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ABSTRACT

i

',designs used for experimentation generally require making all the possible paired

ceding, have received adequate attention.  Breeders in sugarcane breeding
es have shifted from mass selection to family selection where the test
tménts are more heterogeneous. This shift has created a need for efficient
.xpcrimental designs to evaluate hybridized sugarcane families. In this study we
evaluate two designs, Augmented Block Design (ABD) and Reinforced Block
Incomplete Block Design (RBIBD), which have been proposed for test versus control
experiments though their efficiencies in test families versus control experiments are
not known. To evaluate the designs, we simulated data for five families and two
controls through Monte—Carlé simulation framework. RBIBD and ABD designs were
constructed and data fitted by inclusion of block effects and random errors. The fitted
data was then analysed and compared the Randomized Complete Block Design
(RCBD). More concrete results in this area could improve the efficiency of sugarcane

selection process which would be of great benefit to the stakeholders in the sugar

industry.
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CHAPTER ONE - INTRODUCTION

1.1 BACKGROUND

used for experimentation generally require making all the possible paired
‘comparisons among the treatments. But this is not always the case. There exist
I

situations when the interest of the experimenter is only in the subset of all the

;,ossible paired comparisons. This is usually the case in plant breeding selection

"e commercial varieties called check or control varieties. In test versus control

'xperiments the test treatments are either replicated or not replicated. The two designs

treatment structure, where entries fall into groups or families such that entries within

groups are more closely related than between groups. Some plant breeders prefer to

especially since sugarcane selection relies on individual selection.
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arcane breeders have traditionally employed intensive selection of indii/idual
dlings or seedling bunches (mass selection) to select seedling in seedlings stage.

ection is usually subjective, based on visual appraisal for cane yield. Althoughv
sa isfactory gains have been achieved using individual seedling-selection, it is not
,z cient‘ according to Hogarth et al. (1997) and Skinnef (1971). The lack of
replications, competition effects among seedlings and, because individual clone

selection is labor intensive and expensive, all contribute to reduce selection

search carried out in some sugarcane breeding programmes in Australia and
'aurit’ius suggests that family selection would be superior to mass selection at this
4

stage. Family selection is particularly useful for traits with low heritability because,
1 ike clones, families can be replicated across years and sites, thereby improving
imates of family means as well as aiding in the identification of stable familiés.
'ieeause bsuga.rcane is exploited commercially as a clone, the rationale for family
ilection is not to producé superior families with commercial value but rather to
“ entify families with a higher frequency of superior clones. Family selection makes
‘possible to focus selection for superior clones (mass selection) on the best families,

because the probability of finding superior clones at later stages of the program is

hest within these families.
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ing seedlings stage of plant breeding large populations of genotypes of which few
w ould be eventually released for commercial cultivation are tested against
gommercial varieties. Due to large numbers of seedlings involvecfvast tracks of land
are required to evaluate the seedlings. It is impossible to ensure soil and nutrient
. omogeneity. Since only a small percentage of the seedlings are passed to the next
2

stages, a lot of superior genotypes are lost and mediocre ones passed on due to

ii‘neﬂicient discrimination against the environmental effect and genetic effect. .

)\ 'any plant breeding programmes have adopted the use of family selection, i.e. large
_" umbers of indivi_duals are picked from best performing families than from worst
erforming families. Construction of experimental design for such scenarios which
oes against the a-design construction criteria is not known. Augmented block design
‘and reinforced incomplete block design have been proposed for test versus control
experiments though their efficiencies especially in test families versus control

experiments have not been tested.

In this study we are going to evaluate the relative efficiencies of the two proposed
‘designs, i.e reinforced balanced incomplete block design and augmented block

esign, against randomized complete block design.
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3 RESEARCH OBJECTIVES

1. To determine the relative efficiency of reinforced balanced incomplete block

design against randomized complete block design.

- To determine the relative efficiency of augmented block design against

randomized complete block design
To compare merits and demerits of reinforced balanced incomplete block

design and augmented block design

14 RESEARCH HYPOTHESES

K be the true mean for the i” treatment

iy, be the mean of the i treatment in RBIBD

ia; be the mean for the i treatment iﬁ ABD

Lea; be the mean for the i treatment in RCBb with 4 reps

l1e3; be the mean for the i treatment in RCBD with 3 reps

The Hypothesis we will test are:

Ho: HRi= Hcdi against H;: HRi # Medi
Ho: pai= pesi against Hy: pua;# pes;

Ho: uri= pai against H: pg;# pa;



1.5 CONCEPTUAL FRAMEWORK

Design Generation

Add block effects

Add Random effects

Analysis of Variance

Efficiencies

Paired sample T- Test

RBIBD RCBD ABD RCBD
(4 Reps) (3 Reps)
\ﬁl . 5}
' v
U [-5, 5] U[-5,5]
v v v v
€, ~N(0, 25) €,~N(0,1) | [£;~N(0,5) ||€,~N(0,25)
y v y 4
ANOVA ANOVA ANOVA ANOVA
A y A 4
RBIBD Vs ABD Vs ABD Vs ABD Vs
RCBD (4 RCBD (4 RCBD (4 RCBD (4
Reps) Reps) Reps) Reps)
Means from |- Means from| | Means from | | Means from
RBIBD & ABD & ABD & ABD &
RCBD (4 RCBD (4 RCBD (4 RCBD (4
Reps) Reps) Reps) Reps)
RBIBD & RBIBD & RBIBD &
_| ABD with | | ABD with ABD with
£ ~N(0,1) £,;~N(0,5) | | &, ~N(0,25)

~ Figure 1: Conceptual framework for comparison of efficiencies between ABD and RBIBD
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2 CHAPTER TWO - LIRERATURE REVIEW

During the past 25 years the problem of comparing a single control to a set of test‘
treatments has received a good deal of attention. However, the problem of comparing
a set of more than one control to a set of test treatments in a block design setting has
received relatively little attention. Majumdar (1986) derived some sufficient

conditions for determining A-optimal designs in classes D(s,#;b,k) and then used

these sufficient conditions to establish the A-optimality of certain designs in classes

D(s,t;b,k) where s =t and in classes D(s,t;b,k) where k is substantially larger than

v. Parsad et. al. (1996) studied the optimality of designs for comparing s controls to
¢ test treatments within classes of binary designs whereas Jaggi et. al. (1996) have
obtained some partial results on A-optimality for designs in which the controls appear
equally often within blocks. Jacroux (2000, 2002) has derived some sufficient
conditions which can often be used to establish the A- and MV-optimality of
augmented block designs which can be obtained by augmenting the blocks of regular
block designs in the test treatments with replications of the control treatments. Two
additional papers which provide more recent overviews of known results for
comparing test treatments to controls are Majumdar (1996) and Gupta and Parsad
(2001). In this study, we are interested in determining the efficiencies of augmented
and reinforced balanced incomplete block designs in comparison of test families

' against a set of controls.



'_'Augmented (Hoonuiaku) designs were introduced by Federer (1956) to fill a need

experimental material for new (test) treatments is just enough for a.single replication.
However, the connectedness property of the design is ensured by augmenting any
standard connected design in control treatments with new (test) treatments and
replications of the control provide the estimate of error. More precisely, an
augmented experimental design is any standard experimental design in standard
treatments to which additional (new) treatments have been added. The ad(iitional
treatments require enlargement of the complete block, incomplete block, row -
column designs, etc. The groupings in an augmented design may be of unequal sizes.
The most important of the augmented designs is the augmented block design where
the standard design is the randomized complete block design. The blocks are

expanded to accommodate the test treatments.

Das (1958) introduced a series of incomplete block designs which are obtainable by
including any number of control treatments, say, p in every block of an existing

incomplete block design with v treatments b5 blocks each of size & and r

replications. The resulting design will have v+ p treatments distributed in b blocks
“each of size k+ p such that each of the p newly introduced treatments is replicated

b times and the original v treatments r times each. These designs were called

reinforced incomplete block designs. They have no fresh constructional problems
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‘and can be made available for any numbers of varieties by suitably choosing v and

t“Yong-Bi et. al (1999) studied family and clonal trials to evaluate family and clone
;;performance. They simulated test site with various patterns of environmental
‘l‘:variation to examine the effectiveness of randomized incomplete block designs under
‘vl.‘different design parameters (constant block size, variable block size, block shape and
;I(;)rientation, and family size). Simulations showed that blocks of fixed size 5-20 were
f}:éffective in removing most site variation in a test with 120 full-sib (both parents in

:,‘bmmon) families of three seedlings per family. -

‘The most basic type of statistical design for making inferences about treatment means
) ‘

is the completely randomized design (CRD), where all treatments under investigation

“are randomly allocated to the experimental units. The CRD is appropriate for testing

precise results than an experimental design of comparable size without blocking, but

‘also increases the range of validity of the experimental results. In this chapter we will
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concentrate on randomized complete block design, incomplete block desigh and

, anced incomplete block design.

"‘;1.1 RANDOMIZED COMPLETE BLOCK DESIGN

y experimental design in which the randomization of treatments is restricted to
;oups of experimental units within a predefined block of units assumed to be
iternally homogeneous is called a randomized block design. Blocks of units are
ted to control known sources of variation in expected (mean) response among
erimental units. There are two classifications or féctors in a randomized cémplete
k design: block effects and treatment effects.

3

instance, a typical block in an agricultural experiment is a field - fields differ
lbst'antially in soil quality, etc., and the sarfle experimental treatment might produce
erent means in different fields. Formally, the désign is as follows: within each of
f blocks, assign 1 experimental unit at random to each of v treatments. Thus, all

tments appear within each block, and each block-treatment combination receives

| experimental unit, which produces the observed response.
I -
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Figure 2: An example of RCBD on fertility trial

0 analyse the results of RCBD, we assume additive and homoscedastic linear model

'
R

~ with fixed effects and without interactions:

Ky=#+fifb,-+5y

E(Ky‘):ﬂ"'ti +bj = Hy

-?’Table 1: Table of means for RCBD

5

e Block -

- _Treatment 1 2 3 b

1 M1 M12 M13 M1p Y, =+t
2 M21 H22 H23 M2o Yo =ttty

B v Mv1 Mv2 M3 — Hvb Y=+,

“mean Y =u+b,  Yo=utb, Yasptbs e Y.p=p+by

" Treatment effects are relative such as

: E,-Y)=(u+1)-(u+t,)=t 1,

Bt

10
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__There are two null hypotheses that can be tested i.e. e : B

s

M ANYa eatment e = * — s — ()

determine if blocking was successful in reducing the variability in the

experimental units)

j Table 2: The ANOVA table for RCBD

Treatments  SST v-1 MST=SST/(v-)  MST/MSE
 Blocks SSB b-1 MSB=SSB/(b-1) MSB/MSE
~ Error SSE (b-1)(v-1)  MSE=SSE/(b-1)(v-1)

~ Total TSS bv-1

212 INCOMPLETE BLOCK DESIGN

- If in a block the number of plots is smaller‘than the number of treatments, then the
| - blocks are said to be incomplete and a design constituted of such blocks is called an
_‘ incomplete block design. Let v denote the number of treatments in an experiment
and k, where k<v, denote the number of plots in each of the blocks. _In order to
- ensure equal or nearly equal precision of comparisons of different pairs of treatments,
the treatments are allotted to the different blocks such that each pair of treatments has
the same or nearly the same number of replicatiéns and each treatment has an equal

- number of replications, say, r.

Different patterns of values of the number of replications of different pairs of

treatments in a design, have given rise to different types of incomplete block designs.

11



.‘ en the number of replications of all pairs of treatments in a‘design is the same,

_then an important series of designs known as balanced incomplete block (BIB) design

pairs of treatment effects. It was first devised by Yates (1936) for agricultural
: experiments. These designs have evidently some constructiohal problems because the
'vnallotment of k of the v treatments in different blocks so that each pair of treatments
 is replicated a constant number of times is not straight forward. The constructional
il problems were solved by the joint efforts of Fisher, Yates and Bose (1939) among

- others using combinatorial mathematics.

'- For incomplete block design we get two-way data classified according to blocks and

treatments. If there are b blocks in a design with v treatments and k& as the block

~ size, then there are b x v cells in the two-way table with frequencies 0 or 1. Since k

of the v treatments occur in a block, the frequencies in the & corresponding cells in
the row for the block, are unity and those in the remaining cells of the row are zero.

The data obtained from such designs are, therefore, non-orthogonal. The b x v cells

frequency table is called the incidence matrix of the corresponding design usually
- denoted by N. As the cells take two values 0 or 1 these designs are called binary

~ designs.

1 2.1.3 BALANCED INCOMPLETE BLOCK DESIGNS

- An incomplete block design with v treatments distributed over b blocks, each of size

3 “k, where k <v such that each treatment occur in » blocks, no treatment occur more

12
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an once in a block and each pair of treatments occurs together in A blocks, is called

;.balanced incomplete block design (BIBD). The symbols v, b, k, » and A are
‘ led the parameters of the design. The five parameters are not independent, but |
satisfy the two relations “e

1). vr = bk

). Av-)=rk-1)

"; BIBD is therefore commonly Written as simply (v,k, 1), since b and r are given

in terms of v,k , and A by

b viv—-1DA
B k-]
R
k-1

2.14 BIB CONSTRUCTION

vkb="C,r="C_,A="C,,

These unreduced designs usually require allarge number of blocks and replications so

13
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that the resulting designs will often be too large for practical purposes.

2.1.4.2 BIB Designs with Parameters

“=.s'2,b=s2 +s, k=s,r=s+1, A=1 ' 21

Before we describe the method, we explain the concept of mutually orthogonal Latin

i} Latin square of order s is an arrangement of s symbols in an sxsarray such that

each symbol occurs once in each row and once in each column of the array. For

ample, the following are 4x4 Latin squares of order 4 in symbols A, B, C, and D:

ABCD ABCD ABCD
BADC CDAB DCBA
CDAB DCBA BADC
DCBA BADC CDAB

Two Latin squares are pair-wise orthogonal if, when one square is superimposed on
the other, each symbol of one Latin square occurs once with each symbol of the other
square. Three or more squares are mutually orthogonal if they are pair-wise

bnhogonal. The three 4x4 Latin squares above are mutually orthogonal.

A complete set of s—1mutually orthogonal Latin squares is known to exist for any
§=p", where p is a prime number. Tables can be found in Fisher and Yates

1963). Now we describe the methods of constructing BIB designs with parameters

given at 2.1
P

Suppose v=s’ treatments are set out in an sxsarray. A group of s blocks each of

14



Example: For v=3>=9 treatments a 3 x 3 array and a complete set of mutually

orthogonal Latin squares of order 3x3 are:

123 ABC ABC
456 CAB BCA
789 BCA CAB

Rows (123 Columns (1, 4, 7)
456 2, 5, 8)
(789) (3, 6,9
First square (1, 5, 9) Second square (1, 6, 8)
2, 6,7 2, 4, 9
(3, 4, 8 3,5 7

"u is is a BIB design with parameters v=19,b = 12, r=4,k=3,and A=1.

2143 Complementary Design
[he complement of the design in Example above obtained by replacing treatments in
a block by those which do not occur in the block, is the following

15
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@, 5, 6,7, 8,9 2, 3,5, 6,8, 9)
1,2, 3,7 8,9 (1, 3, 4, 6, 7, 9)
(1, 2, 3, 4, 5, 6) (2, 4,5 7. 9
@2, 3, 4,6, 7,8) @ 3, 4,5 7.9
(1, 3, 4,5, 8, 9) ' (1, 3.5, 6. %8
(1,2, 5,6, 7, 9) (1,2, 4, 6, 8, 9)

omplementary design is also a BIB design with parameters v=9,b=12,r= 8§,

{5,

In general if, we have a BIB design with parameters v, b, r, k, A then its
a plementary design is a BIB design with parameters v'= v, b'=b, r'= b-r, k"= v -k,

A

complemenfary design of the design with parameters in (2.1) will be a balanced

mplete block design with parameters:

v — sz, b=s(stl), r= sz-l, k=s(s-1), A= s -s-1

s(s+1) blocks of the design for v=s’ treatments have been arranged in s+1 groups
f 5 blocks each. Now suppose a new treatment is added to all the blocks in a
lar group and that the treatment added is different for each group; also, that
: further block is added which consists entirely of these s+1 new treatments. This
produces a second series of BIB designs with parameters

v=b=sz+s+ 1, r=k=s +1,A=1.
omplement is also a BIB design v;lith parameters

v=b= s2+s+1, r=k= s-z, A =s(s-1)

16



(4]

1.4.4 Symmetric BIB Designs
\ BIB design in which v =b or r = k is called a symmetric BIB design. In symmetric

designs any two blocks have A treatments in common.

.5 a-Resolvable and Affine a-Resolvable Designs

s been seen above that the blocks of the designs v = sz, b= s2+ s,r=s+1,k=s, A
= 1 can be divided into (s+1) groups, each consisting of s blocks such that in each

p each of the treatments is replicated once. That is, each group is a complete

icate. Such designs are called resolvable designs or 1-resolvable designs. .

:”general a BIB design is called a-Resolvable if its blocks can be divided into t

1ps each consisting of m blocks such that in each group every treatment appears

ddition to this, if any two blocks of the design belonging to the same group have a
lant number of treatments in common, say ql, and any two blocks belonging to
rent groups have a constant number of treatments in common, say q2, then the

on is called affine a-resolvable BIB design.

2.1.4.6  Dual Design

1a] of a BIB design with parameters v, b, r, k,A is obtained by interchanging the
iment and block symbols in the original design. The parameters of the dual
an are .v’ =b,b'=v, ' =k, k'=r. The'dual of a BIB design is not always a BIB

. If the original design is a symmetrical BIB design, then its dual is also a BIB

17
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sign with the same parameters.

47 Residual Design

‘symmetric BIB design with parameters v = b, r = k, A delete one block and also
se treatments which appear in this (deleted) block from the.remainin’g (b-1) blocks,
"des‘ign so obtained is known as the residual design. The residual design is also a

design with parameters v* = v-k, b* = b-1, r*=r, k* = k-A, A.

2.1.4.8 Derived Design

deeleting any block of a symmetric BIB design with parameters v =b, r =k, A and
ining all the treatments in b-1 blocks that appéar in the deleted block, we obtain a
design which is called the derived design.

parameters of the derived design are:

=k b'=b-1,=r-1, k= A=2-1.

;, ANALYSIS OF NON-ORTHOGONAL TWO WAY DATA
Vhen the number of observations in a 2-way classified data is constant, the data are
alled orthogonal; otherwise the data are called non-orthogonal. Data from

womplete block design are non-orthogonal and require special analysis detailed

elow (Das, 1979).

18
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the two factors of classification be denoted by A and B‘at p and ¢ levels

cctively. Let n, denote the number of observations in the (i,j)th cell. Denoting

k™ observation in the (1,))th cell by yik

1,2,...,0y),G=12,...,9).,(i=12,....,p) e

¢ make the following substitutions:

Vi = Tl.j , the cell total
k=1

q
Z I, = 4, , the marginal total corresponding to the i level of A
J=1

P
Z Tu =B ; » the marginal total of B

=1

iAi =Zq:Bj:G,grandtotal

=1 J=

"lu,tion of the normal equations are not always available. Taking the following

del:
Yu=H+t,+b +ey

ere v, is the random variable coyresponding to the observation Y, ; 4, 1, b y

1,2,...,k, j=1,2,...,r) are fixed effects. We assume that the levels of B

19
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t the different columns in the two-way table and those of A, the different

G is the grand total.

&, has zero mean and 4, ¢, and b, are constants, we have ‘<
1 ‘, E(yijk):lu +1 +bj
4, L (i=1,2,...w) and b, (j =1,2,...k) can be estimated by the least squares

thod, that is, by minimizing the sum of squares.

E=Z(yijk —H— _bj)2

ik

> normal equations are

: =2) (Vu—u—t,—b)=0
E ifk

YV—QZ(yl‘jk —‘u—tl_ _bj) =0 (l = 1,2,...,p)
B

== 0> W —p—t,-b)=0(=12,...9)
P 4

ve when simplified reduce to

~ na+ Yy ni+y nb =G , ' 2.2

 natni+ Y nb, = 4G=12,..k) 23
J

E n_j[z+n'jl')\j+Zn,.th,. =B, (j=12,...,r) ‘ 2.4

ning /;j. from 2.4 and putting it in 2.3 we get

20
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n f+nt, +Z‘ny[_f_ﬁ_Lanjfm} = 4, 2.5
J n.j n.j m
3 n, B . n’ N nmn,_
A/_Z i JJ= ,[ni,_z ’j]_ tm[z ij MJJ 2.6
( J n.j g n.j m#i i n.j L
tituting
O for [A,—z . ’J
i M 2.7
4 n’
- C, for n, - L
i My _ 2.8
: 1y "
6 for —; - s €. =1, 2.9
-J
cquations (2.6) are written as
> C.0, =0 (i=12,..k) 2.10

m#i

se equations are called reduced normal equations. Q, is called the adjusted total

he of (e i™ level of A. The k equations at 2.10 are not independent, because when

e equtions are added, both the left hand and the right hand sides vanish. That is,
0 and ZC,,,, =0. This can be proved easily by writing down their actual

oressio s and adding.
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it also follows that the sum of the coefficients of the ¢’s in each

.
R i 0

1on ! 2.10 is zero. Obviously then, if fi (i = ], s k)is a set of solutions of 2.10,

+ 0 (z‘ =2 | [ k) where @ is a constant, is also a set of solutions.

<

1e equi on at (2.10) has thus no unique solutions since we have k equations and 2k

ramelc - to be estimated. To get unique solutions we impose the restriction
t,=0. This implies that ¢,’s are estimated as deviates from the means. As a
tter o' lact, the restriction need not be Zf, =0 always. It can be any linear

tion 1 (,’s other than their contrasts. Such restriction change 6 only.

‘a1 of solutions of (2.10) is obtained, we can get the solutions of b;’s from
if so required. The error sum of squares,
£= Z()’ijk e _-bj)z

ijk

= DV —HG-D A - b,B,
' i J

k

__ :
} :Zyyz-k-Z%—Zt,-Qi 211
R PR
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' liminating b ; to get the reduced normal equations in ;,.’s, we could have

¢ /,’s and got the reduced normal equations in b ;s and finally the error s.s.

on of b j ’s. In this situation

R D v —Z;’——ijRj 2.12
b ijk i i . :

"

& 5 _Z”ff’A/‘
J
: T

21l 2.12 are both the same error sum of squares, we have

5; ‘; ; 42 B2 :

b il .

E - g : _I’l _ZtiQi_ijRj 2.13
7 J 0f i J

- | getting the sum of squares of A we make the hypothesis

- =1, =0and get the reduced model y; = u+b; +e,

+ «um of square on this model is

: B’
> L
& Vi

ik i By

BNt of squares of A=F —E= ZtiQ,_

+LYSIS OF BIB DESIGN
)  and A={4 j}j;l , then the incidence matrix of the BIBD is given

© matrix M = ((n,j )) defined by

23



_{1 if x; éAj

0 otherwise

Vit i satisfies the equation

MM = (r— )+ AT

<

¢ / 1+ a vxv identity matrix and J is the vx v unit matrix according to Fisher

- -xample of tabular incidence Matrix for a BIBD with parameters (v, k, 1)

Treatments Treatment Block
1 2 3 v block size 7, total
1 0 1 0 k B
0 0 1 1 k B>
1 1 1 0 k B3
k
. . k .
0 1 0 1 k By
r r r
Al AZ Av
Ql ) Q2 tt Qv
o1 equation 2.7
B =12
B 43 ; ng‘ J (l — 1y 4 ,V)

Y:.j=,u+t,.+bj+eij

24
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S

e [0t Sum of Squares is given by

TSS=ZZJ‘,YUZ—[E—ZLJ

! J
rk

> lilo Sum of Squares unadjusted is given by

2 (73]

SSB,, = -
v k

rk

e nent Sum of Squares unadjusted is given by

SST, = > ) [Z;Y,]z

r rk
tre 'ments appear in different blocks we need to adjust the treatment sum of
cs - block effect. To get the Adjusted Treatment Sum of Squares (SSTx) we

¢+ luced normal equations obtainable from equation 2.6 as follows

’ r A ,

m#i

g (] at:

Zti = Ztm + ti
m=i

m#i

(r—%)t, —%(;4 ~r,j=Q,. (i=12,...,v)

king | ¢ restriction Z t, =0 then the solutions of the treatment effects are as

m=i

25
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1

rk rk

T =Qi,where E=ﬁ(i=1, . SO

ted Treatment Sum of Squares is

1
SST, = ZtiQi :;EZQIZ

ted Block Sum of Squares is given by

SSB, = SST, +SSB,, - SST,,

- Sum of Squares is given by

SSE =TSS — SSB,, — SST,

e ANOVA table for BIBD
et Sewres ot ey, 1Sttt
* | (unadjusted) v-1 SSTy
‘nadjusted) b-1 SSBy
- 1 (adjusted) v-1 SSTa MST MST/MSE
B sted) b-1 ssB, ~ MSB 'MSB/MSE
rk-b-v+1 SSE MSE
rk-1 TSS

26
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' REINFORCED BALANCED INCOMPLETE BLOCK DESIGN

echnique of reinforcement was initiated to control large intra-block variances
if looked from another angle, this may also be used to compare a set of tests with
et of controls. The reinforced designs were developed to meet the need of
perimental situations, where it may not be possible to use balanced incomplete
(BIB) design, a lattice design or a partially balanced incomplete block design.
ice BIB designs are used to make all the possible paired comparisons among the
atments but in this case we are interested only in the subset of all the possible
ired comparisons. Inadequate experimental resources may also not allowi equal
fcation of all treatments. To deal with this situation, Das (1954) suggested a
sign obtainable by adding some extra treatments to each of the blocks of a BIB
gn With a given number of treatments w , the p extra treatments can always be

J

) adjusted such that v (= w— p) treatments form a BIB design. The resulting design
. | have v + p treatments distributed in & blocks each of size k£ + p such that each
the p-newly introduced treatment is replicated b times and the original v

N

eatments are replicated r times each. These designs have no fresh constructional

oblems and can be made available for any number of varieties by suitably choosing

ng the homoscedastic and fixed effects mode of the form

V= pt+t+ b_,._ +8,
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stated the reduced normal equations-for reinforced incomplete block

to the following:

r A
L p = =1, 2 2. 14
80/ k+p,;v+l'" k+p,¢,t =0 @ )

<

}and t, stand for the original treatments replicated r times and ¢, and ¢,

e newly introduced treatments each replicated b times.

showed that equations 2.14 and 2.15 are derived through the use a two-

elow (Table 5) and Equation 2.10 through;

={x,},;/ and A={4, y ;=1 » the incidence matrix of the RBIBD is given by
p) matrix M = (N;:N,) where;
N| is bx v matrix with elements

{1 5, c 4,

0 otherwise
s bx p matrix of I’si.e. J,,

xample of a tabular incidence matrix for RBIBD design with v+ p

:and b blocks of size k+ p .
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le 5: An example of tabular incidence Matrix for a RBIB design 1
: Treatments (1) Block
’ . Size (
ock (/) L2 . . v v+l vip 7))
1 1ol I 1 | k+p
2 0 1 1 1 1 k+p
S B | I ' 1 k+p
10 I I | k+p
b 1 1 I 1 k+p

ication ( 71, )

=y
™
-
(on
oy

g equation 2.10 in our scenario where we have v+ p treatments, we get

di+ ) Cob, =0, (i=1.2,....,v+ p) 216

Cih+Y.C,h,=0(=12......v) . 2.17
Contn + . Col, =0, (m=v+1,...,v+ p) 2.18
ating C vl & in equation 2.16 then C, =r ——_
=7 — — 3 e
g 1 I " nl q n k +p

b
from Table 5 n. = r, Y n,=randn,=k+p Vj

J=i

A k+p

and;
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| Original treatments not equal i and concurs with i in A blocks which becomes

_k+p

or equation 2.15 the same procedure can be applied.

he equation 2.15 can also be written as

btm = ) tm - - Hzp m' Z

v+ v+p
b, b _bo§E

btm—kl (b i":tmwiz,J:Qm 2.20

b, =0, 221
t is,
tm=Qb—"’ (m=v+1,v+2,---,v+ p) and Zt ZQ

ien equation 2.14 can be written as
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r A
r_ + 1 ,,,+zt ~ zt

D :,-—QZtm and ) 1, = Zme , these become
7 .

(k+p)r—r+1 r

B S0.( b2
“ b= {(k"'p)Q/-i——_b——( j}( "'1529""7)' 223

:the estimates of all the treatments effects have been obtained. The adjusted

tment sum of squares can now be obtained from

- >10.+>1,0,

2

:H‘)’ B
or 8.S. = Total S.S. - (Z !

- C.FJ - Adjusted tr. S.S.
k+p

ere B, is the /” block total.
 estimate of the treatment differences can be obtained from equations 2..18, 226

12.22 and are given below:

1) tm - tm: Qm Qm
b
k+p
2 . e
) t: t: (k+p)l" V+ﬂ‘(Q Qz)

b, L= G 1 {(k +p)Q,. 4 Zme (r—@)}

b (k+py—r+i] '3
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IENTED BLOCK DESIGN

A

nse |

JEtC ¢

1 block designs a randomized complete block design is selected for the

'ments and then the blocks are enlarged to accommodate the new

Augmented Block Designs (ABDs) were introduced by Federer (1956,

'b) as an alternative to the systematically arranged check and new

ABDs have several advantages over the systematic arrangement. They

r screening new treatments such as genotypes, insecticides, herbicides,

o others.

“seneral Theory
~w test varieties are to be tested and that sufficient seeds or plants are

Hlant only single replicates of each variety. Furthermore, suppose that u

s, called check or control varieties are available in such quantities that r

[ each variety may be planted. The v=w+u varieties included in a

periment are laid out in appropriate experimental design for controlling

neity effects in the experimental area. Sufficient replications of the

ties are included to have sufficient degrees of freedom for estimating the

- crror variance and for estimating effects of the blocking used to control

eity.

|l analysis for experimental designs in which u control varieties have

~d r times and where W test varieties have been replicated once, may be

1 the following two ways:
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- trial on v varieties may be analyzed using standard methods for

‘oportionate numbers in the subclasses; then, contrasts among the control

vari ties, among the test varieties, and among the control and the new

1 lies may be made "o

+ atistical analysis is performed on the control variety yiéld only, and

cking effects, and the control variety effects are estimated; an estimate of
xperimental error Variénce is obtained, Then, the estimated test variety
‘¢ s and effects are obtained and the varietal contrasts are made as in (a).

»m hods (a) and (b) might appear to result in different esﬁmators for the
| xperimental error variance, it can be shown that this is not the case. Let

~ | observational vector with

E(J’)quﬂ} 54

V(y)=cl,

©) and V(. denote the expected value and the dispersion matrix,
¢l of the quantity inside the parentheses; I, is an identity matrix of order
x| column Vectér of unknown parameters, ¢ is unknown scalar, and
nx p matrix with unknown coefficients. Let < be another mx1

1l vector with

E(Z):leﬂ"'Xzz?’} 595

V(z)=oc’l "
I a ¢x1 column vector of another set of parameters and X,, and X,, are
mxq matrices respectively, of known coefficients. We assume that

' hat the rank of X,, is equal to ¢.
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Then y can be estimated either by estimating # form equation 2.24 and substituting

1

n equation 2.25, which is method (b), or by using the combined set of equations in

and 2.25 to estimate the varietal effects, which is method (a). By the method of

squares, the estimated vector " of g from equation 2.24 is:
ﬁ(”:(X“X”)_]XUy 2.26
Where (X,, X,,) " denotes a generalized inverse of X, X,,. Substituting the value

Y for f in (4.2), we obtain the estimate 7 of y as follows:

*2;() X22_1[Z_X21(Xn Xn)‘an.V} ‘ 221

Alternatively, from the combined set of equations 2.24 and 2.25 that is,

I

X. 0 '
'._E{y } { 2 "p}[ﬂ J 228
Z X, Xp |7 ' '

!

re 0, , is the 7x ¢ null matrix, the estimate (A‘z";? ‘2)') of (B'y’) is obtained by

je method of least squares described below. Now,

Xl X11+X21 X, X, Xzz} |:ﬂ(2)}=lxny+le'z:| 2.29
| 5(2) ' :
X22X X22 X22 }’ X22z

nce the rank of X, is g  there exists a ¢ x pmatrix L such that
X, =X,L 2.30
After substituting this value in equation 2.29 and eliminating £, we obtain

=3 Further, g =g". Thus, method (a) and method (b), as described
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cad to the same estimates of the varietal effects for both control and test

~an sum squares for both methods can also be easily verified to be the
nferences drawn from both methods are thus idenﬁcal whenever the test
¢ replicated exactly once. It is recommended that method (b) be used for
| analyses as it minimizes the algebra and the computations. Use of

designs with known statistical analysis further minimizes the algebraic

|| computation.

nented Randomized Complete Block Design

ider the experimental situation where w test treatments are to be
‘h u control treatments using » experimental units arranged in b blocks
block is of size k(> u) . For an augmented randomized complete block

1 we will call augmented block design (ABD), each of the control
replicated » times and occurs once in every block and test treatments

1 one of the blocks. Therefore, it can easily be seen that in the j” block

~u=n, ftest treatments. The randomization procedure is given as

hmly allot u controls to « of the k; experimental units in each block.

omly allot the w test treatments to the remaining experimental units.
«ew treatment appears more than once, assign the different entries of the
nent to a complete block at random with the provision that no treatment
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appears more than once in a complete block until that treatment occurs once in

- each of the complete blocks.

augmented randomized complete block design standard errors for comparing

<

A differences are generated from the mean square error of the original RCBD

tandard Errors

B

Between two control treatment means

SE() = 2MSE

Between two test treatments in the same block
SE(2) = v2MSE

Between two test treatments not in the same block

SE(3) = | 2MSE(1 + %)

Between a test treatment and a control treatment

SE3) = \/ZMSE(I V-V

he analysis of variance of the data generated from an augmented block design with

u+w treatments comprising of w tests and u controls arranged in 5 blocks
aving k, plots in block 1, &, plots in block 2, and so on, and &, plots in block b,

such that &, + k, +---+ k, = n, the total number of plots in the design, is shown in

lable 6
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Analysis of Variance (ANOV A) table for augmented block design

urce of Variation Degrees of Sum of Mean Sum
reedom quares of squares
: ocks (eliminating treatments) b-1 ASSB MSSB
ASST

Treatments (eliminating blocks v -1

<

Tests vs Controls 1 SSTC MSSTC
n—v—b+1 SSE MSE
n=l TSS
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- CHAPTER THREE - METHODOLOGY

| PROBLEM FORMULATION

have w treatments divided into two disjoint sets, H and G of cardinality
'3; pectively vand p, v + p =w, G H=¢. The set H has v test treatments labelled
s 1,2,---,v while the set G has p control treatments labeled as v+ 1L v+2,---,v+ p.
The problem here is to design an experiment to compare test treatments belonging to
set H with control treatments belonging to the set G with as high a precision as
possible. Suppose that n experimental units are availéble for experi‘mentation. and

these n experimental units can be arranged in b blocks of sizes kj,k,, -k,

respectively, k; +k, +---+k, =n.

As described above, the contrasts of interest in the experiment are 7, —¢,,

g€G,he H. Comparisons of treatments within G and within H are of secondary

~importance, though in many practical situations, the comparisons among treatments

- within the groups are also important, though not as important as the between group

'comparisons. The contrasts of interest then are also ¢, —tg,,gv&g'eG and

th'—th:,hih,EH.

- As such we are interested in a design that permits the estimation of all the v — ]
linearly independent treatment contrasts called a connected design with Rank OC)=v
- - 1. Further, it would also be desirable that the comparisons of interest are estimated

' through the design with the same variance. The precision of other comparisons is of
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¢ onsequence to us althdugh these are also estimable through a éonnected design.
«esil‘gn' is said to be variance balanced for the estimation of test treatments versus
ntrol treatments comparisons if it permits the estimation of these comparisons with
e same variance and the covariance between any two estimatedtest treatments

ersus control treatments comparisons is also the same.

MODEL AND ANALYSIS OF VARIANCE

L‘statistical model is actually a linear relation of the effects of different levels of a
umber of factors involved in an experiment along with one of more terms
'resenting error effects. The effects of any factor can be either fixed or random but
he error effects are always random and may belong either to a finite or infinite
population. A model in which each of the factqrs has fixed effects and only the error
effects are random is called a fixed model. Models in which some factors have fixed
effects and some random effects are called mixed models. In the same context,

models where all the factors have random effects are called random models.

In fixed effects models, the main objectives are to estimate the effects, find a measure
of variability among the effects of each of the factors and finally find the variability
ong the error effects. In this study we shall restrict ourselves to fixed effects

gﬁodel since it is enough to achieve our objectives.
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If the treatment ¢ is assigned to the i plot of the j”block (I<r<v; 1<i s

I<j<b), we shall have Y, denote the corresponding random variable: we assume

the usual fixed effects, additive, and heteroscedastic linear model without interaction.
Vi =ML +bj +E
- Where

1

M is the grand mean
1, is the effect of treatment i w.r.t. grand mean

b, is the effect of block j w.r.t. grand mean -

is error and is assumed to be N(0, o°k%)

I; Here a>0 is a scalar constant, generally unknown. This model is in fact a
| generalization of Fairfield Smith’s Variance Law. The value of amay be estimated
| ‘f'rom the uniformity trial data. Lee and Jacroux (1987), Gupta, Das and Dey (1991),
~ Das, Gupta and Das (1992), Parsad and Gupta (1994a, 1994b), Parsad, Gupta and
! Singh (1996) and Srivastava, Gupta and Parsad (2000) have earlier studied this

model. For & =0 we get the usual homoscedastic model.

- The assumptions on the behavior of &, are necessary for drawing inference by

1 adopting known statistical methodology. The methodology that is adopted is the
- analysis of variance technique where inference is drawn by using F test. For the F

test it is necessary that the observations, that is, the error components should be
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normally and independently distributed with a common variance. Further assumption

_that has to be made in the model is that the effects are additive.

3.3 MONTE-CARLO SIMULATION

Monte Carlo Methods are a class of computational algorithms th;t rely on repeated
random sampling to compute their results, Fishman (1995). Monte Carlo methods are
often used when simulating physical and mathematical systems. Because of their
reliance on repeated computation and random or pseudo-random numbers, Monte
Carlo methods are most suited to calculation by a computer. Monte Carlo methods

tend to be used when it is infeasible or impossible to compute an exact result with a

deterministic algorithm.

To compare the efficiencies of ABD and RBIBD we needed to simulate data from the
standard normal distribution and uniform distribution. We used Genstat’s Release 12
GRANDOM procedure to generate pseudo-random numbers from the Normal and
uniform distributions. The RESTRICT directive was used to restrict the value of yield
to greater than zero and less that 200tch since we don’t expect to have negative yield

or yield greater than 200 tonnes of cane per hectare.

‘ 34 TREATMENTS DISTRIBUTION CHARACTERISTICS

We used five hypothetical families and two controls whose desired characteristic yield,

follows a normal distribution with distinct means and standard deviations as shown:
Family 1 ~ N(80, 10%)

Family 2 ~ N(60, 5%)
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Family 3 ~ N(50, 4%)

Family 4 ~ N(100, 4%)

Family 5 ~ N(30, 2%)

Control 1 ~N(60,1.5%) -

Control 1 ~N(62,2%)

Where Control 1 and Control 2 are the standard commercial sugarcane

varieties
Since we know all the parameters of the distribution for each treatment, we will
generate normal random numbers using Genstat Release 12 GRANDOM procedure to
fit the two experimental designs. Each block will be given a distinct environmental
effect that either suppresses or enhances the treatment mean. From the generated
figures we will carry out analysis of variance to test for the difference of treatment
effects. The results of the ANOVA will be compared to the expected results through a

paired sample t-test.

3.5 REINFORCED BALANCED INCOMPLETE BLOCK DESIGN

A Balanced Incomplete Block design with parameters v=5, b =5 and £k =4 was
generated using IASRI design resource server in accordance to Rathore et al (2006)

“and the output is given below.
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“OUTPUT GENERATED BY IASRI DESIGN RESOURCE SERVER?”
V=5 B=5 K=4 A-Efficiency=1.0 D-Efficiency=1.0
| A=4
ri=4 12=4 r3=4 rd4=4 r5=4
BLOCK DIAGRAM
Block 1 ( 1 2 3 5 ) <
Block2 ( 2 3 4 S )
Block 3 ( 1 2 3 - )
Block 4 ( 1 3 4 5 )
Block 5 ( 1 2 4 5 )
CONCURRENCE MATRIX
T2 T3 T4 T5
T1 3 3 3 3
T2 3 3 3
13 3 3
T4 3

The generated design was reinforced by adding two control varieties (i.e. Control 1
and Control 2) in each of the 5 blocks making the design a Reinforced Balanced

Incomplete Block Design (RBIBD). The treatments were randomized in each block.

Plot 1 Plot 2 Plot 3 Plot 4 " Plot5 Plot 6
1 Family 1 Family 2 | | Family 3 | | Family 5 || Control Control
1 2
Plot 12 Plot 11 Plot 10 Plot 9 Plot 8 Plot 7
2 Family 2 Family3 Family4 Family 5 Control Control
1 2
wn
= :
8 Plot 17 Plot 18 Plot 16 Plot 13 Plot 15 Plot 14
s 3 Family 1 Family2 Family 3 | | Family 4 Control Control
) 1 2
4 Plot 24 Plot 23 Plot 22 Plot 20 Plot 19 Plot 21
Family 1 Family 3 Family 4 Family § Control Control
: 1 2
Plot 28 Plot 26 Plot 27 Plot 30 Plot 29 Plot 25
5 Family 1 Family 2 Family 4 Family 5 Control Control

1 2

Figure 3: Plots layout for Reinforced Incomplete Block Design (RBIBD)
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Control  Block

]  Block 1 2 3 4 5 1 2 Size

| 1 1 1 1 0 1 1 1o

2 0 1 1 1 1 l e 1 6

3 1 1 1 1 0 1 1 0

4 1 0 1 1 1 1 1 6

5 1 1 0 1 | 1 1 6
Replication 4 4 4 4 4 S 5

Data was simulated using Monte Carlo simulation as described in Chapter 1. Each
treatment had unique properties as shown in Figure 5. Family 1 had the largest
dispersion due to large variance while Control 1 had the least dispersion due to small

variance



30

Family1 Family2
25
20 A
i
3 15
o
10 -
5 4
0
Family3
Family4
25
20
=
3 15
O
10
5
o 0
Family5 Control 1
25
20
g
3 15
o
10 X
5
0 0
Control 2 40 60 80 100 120
25 1
20 A
€ 15 4
3
o
6]
10
5 -
0

Figure 4: Histogram of data generated for various treatments (Sample size 100)

The data generated was inserted in the design and adjusted for block effects. For ease
of computation, block effects were assumed to be uniformly distributed in the range [-

5, 5]. The block effects were again generated through Monte Carlo simulation as
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described in chapter 1. From the generated data, the reinforced l;alanced incomplete

‘block design had the following block effects.

The blocks were assumed to have the following properties: "o
Block Random No Block Effect
1 3 Enhance the mean by 3 units
2 =3 Depress the mean by 3 units
3 1 Enhance the mean by 1 units
4 Enhance the mean by 4 units
5 5 Depress the mean by 5 units

Since in this analysis we assume additive and homoscedastic linear model
Y;=p+t,+B; +§;
where,

M is the grand mean
t, is the effect of treatment i

B, is the effect of block ;

¢, is error and is assumed to be N(O,csz)

We included an error term in the generated data. This error term was distributed as

N(0,25) and was added to each data point (plot).

3.6 AUGMENTED BLOCK DESIGN
~ An Augmented Block Design with parametersv =7, w=5, u=2, and b=3 was
generated using IASRI design resource server. The two control treatments were laid

in a randomized complete block design with three replicates. In each block the
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treatments were augmented with inclusion of two test families ra;ndomly allottéd to
- block 1 and 2 and one test family randomly allotted to block 3. This was done in
“conformity to the optimum replication number r of each check varieties in every
block of the augmented block design that was given by Gupta and-Parsad (2001) as

shown below:

ot )"
r:(c+b_1)2*(Tb) ,for t>(c+b-1)&c>1
c

Vi
Else r =(—)
b

Where: ¢ = no. of check varieties
b = no. of blocks

t = no. of test varieties

BLOCKS
1 2 3
Plot 1 Plot 8 Plot 9
Control 1 Family 4 Control 2
Plot 2 Plot 7 Plot 10
Family 2 Control 1 Control 1
Plot 11 Plot6 Plot 12
Family 3 Family 5 Family 1
Plot 4 Plot 5
Control 2 Control 2

Figure 5: Augmented Block Design (ABD)
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For uniformity and so as to have a basis for comparison of RBIBD and ABD, data
which was simulated using Monte Carlo simulation in chapter 2 was used for each

~ treatment.

The data generated was inserted in the design and adjusted for block effects. For ease
of computation, block effects were assumed to be uniformly distributed in the range [-
5, 5]. The block effects were again generated through Monte Carlo simulation as
described in chapter 1. From the generated data, the augmented block design had the

following block effects.

Block Random No Block Effect
1 3 Enhance the mean by 3 units
2 L 3 Depress the mean by 3 units
3 1 Enhance the mean by 1 units

From the experiment it was observed that the results of the augmented block designs
are dependent on the experiment error term. Thus to explore different scenarios we

added three different random errors terms to the simulated data, namely;

A. &,-N(0,1)
B. &,-N(0,5)
C. &,~N(0,25)

‘Data were analyzed for each level of error term

The generated data were analyzed using SAS PROC GLM as shown below

TITLE 'SIMULATED DATA ON AUGMENTED BLOCK DESIGN - N (0,1):
OPTIONS LS=75; '

DATA YIELDABD;

INPUT Block Trtment$ Yield;
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CARDS;

proc glm;

class Block Trtment;

model yield = Block Trtment/ss2;

lsmeans Trtment/stderr pdiff ;

contrast 'controls' Trtment ¢ 0 0 0 0 -1 1;

contrast 'tests' Trtment 1 -1 0 0 0 0 O ,
Trtment 1 1 -2 0
Trtment 1
Trtment i g

contrast 'tests vs controls' Trtment 2 2 2 2 2

means Trtment/ duncan;

run;

1
1

0

0
=3

i
5

f

&
g

i

Lo B B

o
0

7
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4 CHAPTER FOUR — RESULTS AND DISCUSSION

4.1 REINFORCED BALANCED INCOMPLETE BLOCK DESIGN

The means generated from RBIBD are shows in Error! Not a valid bookmark self-
reference.. We note how unhelpful it is to compare treatment me;ns from the table
below. Treatments that fell on blocks that depress yield will have less mean as
compared to those treatments that fell on blocks that enhance yield due to the effect
of treatment-block interaction. The only exception are the controls (Control 1 and
Control 2), this is because they appeared in all blocks thus comparing them will give

the true performance. The treatment means have to be adjusted to remove the block

effects.

Table 8: RBIBD treatments performance per block and their related means

Treatments

Family = Family Family Family Family \ Control ~ Control  Block  Block
Block 1 2 3 4 5 1 2 Total Means
1 85.99 55.80  51.07 - 3776 59.59 65.77 35598  59.33
2 - 58.60 4987 91.08 3491 63.11 65.65 36322  60.54
3 85.89 6343  48.88 104.52 - 61.15 53.48 41735  69.56
4 90.85 - 5446 100.84  27.02 68.08 60.62 401.87  66.98
S 80.96 48.73 - 9373 2395 51.46 5227 351.10 5852

Total 343.69  226.56 20428 390.17 123.64 30339  297.79
Means 85.92 56.64  51.07 97.54 3091 60.68 59.56

Computing
Taking i=(1,2,...5) to represent family1 to family 5 and m=(1 and 2) to represent

Control 1 and Control 2 respectively. |
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G = Grand total of observations

4 = Grand mean = G/n, where n=total number of observations
T, = Sum of observations for treatment i, (i =1, 2, ..., 7)
B, = Sum of observations in block j, (j =1,2,...,5)
CF =G’/n
0, = adjusted i™ treatment total
Thus
G = 1889.52, n=30, 1£=63.19 and CF= 1889.522/3O‘= 119009.53
Since k=4, p=2, r=4, 1=3 and b=5 we have

(k+p)r—r+/1v=23

)
r——1=0.25
r

Table 9: Calculation of treatment effects, adjusted treatment total and adjusted treatment sum of
squares

Block Total of Z
No.'s in Blocks B,
plac  Tesst o B, which inwhich © /O t 10,
1o 1o treatment  treatment .
Ioccurs I occurs

1 1 343.69 35598 1,345 1526.30 254.38 890.31 23.24 2075.05
2 2 226.56  363.22 1,235 1487.65 247.94 -21.38 -5.64 120.60
3 3 204.28 41735 1,234 1538.42 256.40 -52.12 -13.66 711.99
4 4 390.17 401.87 2,345 1533.54 255.59 134.58 35.05 4716.43
5 5 123.64 351.10 1,245 1472.17 245.36 -121.72 -31.82 3872.67
2.5,
w9, ot 1,0,
Tm

6 303.39 1,2.3.4.5 1889.52 314.92 -11.53 -2.31 26.59
297.79 1,2,3,4,5 1889.52 314.92 -17.13 -3.43 58.69
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Total SS (TSS) = > 2 ~C.F =12,547.04

i

5 2 7 2
Treatment SS unadjusted (SST,) = (Z T / £y T% j _C.F=11,2810.86
i=1 m=6

5 2
Block SS unadjusted (SSB,) = B, -C.F =590.85
k+p

j=1

5 7
Treatment SS adjusted (SSTa) = > 4,0, + .1, 0, = 11,582

i=1 m=6

Error SS (ESS) = TSS-SSBy-SSTA = 374.19

Block SS adjusted (SSBa) = SSTA+SSB,-SST, = 361.99

Plugging in the figures we get the analysis of variance table below

Table 10: Analysis of Variance Table for Simulated RBIBD

Source of DF Sum of - Mean Sum F Value PrsF

Variation Squares of Squares

Blocks 4 361.99 90.50 4.6 0.0092

Treatments 6 11582.00 1930.33 98.02 <.0001

Among Tests 4 11455.66 2863.91 145.42 <.0001

Among Controls 1 3.14 3.14 0.16 0.6943
Tests vs Controls 1 123.21 132.21 6.26 0.0217

Error 19 374.19 19.69

Corrected Total 29 12547.04

From Table 10 it can be seen that difference among test families is statistically
significant (p-value < 0.0001) but difference among controls is not (p-value 0.6943).
The difference between control and tests families is also significant (p-value 0.0217).
This is as we expected and we can conclude that in this case RBIBD is able to bring

out the differences.
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Table 11 gives the adjusted treatment means for all treatments. These are the

observed treatment means adjusted for block effect using the formula:

-th

Adjusted treatment means for treatment ; = ;" treatment effect + grand mean

<

Table 11: Adjusted treatments means for RBIBD

Grand Treatment Adjusted treatment
Srcatment Mean (u) effect (¢,) mean (7))
Familyl 63.19 23.24 86.43
Family2 63.19 -5.64 57.55
Family3 63.19 -13.66 49.53
Family4 63.19 35.05 . 98.24
Family5 63.19 -31.82 3137
Control 1 63.19 -2.31 60.88
Control 2 63.19 -3.43 ‘ 59.76

4.1.1 Relative Efficiency

To get the relative efficiency of the reinforced BIBD we used the same simulated data
to construct a randomized complete block design (RCBD) with 4 replications. The
replications have properties similar to the blocks of the RBIBD with 28 experimental

units as opposed to 30 experimental units in RBIBD.

The analysis of the data produced the following results:
RCBD Analysis of variance

Table 12: The ANOVA table for simulated RCBD

g ouree DY sil::r:sf ?)/i'e;:uil::; Statisl:i; Pr=F
Block 3 721.28 240.43 6.47 0.0037
Treatments 6 11077.53 1846.25 49.67 <.0001
Error 18 669.09 37.17
Total 27 12467.90
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Table 11 shows that the treatments are statistically different at p-val{le <0.0001 while

blocking was also significant (p-value 0.0037).

Multiple Comparisons

Duncan's Multiple Range Test for Yield: RCBD

Duncan
Grouping Mean N Treatment
A 98.388 4 Family4
B 83.773 4 Family1
c 63.930 - Control 2 -
C 60.163 - Control 1
D C 58.183 4 Family2
D 50.480 4 Family3
E | 32.943 4 Family5

Means with the same letter are not significantly different i.e. family4, Familyl and
Family5 are each different from all the other treatments. Family2, Control 2 and C 1

are not statistically different while Family2 and Family3 are not statistically different.

Table 13: Comparison of the treatments means

RB¥BD RCBD Means Simulated Assumed

Treatment  Means (Tons T Ha-l) Means Means

Hal) D0 (Tons Ha)  (Tons Ha™)

Familyl 86.43 83.77 81.19 80.00

Family2 57.55 58.18 59.86 60.00

Family3 49.53 50.48 49.65 50.00

- Family4 98.24 98.38 100.20 100.00

i Family5 31.37 32.94 29.84 30.00
Control 1 60.88 60.16 59.96 60.00

Control 2 59.76 . 63.93 61.91 62.00

To compare the efficiencies of the two designs we use the Fishers approach by

calculating the ‘amount of information’ which the estimated difference between two
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treatments means supplies about the true difference. Thus the relative efficiency of

the RBIBD design to the RCBD design is estimated as:

(n1 + 1)(1/12 +3)s22
(n2 +l)(nl +3)s12

Where

n, are the RBIBD error degrees of freedom

n, are the RCBD error degrees of freedom

s{ is the RBIBD error mean sum of squares

s> is the RCBD error mean sum of sq‘uares '
The required parameters are found in the ANOVA tables. For our scenario, n, =19,
n, =18, s, =19.69 and s, =37.17. Thus RBIBD was about 3 times more efficient

than RCBD. We note that this efficiency is dependent on the random numbers

generated and as such will tend to vary.
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Figure 6: Comparison of RBIBD and RCBD generated means

From Figure 6 above it can be noted that the means generated by the two designs are
not significantly different. The error bars also show that the precision of the RBIBD
is higher than that of RCBD. There is also a marked difference from generated mean

of Control 1 though the difference is still within the margin of error.
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Figure 7: Comparison of mean deviations

From Figure 1 above we note that there is considerable difference across treatments
for deviations of RBIBD means from RCBD means, RBIBD means from simulated
~ means, and RCBD means from simulated means. The small difference across
treatments for deviations of the simulated means from the assumed meansb can be
attributed to the fact that the simulated means are an average of 100 simulations. This

difference would have been minimized if the observation were averaged over many

simulations.
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4.1.2 Paired Sample T-Test
To test whether the treatment means generated by RBIBD are significantly different
from those generated by RCBD we used one-sample paired t-test. The test showed
that we cannot reject the null hypothesis (p=0.358). See results below

Variate: Plot Yield

Sample Size | Mean Variance Standard Standard error
deviation of mean
RBIBD -RCBD 7 -0.7886 | 4.387 2.095 . 0.7917

95% confidence interval for mean: (-2.726, 1.149)

Test of null hypothesis that mean of RBIBD _RCBD s equal to 0
Test statistic t =-1.00 on 6 d.f.

Probability = 0.358

42 AUGMENTED BLOCK DESIGN

4.2.1 Scenario One: £,~N(0,1)

When the error term is distributed as N(0,1)

Table 14: ANOVA table for augmented block design when Ey* N(0,1)

Source of DF Sum of Mean Sum po R ——_
B Variation Squares of Squares
T Blocks 2 33.84 16.92 46.96 0.0209
Treatments 6 2889.52 481.59 1336.44 0.0007
Among Tests < 2681.47 670.37 1860.32 0.0005
Among Controls 1 3.11 3.11 8.63 0.9900
Tests vs Controls 1 52.75 52.75 156.37 0.0068
Error 2 0.7207 ' 0.3604
Corrected Total 10 2924.09
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From Table 14 it can be seen that difference among test families is significant (p-
value = 0.0005) but difference among control is not (p-value 0.9900). The controls
were also statistically different from the test families (p-value 0.0068). This is as

expected and we can conclude that in this case ABD is able to- bring out the

differences.

-

Table 15: The Least squares mean yield for ABD Yield: When &, ~N(0,1)

Treatment Lsm‘ean Standard Pr>]
yield Error
Familyl 80.32 0.69316 >.0001
Family2 62.77 0.69316 0.0001
Family3 51.82 0.69316 0.0002
Family4 99.77 0.69316 >.0001
Family5 30.37 0.69316 0.0005
Control 1 59.81 0.34658 >.0001
Control 2 61.25 0.34658 >.0001

The same treatments and data scheme when applied to a randomized complete block

design with three blocks gives the following results:

Table 16: ANOVA table for randomized complete block design when £y ~N(0,1)

Source D Squares _of Squares _ Statistie__ P*F
Treatments 6 9086.94 1514.49 1019.63 <.0001
Blocks 2 163.71 81.85 55.11 <.0001
Error 12 17.82 1.49

Total 20 9268.47 '

Table 16 shows that the treatments were statistically different at p-value <0.001
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Table 17: The Least squares mean yield for RCBD Yield: When €, ~N(0,1)

Treatment Lsm‘ean Standard Pr>t
yield Error
Family1 81.59 0.70364 >.0001
Family2 60.30 0.70364 >.0001
Family3 49.70 0.70364 >.0001 s
Family4 100.59 0.70364 >.0001
Family5 30.20 0.70364 >.0001
Control 1 59.94 0.70364 >.0001
Control 2 61.52 0.70364 >.0001

‘When we use the RCBD the p-values for treatment and block are highly significant (p

<0.001, Table 10).

4.2.2 Scenario Two: &,-N(0,5)

When the error term is distributed as N(0,5)

Table 18: ANOVA table for augmented block design when £~ N(0,5)

Source of DF Sum of Mean Sum
F Value Pr>F
Variation Squares of Squares
Blocks 2 33.23 16.61 6.59 0.1318
Treatments 6 2883.43 480.57 190.62 0.0052
Among Tests 4 2679.53 669.88 265.72 0.0038
Among Controls 1 8.28 8.28 3.29 0.2116
Tests vs Controls 1 8.83 8.83 3.50 0.2021]
Error 2 5.04 2.52
Corrected Total 10 2921.70
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Table 19: The Least squares meah yield for ABD Yield: When £, ~N(0,5)

Lsmean Standard

Treatment sield Error Pr>|t|

Family1 80.71 1.83341 0.0005

Family2 59.56 1.83341 0.0009 (
Family3 49.74 1.83341 0.0014 -
Family4 97.63 1.83341 0.0004

Family5 28.96 1.83341 0.0040

Control 1 60.31 0.91671 0.0002

Control 2 62.66 0.91671 0.0002

When the variance of the error term increases from 1 to 5, the differences among test
families remain significant while the difference forv test vs control treatrﬁents
increases move from being significant. The p-value for blocking effect increases from
0.02 to 0.13 implying that blocking becomes ineffective at a higher error variance.
The structure of the Duncan’s multiple range test remains unchanged though the
treatments means are different from scenario o‘ne especially among the test families.
The control treatments are stable. This can be attributed to lack of replication in the

test families and thus the errors are not averaged out.

When we used the same treatments and data scheme as used in scenario 2 of the ABD
and applied to a randomized complete block design with three blocks, the following

results were observed:
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Table 20: ANOVA table for randomized complete block design when €, - N(0,5)

=

puitinge DE s?;l::r(e)sf ﬁf-?;’i‘ii’é Statislzi; Pr=R
Treatments 6 8793.05 1465.51 334.94 <.0001
Blocks 2 174.12 87.06 19.90 . 0.0002
Error 12 52.50 4.37

Total 20 9019.67

In the RCBD the difference between treatments remains highly significant but as

shown in Table 21 below the treatments standard error increases to 1.2.

Table 21: The Least squares mean yield for RCBD Yield: When &, - N(0,5)

Treatment Lsm.e an Stadand Pr>|t|
yield Error
Familyl 80.45 1.20767 >.0001
Family2 62.60 1.20767 >.0001
Family3 50.72 1.20767 >.0001
Family4 100.66 1.20767 - >.0001
Family5 30.56 1.20767 >.0001
Control 1 60.17 1.20767 >.0001
Control 2 61.68 1.20767 >.0001

- It can be noted the results are very similar to scenario one RCBD results. This is

because even though the errors have different variances, when averaged they ‘give the

nearly the same figure in the neighborhood of zero.
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42.3 Scenario Three: &,-N(0,25)

When the error term is distributed as N(0,25)

Table 22: ANOVA table for augmented block design when £, - N(0,25)

Source of DF Sum of Mean Sum -

Variation Squares of Squares I Value i

Blocks 2 56.61 28.30 0.89 0.5285

Treatments 6 3315.80 552.63 17.42 0.0553

Among Tests 4 3113.29 778.32 24.53 0.0396

Among Controls 1 37.39 37.35 1.18 0.3913
Tests vs Controls 1 14.71 14.71 0.46 0.5662 .

Error 2 63.45 31.73

Corrected Total 10 3435.87

In this scenario the augmented block design is unable to bring out the difference
among the test vs control treatments (p-value 0.56). The difference among test

treatments is significance but blocking becomes more ineffective (p-value > 0.5).

Table 23: The Least squares mean yield for ABD Yield: When £~ N(0,25)

(I Lsm.ean Standard Pri]
yield Error :
Family1 80.45 6.50407 0.0065
Family2 62.46 6.50407 0.0107
Family3 51.46 6.50407 0.0156
Family4 100.81 6.50407 . 0.0041
Family5 25.63 6.50407 0.0588
Control 1 59.3 3.25203 0.0030
Control 2 64.29 3.25203 0.0025

When we used the same treatments and data scheme as used in scenario 3 of the ABD
and applied to a randomized complete block design with three blocks, the following

results were observed:
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Table 24: ANOVA table for randomized complete block design when £, -N(0,25)

Source DE S?]lllll:r:: ?)/:'eg(lllui:g Statislt?i; Lr=F
Treatments 6 7986.96 1331.16 59.93 0.0008
Blocks 2 600.30 300.15 13.51._ <.0001
Error 12 266.55 2221

Total 20 8853.80

Table 25: The Least squares mean yield for RCBD Yield: When €, ~N(0,25)

Treatment  Lsmean yield Standard Error Pr>|t|
Familyl 83.22 2.72104 - >.0001
Family2 62.02 2.72104 >.0001
Family3 52.14 2.72104 >.0001
Family4 100.42 2.72104 . >.0001
Family5 35.39 2.72104 >.0001
Control 1 - 59.99 2.72104 >.0001
Control 2 64.14 2.72104 >.0001

For the RCBD, Table 24 shows that the difference in treatments effects remains
significant for both N(0,1) and N(0,5). The least squares means results show that the

RCBD is still robust in bringing out difference among treatments

- 4.2.4 Relative Efficiency
To compare relative efficiencies of RBIBD design to RCBD design we again use
Fishers method given earlier as:

(n, +1)n, +3)s?
(n2 + 1)(n] + 3)s12

- Where

n, are the ABD error degrees of freedom

n, are the RCBD error degrees of freedom
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s; is the square of ABD error mean square

s2 is the square of RCBD error mean square
The required parameters are found in the ANOVA table. Calculating the relative

efficiency for our three scenarios we find that the ABD has the following efficiencies

(Table 26)

Table 26: Relative efficiency of ABD against RCBD

EFFICIENCY OF ABD

SCENARIO DESIGN ERRORDF ERROR MS AGAINST RCBD

N(0,1) ABD 2 0.36 1186
RCBD 12 1.49

N(0,5) ABD 2 2.52 2.08
RCBD 12 437 |

N(0,25) ABD 2 13.73 1.81
RCBD 12 9221

From Table 26 it is evident that the relative efficiency of ABD against RCBD

depended on the variance of the error term. ABD’s are relatively more efficient than

-RCBD for standard normal error but this efficiency deteriorates rapidly as the

variance of the error term increases. From the error variance of 5 to 25 the relative

efficiency drops remains stable. We would expect the relative efficiency of ABD to

~ be the same as the efficiency if RCBD as the variance of the error 6> — . As such

it would be wise to use augmented block design even when variance of experimental

error is unknown as is the case with agricultural experiments.
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Table 27: Comparison of ABD and RCBD means and paired sample t-test result

g,~ N(0,1) g; ~N(0,5) &; ~N(0,25)
ABD RCBD ABD RCBD ABD RCBD
80.32 81.59 80.71  80.45 80.45 83.22
62.77 60.30 59.56  62.60 62.46  62.02
51.82  49.70 49.74  50.72 5146 52.14 o
99.77 100.59 97.63 100.66 100.81 100.42
30.37  30.20 28.96  30.56 25.63  35.39
59.81 59.94 60.31 60.17 59.30 59.99
61.25 61.52 62.66 61.68 6429 64.14
T-test: p=0.57 T-test: p=0.14 T-test: p=0.23

From Table 26 above it can be seen that there is no significant difference between
means generated by augmented block design and those generated by randomized
complete block design. We can conclude that augmented block design and

randomized complete block design are equally effective.

4.3 RBIBD and ABD

Reinforced incomplete block design (RBIBD) and augmented block design (ABD)

are similar in construction given that in reinforced incomplete block design the

control treatments are added to a design containing the test treatments whereas in the
augmented block design the test treatments are added to a design containing the
control treatments. The results produced by the two methods were not significantly

different. See Table 28 below.
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Table 28: Comparison of treatment means generated by both RBIBD and ABD

Augmented Block Design Scenario

Treatment RBIBD ABD-N(0,1) ABD-N(0,5) ABD-N(0,25)
Family1 86.22 80.32 80.71 80.45
Family2 57.34 62.77 59.56 62.46
Family3 49.32 51.82 49.74 '51.46
Family4 98.03 99.77 97.63 100.81
Family5 31.17 30.37 28.96 25.63
Control 1 60.68 59.81 60.31 59.30
Control 2 59.56 61.25 62.66 64.29
The paired sample t-test generated the following results:
Standard Std error
Sample Size Mean Variance deviation of mean
RBIBD- ABD N(0,1) 7 -0.5414 12.63 3.554 1.343
95% confidence interval for mean: (-3.828, 2.745)
Ho: RBIBD - ABD N(0,1)=0
Test statistic t =-0.40 on 6 d.f.
Probability = 0.701
Standard Std error
Sample Size Mean Variance deviation of mean
RBIBD- ABD_N(0,5) 7 0.3929 8.196 2.863 1.082
95% confidence interval for mean: (-2.255, 3.041)
Ho: RBIBD - ABD _N(0,5)=0
Test statistic t = 0.36 on 6 d.f.
Probability = 0.729
Standard Standard error
Sample Size Mean Variance deviation of mean
RBIBD- ABD_N(0,25) 7 -0.2971 21.03 4.586 1.733

95% confidence interval for mean: (-4.538, 3.944)
Ho: RBIBD - ABD N(0,25)=0

Test statistic t =-0.17 on 6 d.f.

Probability = 0.870

Thus from the T-test results above, RBIBD and ABD are not significantly different

and can be used interchangeably.
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Figure 8: Deviations of various ABD means from RBIBD means

Figure 9 above shows that deviations were equally likely to occur in the both positive
and negative side. RBIBD produced higher figures for family 1 though it is still

within the family standard deviation.
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S CONCLUSION AND RECOMMENDATIONS

From the results we determined that reinforced incomplete block designs seems to be
more efficient than randomized complete block designs assuming bloc_lf homogeneity
i.e. nil intra-block variation. In agricultural experiments setting a block will always
have some degree of intra-block variation. The major factor affecting this variation is
the number of plots (units) per block. The more the number of plots in a block: the
higher the degree of intra-block variation and vice versa. Reinforced balanced
incomplete block designs have the capability of havihg few plots per block as
opposed to randomized complete block design whose plots per block is dictated by
the number of treatments being evaluated. As such when evaluating large number of
treatments (families), reinforced balanced incomplete block designs (RBIBD) will

always be preferred to randomized complete block designs (RCBD).

We also determined that augmented block design seems to more efficient than
 randomized complete block design when error variance is small. In most cases under
agricultural experiments the error variances are assumed small especially with
blocking. The augmented block designs also have an advantage in that they require
only one replication of the test treatments. When test materials are scarce or
experimental units are limited the augmented block design can be used instead of

randomized complete block design.
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We recommend cautious use of the results given the difﬁcult); of comparing
experimental designs using simulated data. Concrete result in this study area will be

very useful to plant breeders for efficient evaluation of genetic materials.
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