thesis, we used the theory of tensor norms of Hilbert spaces and tensor

product of operators to work out the lower bound of elementary operators.

The study also investigated elementary operators on prime C* -algebra. Un-

der both circumstances, the value of the constant C i.e. the greatest lower

bound of norms of elementary operators, and for any arbitrary k (where

k = 1,2, ... ,n) is less than one.

There are still many results of elementary operators in terms of multiplica-

tion operators or tensor products of operators which other researchers can

pursue.
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