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ABSTRACT

The study of numerical ranges and spectra has been of great interest to
many mathematicians in the past decades. In this study, we have contin-
ued to look at the numerical ranges and spectra of operators.on a Hilbert
space. The properties of numerical range, for example, convexity and
closedness are well known as proved in the classic Toeplitz - Hausdorff
Theorem. In this study, we investigate the relationship between the spec-
trum and the numerical range of an operator, in particular, when the
operator is normal. We have established that for a bounded linear oper-
ator on a Hilbert space, the spectrum is contained in the closure of its
numerical range. For a normal operator, we have also established that
the numerical radius and the spectral radius coincides with the norm of
the operator. These results are actually a contribution to the field of
numerical ranges and spectra. For us to achieve these, it was paramount
that we had a deep understanding of the theory of operators, especially
on Hilbert spaces, General Topology, Functional Analysis and Abstract
Algebra. This was achieved by reading the available and relevant litera-
ture, solving the existing problems and understanding examples in these
areas. Further, we also had consultative meetings with the supervisors. In
addition, we explored internet Information and further references through
the use of research papers in this field. Lastly we could not avoid consul-
tations with other mathematicians who have carried research in this field

of study.
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‘Chapter 1

BASIC CONCEPTS

1.1 Introduction

The study of numerical ranges was first carried out and presented orig-
inally by Toeplitz in 1918. He proved that the boundary of numerical
range for an operator on a Hilbert space is convex [20]. Later, Hausdorff
proved that W(T') was simply connected. The work of these two scholars
later gave rise to the classic Toeplitz- Hausdorff theorem [16]. The sub-
ject aroused a lot of curiosity, and a number of mathematicians have done
research in this area over the years. Agure [2] later gave an alternative
proof to this theorem (Toeplitz- Hausdorff theorem).

This study is primarily concerned with the numerical range and the spec-
trum of normal operators on Hilbert space.

The first chapter is composed of basic concepts which we intend to use in
subsequent chapters. We also present terminologies and symbols.

In chapter two we discuss properties of the numerical range and examples
on how to calculate the numerical range.

In chapter three, we look at the relationship between the spectrum and




the closure of its numerical range and further discuss normal operators
and the properties of algebraic numerical range. Finally, we give the

conclusion and recommendations of our work in chapter four.

First, we need to define certain concepts before we start using them.

Definition 1.1.1. Subspace.
Given a vector space X over a field K, a subset W of X is called a

subspace if W is a vector space over K and under the operations already

defined on X.

Definition 1.1.2. Algebra.

Let X be a vector space with a field K, an algebra is a vector space X to-
gether with a bilinear map X x X — X defined by (a, b) —ab V, a, b€
X such that a(bc) = (ab)e V, a, b, c€ X.

Definition 1.1.3. Norm.

Let X be a vector space over K. A function ||, || : X — R is called
a norm if it satisfies the following properties; V, a, b€ X and V, A € K
(i) [lall >0,
(ii) |ja]| =0 iff a =0,
(iii) [[Aall = [Alllall,
(iv) fla + 0l < flaff + o]-

Definition 1.1.4. Metric space.

Let X be a nonvoid set and p : X x X — R*[J{0} be a non-negative
function satisfying the properties

(i) p(z, y) = p(y, z), Vz,y € X,

(i) p(x, y) = 0 if and only if z =y,



(iii) p(z, 2) < p(z,y) + p(y, 2), Vo, yand z € X. ‘o

Then the ordered pair (X, p) is called a metric space.

Definition 1.1.5. Banach space.

A Banach space is a normed space which is a complete metric space.

Definition 1.1.6. Inner product.

Let X be a vector space over K (the field of real or complex numbers.)
A mapping denoted by (.,.) defined on X x X into the underlying field
is called an inner product of any two elements z and y of X if the
following conditions are satisfied: |

(i) (z, ) 20,V, z € X and (z, r) =0 if and only if z = 0,

(i) For any z, 2’ and y of X, (z + 2/, y) = (z, y) + (z/, v),

(iii) (az, y) = a(x, y) where a belbngs to the underlying field,

(iv) (z, y) = (y, z).

Definition 1.1.7. Inner product space.

Let X be a vector space over K and (.,.) be a mapping, (L ): XxX —

K. Then the pair (X, (.,.)) is called an inner product space over K.

Definition 1.1.8. Hilbert space.
A Hilbert space is a complete inner product space i.e a Banach space

whose norm is generated by an inner product.

Definition 1.1.9. Involution.

Let A be an algebra. A mapping from A — Adefinedbyz +— z* V, z, 2" €
A is called an involution on A if it satisfies the following four conditions;
Vz, y€ Aand \ ascalar,

() (z+y) =2"+v",

(i) (Ax)* = Az*,
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Definition 1.1.10. *-algebra.

An algebra A with an involution i.e. z + z* is called a *-algebra.

Definition 1.1.11. Banach *-algebra.

A Banach *-algebra is a normed algebra A with involution which is
complete and has the property that ||z|| = ||z*|. In this case, we define
a normed algebra as follows: i.e. the algebra A is a normed algebra if
for each element z € A there is an associated real number |lz||, the norm
of z satisfying the axioms of the norm. Thus, V z, y € A,

(i) |lz|l > 0 and ||z|| = 0 if and only if z = 0,

(ii) [laz|| = |al|z],

(i) [lz +yll < fl=ll + flyll,

() llzyll < llzllllyll-

Definition 1.1.12. C*-algebra.
A Banach *-algebra A with the property ||z*z|| = ||z||2, V & € 4 is called

a C*-algebra.

Definition 1.1.13. Basis.
A basis S for a vector space X is a nonempty set of linearly independent

vectors that span X.

Definition 1.1.14. Orthonormal basis.

Let (X, {(.,.)) be an inner product space. Then, V, z, y € X, z and y are
said to be orthonormal if (x, y) =0 and ||z|| = ||y|| = 1. An orthonormal
set of all vectors of the form z and y which form a basis is called an

orthonormal basis.




Definition 1.1.15. Operator. b

An operator is a mapping of a vector space X onto itself or to another

vector space.

Definition 1.1.16. Linear Operator.

Let X and Y be vector spaces. Then a function T': X — Y is called a
linear operator if and only if, V 21,2, € X and V A w €K, T(Azy +
pxa) = NT(xy) + uT (z5). '

Definition 1.1.17. Bounded linear Operator.
Let X and Y be normed linear spaces. A linear operator 7 : X — Y is

called a bounded linear operator if and only if there exists a constant

M > 0 such that, |Tz|| < M|z|, Vz € X.

Definition 1.1.18. Adjoint of T

If T € B(H,K), where H, K are Hilbert spaces, then the unique linear
operator T* € B(K, H) satistying (T'z, y) = (z, T*y),V, = € H and y €
K is called the Adjoint of T.

Definition 1.1.19. Self - adjoint operator. A bounded operator
T € B(H) is said to be self- adjoint if T' = T*. Thus T is Hermitian and
D(T) = H if and only if T is self - adjoint.

Definition 1.1.20. Normal operator.
A bounded linear operator T" on a Hilbert space H is said to be a normal

operator if it commutes with its adjoint, that is 77* = T*T.

Definition 1.1.21. Unitary operator.
A unitary operator is a bounded linear operator U on a Hilbert space
satisfying: U*U = UU* = I, where [ is the identity operator.

This property implies the following:




(i) U preserves inner product on the Hilbert space, so-that for all vec-

tors x and y in the Hilbert space H, (Uz, Uy) = (z, y).

Proof.

({Uz,Uy) = (x,U"Uy)

= (z,Iy)
- (;v,y).
O
(ii) Uisa surjective isometry (distance preserving map) i.e
U@ =)l = llz - .
Proof.
IWE-y)I* = (Ulz-y),U@=-y))
= ((z—-y),U"U(z —vy))
= ((z—y),I(z~y))
= (z-y),(z-y))
= [l(z-y)?
= UG-yl = -yl
=

Definition 1.1.22. Compact operator.
If H is a Hilbert space, then an operator T € B(H) is a finite rank




operator if the dimension of the range of T is finite and a compact
operator if for every bounded sequence (z,) € H, the sequence (Tz,)

contains a convergent subsequence.

Definition 1.1.23. Functional.
A functional is a mapping of a vector space into a field of scalars

K (R or C).

Definition 1.1.24. Linear functional.
f : X — Cis a linear functional on X if f is a linear operator, that

is, a linear functional is a complex-valued linear operator.

Definition 1.1.25. Bounded linear functional.
A linear functional f is called a bounded linear functional if and only

if there exists a constant N > 0 such that, |f(z)| < N|z||, Vz € X.

Definition 1.1.26. Positive linear functional.
A positive linear functional is a linear functional on a Banach algebra

A with an involution that satisfies the condition
f(zz*) >0, V, z € A

Definition 1.1.27. State.
Let A be an algebra with involution. Then the linear functional f is
called a state on A if f is positive and ||f|| = f(e) = 1, where e is an

identity element in A .

Definition 1.1.28. Eigenvalue.
Let H be a Hilbert space and T': H — H a linear operator. For any
T € B(H) a number A\ € C is called the eigenvalue of T if there is

7




a non-zero r € H such that To = Az, the vector z is then called an

eigenvector for 7" corresponding to the eigenvalue .

Definition 1.1.29. Convex set.
Let X be a linear space. A subset M of the linear space X is convex if
V, z, y € M, and for any positive real number £ satisfying 0 < ¢ < 1, we

have tx + (1 — t)y € M.

Definition 1.1.30. Convex hull.
If M is a subset of a linear space X, then a convex hull of M, represented
by conv(M) is the smallest convex subset of X containing M, that is the

intersection of all the convex subsets of X that contain M.

Definition 1.1.31. Numerical range of 7.
Let H be a Hilbert space and T': H — H be a linear operator. For any

T € B(H), the numerical range is the set defined as

W(T)={{Tz,z):z € H,||z|| = 1}.

Note: The numerical range W(T') has the following properties:

(i) W(T) is non-empty.

(i1) W(T) is unitarily invariant.

That is, W(U*TU) = W(T'), U is unitary operator on H.
(iii) W(T) lies in the closed disc of radius ||T’|| centered at the origin.
(iv) W(T') contains all the eigenvalues of T' that is, A € W(T).

(v) W(T*) ={A:AeW(D)}.




(vi) W(I) = {1}, I is the identity of B(H).

(vii) If o, B are complex numbers, and 7" a bounded linear operator on

H, then W(aT + BI) = aW(T) + 3.
(viii) If H is finite dimensional then W(T) is compact.
(ix) W(T) is a convex set (the Toeplitz-Hausdorff Theorem).
Definition 1.1.32. Spectrum of 7. |
For any T € B(H),

o(T)={A e C: X[ -T is not invertible in B(H)}

is called the spectrum of 7.

Definition 1.1.33. Spectral radius.
Let H be a Hilbert space and T : H — H be a linear operator. The
number

Y(T) =sup{| A |: A € o(T)}
is called the spectral radius of T.

Definition 1.1.34. Numerical radius.
Let H be a Hilbert space and 7' : H — H be a linear operator. The
number

w(T) =sup{| A |: A\ e W(T)}

is called the numerical radius of 7.



1.2 Literature review

For a normal operator T on a Hilbert space H, the numerical range W (T)
has a definition which was originally introduced for finite dimensional
spaces by Toeplitz [20] in 1918. He proved that, the boundary of nu-
merical range OW (T') for an operator on a Hilbert space is convex [20].
Later, Hausdorff proved that the set W(T') is simply connected. The
work of these two scholars later gave rise to the classic Tdeplitz- Haus-
dorff theorem [16]. The subject aroused a lot of curiosity, and a number
of mathematicians have done research in this area over the years.

Agure [1] introduced a strong Toeplitz - Hausdorff property for the op-
erator T € B(H) and established the necessary and sufficient condition
for the set W (T') to be convex. In [2] he went on to give an alternative
proof to the classical Toeplitz - Hausdorff theorem . Stampfli [19] later
introduced the sets Wy(T') and W;(T), the maximum numerical range

and the d-numerical range respectively , given by

Wo(T) = {X: (Tan, n) = A ol =1, | Tal — T}

and

Ws(T) = closure{({Tz, z) : x € H, ||z||=1, |Tz| > d}.

When H is finite dimensional, Wy(7T') corresponds to the numerical
range produced by the maximal vectors (vectors z such that ||z|| = 1 and
| T|| = |T°|})-

In [19] he proved the convexity for Wy(T'). In [2], Agure showed that

10
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W5(T) for any T € B(H) is convex. »
For an algebra A and T € A, we can define the algebraic numerical range
V(T) for an operator T as V(T') = {f(T) : f € E(A)} where E(A) is the
set of states on A.

Agure in [1] introduced the algebra é-numerical range which he defined
as Vs(T) = {f(T) : fI) = ||fll =1, f(T*T) > 6?} and showed that
Ws(T) = Vs(T) for all T € B(H). »

Therefore, the purpose of our study was to further investigate the set

W(T) for a normal operator T and find out if there is a relationship

between numerical range and the spectrum o (7).

1.3 Statement of the problem

Let B(H) be the set of all bounded linear operators on a Hilbert space H.
For any T' € B(H), the sets W(T') and o(T) denote the numerical range
and the spectrum of 7' respectively. In this study, we investigate the
relationship between the spectrum o(7") and the numerical range W (T),
specifically when T is normal. We further investigate certain properties

of normal operators and the algebra numerical range.

1.4 Objective of the study

The main purpose of this study is to investigate the relationship between

numerical range and the spectrum of 7', in particular when 7" is normal.

11




1.5 Research methodology. i
In order to make a significant progress in this work, it was essential
to have a deep understanding of the theory of operators, especially on
Hilbert Spaces, and Functional Analysis. This was achieved by reading
the available and relevant literature, solving the existing problems and
understanding examples in these areas.

There was also need to have consultative meetings with the supervisors.
Information from the internet became useful. Consultation with other

mathematicians who have done research in this field was of great help.

12
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Chapter 2

NUMERICAL RANGES

2.1 Introduction

In this chapter, we shall be interested in bounded linear operators on a
complex Hilbert space H. Here, we see that, the numerical range W (7T')
of any operator T' € B(H) such that T : H — H is the subset of the

complex numbers C given by
W(T) ={{Tz,z):x € H,||z|| =1}.

This is often called the field of values.
We shall now look at some properties of this set and give their proofs and

further consider some examples.

2.2 Properties of numerical range

The set W(T') has several interesting properties for T € B(H).

13




(i) W(al +BT) =« +ﬁW(T) fora,peCand T € l}(/H)
Proof.

W(al +BT) = {{(al+BT)z,z):z € H, |z|| = 1}
= {(alz,z) + (BTz,z) : z € H, |z| = 1}
= {o{lz,2) + B(Tz,2) : z € H, |}2]| = 1}
= {a(z,z) + B(Tz,z) : z € H, ||| =1}
= {ellzl® + 8(Tz,2) : z € H, ||z|| = 1}
= a+f{(Tz,z):z€ H |z| =1}
= a+pW(T).

14




(i) W(T*)={X: X¢€ W(T)}. E
Proof.

WT") = {{T".2) 2 € H |a| =1}
= {(z,Tz):z € H, |z| =1}
_ {m:x‘e H,|z| = 1}
= {M:xewW(T)}.

(i) W(U*TU) = W(T), for any unitary U.

Proof.

W(U*TU) = {(U'TUz,z):z € H,|z|| =1}
= {{TUz,U"z):z € H, |lz]| =1}
= {(TUz,Uz):z € H,|z|| =1}

= {(Tyy):ye Hllyl = Uzl =zl =1} Uz =1y)
= W(T).

(iv) W(T) lies in a closed disc of radius ||T’|| centered at origin.

15




Proof. Let A € W(T) then, 3z € H with ||z]| = 1 $uch that

Al = |(Tz,2)|
< Tzl
< |Tll=|®

Il

Thus W(T) C N(0,||T||) which is a closed disc centered at the
origin with radius ||T’||. This completes the proof. O

(v) W(T) contains all eigenvalues of T.

Proof. Let Tz = Az with ||z|| = 1 then for all z,

(Tz,z) = (\z,z)
= Mz, z)
= A=|?
= X

= e W(T). O

B (vi) W(I) = {1}.

16




Proof. o

W(I) = {(Iz,z) :z€H, |z] =1}
= {(z.2) :zeH, |z]=1}
= {lel* :z€H, |z|| =1}
= {1k

(vii) W(T) is convex.

This property of numerical range forms the backbone of our study.
The convexity of W(T') has been proved in more than one way by a
number of scholars for example, Agure [2] and Toeplitz [20] among
others. In this study, we shall provide an alternative proof to this
property which is much simpler and more direct.

But we shall first prove the following two basic Lemmas which
clearly presents the structure of the numerical range for a 2-dimensional
Hilbert space, and at the same time shall be used in our proof. The

first Lemma is the following;

Lemma 2.2.1. Let T be a linear operator on a 2-dimensional Hilbert
space Uo. If the matriz of T whichis a 2 X 2 matriz has distinct
eigenvalues Ay and Ay and the corresponding eigenvectors r, and
Ta, so normalized such that ||z|| = |ly|| = 1, then W(T) is a closed
elliptic disc with foci at Ay and As. |
If vy = |(®y, z2)| and § = /1 =2 then the minor azis is Y| \; — Ag|/0
and the magor azis is |A\y — Aa|/0.

If T has only one eigenvalue v/\, then W(T') s the circular disc with

17




center at X, and radius 3||T — M. o

Proof. Since {5 has unit disc {z : ||z|| =1} as a compact set and
the function z — (T'z, z) is continuous, it follows that W(7') is a
compact set.

Suppose T" has only one eigenvalue A.

In this case Ty = T — A has the property that (77) = {0}, and
also T? = 0 for the characteristic polynomial of the matrix T is
p(t) = a(t — X)?, for non-zero a € C. Hence (T — M\)? = 0, ie
T? =0.1f T) = 0, we have W(le = {0}, and thus W(T') = {\}.

This clearly is a circle with center A and radius 0. If 77 # 0, then
there exists an orthonormal basis {e, e5} of £ such that Tie; = aes,
Ties =0 and ||| = |a].

This implies that W (T}) is a closed circular disc with centre A and

ius = lal — 1Tl _ 172
radius = &} = 131 = =2,

Now if T has distinct eigenvalues \; and Ay, the operator

1

T, =
N R R

(T = Md)

has eigenvalues 0 and 1.

Let {e1, e2} be an orthonormal basis for ¢, such that and we choose
this such that

- Twu=u, |ul|=1

where u = (cos p)e; + (sinp)es and ¢ is the angle between u and

18
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e1, that is, cosp = (e, u)[, 0 < p < 5. Now since Tru = u, we have

Ti(cospe; +sinpe;) = cos e, + sin pey
= sinpe;
singpTies = cospe; + sin e,

T1€2 = COtg0€1+62

Now take any z = ae; + be;, ||z|| =1 with |a|2 + |b]? = 1.
Then
' (Tiz,z) = ab+ |b]* = |b]* + |a||ble™ cot .

If w varies with |a|, |b] fixed and |a|? + [b]?> = 1, then the scalars
(Tyz, ) trace a circle with center at (¢,0) with radius [t(1—1)]z cot ¢

where ¢ = |b|? and W (T1) is the union of all the circles.
(z—t)? +y> = (t — t?) cot? .
The envelope of this family of circles is obtained by the equétion
(22 + cot? )? — 4(csc? ) (2? + y?) = 0

which can be simplified to

(z-3)? &

(esce)?  (5%)2

=1

This is an ellipse with foci at (0,0) and (1,0) and with eccentricity

sin . The center of this ellipse is the point (%, 0) and its major and

19




minor axes of lengths csc ¢ and cot ¢ respectively. «_ a

The next Lemma is famously known as the ellipse Lemma which

demonstrates when foci of an ellipse coincides with the eigenvalues.

Lemma 2.2.2. (Ellipse lemma) Let T be an operator on a two-
dimensional Hilbert space. Then W (T) is an ellipse whose foci are

the eigenvalues of T.

Proof. We can choose T such that

Al a
T =
0 X
with A; and Ay as the eigenvalues of 7.

Now if A\; = A3 = )\, we have

Let z = (z1,x2) then,

0 a T
‘p J (T — )\[)1; == 1‘ = — =a 2
0 0 To 0 0
Therefore,
IT =T = sup{lla(e2,0)] = |oaf? + [zl = 1)
= lal,

20



Hence the radius is 3|a|. Therefore the numerical range

Wﬂ3=&ﬂds%%.

It thus follows that W (T') is a circle with center at X and radius ng
Now if A\; # Ay and a = 0 we have

A0

T =
0 X
If x = (z1,z3), then
e At 0 7| A1y
0 /\2 T )\21;2

Therefore taking the inner product (T'z, z) we get

x1

am@=[xﬁ &@][ = [ Mozt hoeams | = [ Aol + Mafeal? ]

T2
So
<TJ?,J2> = All.f],z + /\2|I2|2.

Now letting ¢ = |z;|?, we therefore write the above equation as
follows (T'w,x) = tA; + (1 — )\ since |z1]2 + |z2]2 = 1

So W(T) is the set of convex combinations of )\, and Ao and is the
segment joining them.

If Ay # X and a # 0 we choose A such that it lies between \; and

21




Ao. We therefore have <

M =R

T At J= 2 “

2 0 A2=A\)

P

In this case, we let z = re™*, 2522 = pe=© and 222A = —pe=®,
So
R
o0 [T-— A+ /\2] _ r ae o
2 0 -—r

Here we see that W(T") is an ellipse with center at (0,0) and the
minor axis |a|, and foci at (r,0) and (—r,0).
Thus, the W(T) is an ellipse with foci at Ay, A, and the major axis

has an inclination of © with the real axis. O

We refer the reader to [16] for details on the above two Lemmas.

We now proceed to prove the property (vii) above.

Proof. Let a and b be distinct points in W(T') then there exists
x,y € H such that

a=(Tz,z), b=(Ty,y), llz| = llyll = 1.

Now let M be the subspace [{z, y}] spanned by z and y. Hence M
is a closed linear subspace of H of dimension 2 over C.
Assume to the contrary that {z,y} is linearly dependent over C, so _

that 2 = ay for some a € C with |a| = 1. We then have (Tz,z) =

(Tay, ay)

(Tz,z) = (Tay, ay) = |a*(Ty,y) = (Ty,y).

22




Thus a = b which is a contradiction. Hence {z,y} must be linearly
independent over C.
Let E be the orthogonal projector on H onto M. Take z € M with
||z]l =1 we have Ez = z thus TEz =Tz
Now Tz need not be in M. However, ETz € M. Consequently
ETEz=ETz
Thus

(ETEz,z) = (ETz2,z) = (Tz,Ez) = (Tz, 2).

Now (T'z,z) € W(T') and we thus obtain W(ETE) € W(T).
Thus from Lemma 2.2.1 and 2.2.2, since W(ETE) is an ellipse (or
circular) disc it follows that W (T') is convex. O

2.3 Examples

The following examples, give elaborate illustrations on how to calculate
the field of values that we refer to as numerical range of any given operator
T on a finite dimensional Hilbert space H. We note that examples 2.3.1
and 2.3.3 can also be found in [16]. Recall that the numerical range W (T')

of an operator T is the subset of the complex numbers C.

Ezample 2.3.1. In C? let T be the operator defined by the matrix

Take z € C*, z = (f,9), llzll*=[f* +1gI* =1 with ||z]| = 1.

23




Ty = =

and

(Tz,2)=[g 0] o [

Taking absolute values on both sides we have

(T2,2)] = [fllg] = 501+ loP) = 5.

So W(T)C {z:|z| < 1}, a circle of radius 3 centered at (0,0).

Alternatively, given the operator T' defined by the matrix

P
00

we then have the characteristic polynomial given by

and hence finding the characteristic equation we see that A2 = 0.
Therefore, A = 0 is the eigenvalue. Since for the norm we have 1||7'|| and

therefore normalizing the vector = we see that ||( ”—;ﬂ)” =1.

Now we have T'(f,g) = (g,0). That is

Tg = =

24




L
This implies that || T'(f, )|l = [I(g,0)II'= llg-

From the definition of an operator norm,

Il

sup{[|T(f, 9)Il - I(f,9)ll =1}
sup{[|IT(f,9)ll : Vf2+¢*=1}
= sup{llgl : f2+g4° =1}

=

Therefore, 1||T|| = 3(1) = 1.

Therefore, W(T) is a circle of radius 3 centered at zero.

Ezample 2.3.2. Let T be the unilateral shift on ¢, of square summs

sequences. For any z € {3, z = (21, 2,23, ...), with ||z| = 1 and

oC
> el < oo,
=1
the unilateral right shift operator T': ¢5 — /5 is given by

Tz = (0, z;, %3, T3, ...) .
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Now

(0) (=)

I I

i x
(Tz,a) = < o N >
= 173+ T2T3 + ...
Now, (|z1] — |z2])? > 0 which by the arithmetic - geometric mean

inequality implies that |z,]? + |25]2 > 2|24 ||zo|.

Similarly, |za|? + |z3[? > 2|z,]|zs|.

Also |z3]% + |z4)? > 2|x3||z4|, and so on. Therefore adding all the terms

on the left and similarly on the right of the above equations, we obtain

|21 1% + 2|22 |? + 2|23 % + ... > 2|24 |7a| + 2|ao)|23] + ...

We thus have

(Tz,z)]

<

|z173| + |z2T3] + ...
|z1][Z2] + |z2||Z3] + ...
|z1||z2| + |22||23] + ...

%(2|x1||x2| + 20|25 + ).
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Now since |[z| = |z1]? + |z2]? + ... = 1, we have <

(T2 = Sl + 2laaf® + 2ol + .
= S+ [oaf + fasf? 4 )+ (ol + [asf? + )
1 . 2 2
= ?[1+(I$2| + |z3)* +...)]
= ?[1+(1—l$1|2)]
= lp—

If |z1] # 0 we see that |(T'z,z)| < 1. For if |z;| = 0 and z contains a
finite number of nonzero entries, we have |(Tz,z)| < 1 if we consider a
minimum natural number n such that z, # 0.

Therefore, W(T') is an open disc of radius < 1.

Ezample 2.3.3. Let the transformation T : C* — C? be represented by
L= , TER, beC,

so that

T—-AM=T,=

and —(r —A)(r+ ) =0

=r2-22=0

— S 31

Therefore r = £ .

When r = A and given that (T'— A\I)z = 0, we have
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0 b T bxo b 0
0 —2r o —2rxy —2r 0
Therefore this implies xé = 0 and the eigenvectors are of the form (z1,0)

and eigenvalues are (1,0).

When A = —r, we have

- 2r b 4 2ray + bah 0
/\I = = =
0 0 Th 0 0

—bxl, -
Thus 7} = =2, so the eigenvectors are of the form (z}, 5).
T

Therefore (_belz, 7h) = zh(32,1). Now let 2, = 1, the eigenvector is (32, 1)

and the eigenvalues ﬁ(—b, 2r).

2.4 Further results on numerical range

The first result in this section is the following,

Theorem 2.4.1. T € B(H) is self-adjoint if and only if W(T') is real.

Proof. If T is self-adjoint, we have for all x € H,

Tex) =

—~
E el

. 'z

= (T#,&)

and hence W(T) is real.

Conversely, if (T'z, ) is real for all z € H, we have (T'z,z) — (z,Tx) = 0,
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(

and so (T — T*)z,z) = 0. e
Thus the operator T — T* has only {0} in its numerical range. So this
must be a null operator. Therefore, ' —T* =0 and T'=T". O

The next result which is the last in this chapter can also be found in [16]

but the proof presented is quite simple and more direct.

Theorem 2.4.2. Let T be self-adjoint and W(T) is equal to the real
interval [m, M]. Then ||T|| = sup {|m|, |M]|}.

Proof. T is self-adjoint and we can define m and M respectively as

m= inf{(T?,x) el =1},

and

M =sup{(Tz,z) : ||z|| = 1}.

Therefore when we take the norm of T, we get
IT|| = sup {(T'z,z) : [|z|| = 1}

which is the result and this gives || T|| = sup {|m/|, |M|} . O
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Chapter 3

SPECTRA

3.1 Introduction

In this chapter, we discuss the spectrum for a bounded linear operator T’ €
B(H), denoted by o(T') and give exhaustively its properties. We further
explore properties of normal operators and show their relationship with
the spectrum. We then establish the relationship between the spectrum
and the closure of numerical range. Finally, we extend our study to
include some basic properties of the algebra numerical range.

For the definition of the spectrum, see definition 1.1.32.
The spectrum can be separated into three disjoint component sets, namely,

(i) The point spectrum which consists of the eigenvalues of 7' and

is defined by
Po(T)={Ae€C:X[-T is not 1—-1 }.

Alternatively, if Al — T could be one-to-one but still not be bounded
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below, such A is called approximate point spectrum t‘xapp(T).

(i1) The residual spectrum which is a set defined by
Ro(T) = {)\ €C: AN —-T is 1—1 but, Rx—_r) is not dense }
(iii) The continuous spectrum I'c(T) which is a set given by

Fe(T) = {/\ €C: M -Tis1-1, Rpr-1)isdense,

(A — T)~!isnot continuous on RAAI — T')

So o(T) = Po(T)URo(T)UTo(T).

3.2 Properties of the spectrum.

We shall now give the properties of the spectrum in the following remark.
Remark 3.2.1. If T € B(H) , it is known that

(i) o(T') is nonvoid.

(i1) o(T) is closed in (C,d). (Where (C, d) is metric space with metric d).

(iii) o(T) € N(0, ||T|). (Where N(0, ||T]|) is closed neighbourhood of 0
with radius ||T7|).

(iv) The spectral radius, Y(T) = infuey |77 = lim,—o |T7||7, V1 €
N.

Details on remark 3.2.1 can be found in any Functional Analysis book

but for this study, we refer to [14] ..
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The next two Propositions characterizes the non-emptiness of the spec-
trum and the boundedness of the spectral radius, and for details we refer

to [3].

Proposition 3.2.2. Let H be a real Hilbert space and T € B(H) be
self-adjoint. Then o(T) # 0.

Proof. For aself-adjoint T', ||T|| = sup{|(Tz,z)|: z € H and |z| =1}.
Then there is a sequence of unit vectors (z,) of elements of H such that
|lz.]l =1, V n €N, and Tz, z,) — ||T|| or (Tzn,z,) — —||T|. In
the first case, it follows that

1T = T)zal* = T IP|lzal® = 2| TI(T 20, 20) + | T2al®

IA

Similarly, in the second case, ||(||T]|I + T)z,||> — 0 as n — oo.
Consequently, ||T|| € o(T) in the first case and —||T|| € o(7T) in the
second case. Thus, o(T) # 0. O

Proposition 3.2.3. For any operator T € B(H), v(T) < ||T|.

Proof. By Remark 3.2.1(iv), we have

YT) = nf{||T"||* : n € N}
= lim {77}
I

1A

Therefore y(T') < ||T|
Thus o(T") € N(0, ||T)- B O
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We now proceed to give certain results on the spectra‘and the numer-

ical range.

Theorem 3.2.4. Equivalent norm. For any operator T € B(H),
w(T) < T < 2w(T).

Proof. If A = (Tx, z) with ||z|| = 1, we have by Schwartz inequality

A< [Tz, 2)|
< - Tz«
< Tl

IT]l-

Clearly w(T) < ||T||- To prove the other inequality, we use polarization
identity

ATz, y) = (T(z+y), (z+y)) —(T(z—y), (z—y))+i(T(z+1y), (z+iy)) —i(T (x—3y), (z—iy)).
Hence by direct computation we get

4(Tz,y) < w@) {llz+yl* + llz = yl* + = + iyl + ll= — iy|}
4w (T)(lll* + llyl1*)-

Now choosing ||z|| = |ly|| = 1, we have 4(T'z,y) < 4w(T)(2), and so
4(Tz,y) < 8w(T). This implies that

IT|| < 2w(T).
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For details on the above result, see [16].
Theorem 3.2.4 implies that 7" = 0 whenever w(T) = 0. But we notice
that this result is not valid in a real Hilbert space, as the example below

shows.

Ezample 3.2.5. Let H = R x R and T' the operator represented by the

matrix

For z = (z1,z2), ||z|| = 1, we have

0 -1 T —T
Ty = ) 7 ?
1 0 To T

and therefore Tx = (—xz2,21) and (T'z,z) = 0. However, ||T|| = 1.

Now, we look at extreme cases of the inequality in Theorem 3.2.4. We
recall that the spectral radius is given by 'y(T) =sup{|\, A € U(Tv)} and
the point spectrum by Po(T) = {A € o(T'), Tx = Az for some z € H}.

Theorem 3.2.6. If w(T) = ||T||, then v(T) = ||T}.

Proof. Let w(T) = ||T'|| = 1. Then there is a sequence of unit vectors (z,,)
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such that (Ton, 2.) — A € W(T), |\ =1.Thatis ‘c

Ty, Tn) — (A, D)
= N Bz T )
= )‘”xn”2
= A\

From the inequality
(T za)| < T2l <1,
we have ||Tz,|| — 1. Hence,
(T = ADz, || = | T2all? = (T2, AZp) = (ATn, Tn) + [ Anl|* — 0.

Hence A € 04pp(T) and +(T) = 1. O

Theorem 3.2.7. If A € W(T), |A| = ||T, then XA € Po(T).
Proof. Let A = (Tz,z), ||z|| = 1. Then
ITI = Al = Tz, )| < || T=l| < [T

So |(Tz,z)| = ||Tz||||z||. Thus T& = ux for some pu € C. However, A=

(Tx,z) = (ux,x) = p and hence Tz = Az. o

The above theorem 3.2.7 can be found in [16]. We now proceed to

give our main results in this study in the next section.
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3.3 Main results on the spectrum and nu-

merical range.

Our aim in this section is to show that the o(T’) is included in the W(T').
It is sufficient to look at the boundary of the spectrum. We first give the

following theorem.

Theorem 3.3.1. Theorem.
The boundary of the spectrum 9o (T') is contained in the approximate point

spectrum Oap,(T'). That is 00 (T) C 0apy(T). (Where O denotes the bound-

ary.)

Proof. We first prove a result. If T, is a sequence of bounded invertible
operators on H and T,, — T in norm. That is lim, . ||T, — T|| = 0,
where T' € B(H) is not invertible, then 0 € o4,,(T).

Indeed to see this, since T is not invertible, T — 0 is not invertible,
so 0 € o(T). But o(T) = 0app(T) UI(T'). Therefore, this implies that
0 € Oupp(T) or 0 € I'(T). If we already have 0 € 0app(T'), the proof is
over. Otherwise Ry is not dense in H. Hence there is a nonzero r € H

such that z 1L Rp.

Tn_l:c

since T, s are invertible and hence bijections so z, = ToTa]
n

determined and x,, # 0. That is, T, 'z,, # 0. Hence,

is uniquely

T 1z
|—=——| =1 V neN
|7 ||
Now
T 1z T
Tntn = Tp(—=2—) = e Rz
1| R 1 o
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(Since z € R7) therefore, T}z, € Ry, V n € N. o

Now,
|Tnzn—Tzn|| < |Tn=T|||za|| = |Tn—T]| — 0 as n — oo(by hypothesis).

But T,, € Rt obviously, V n € N. That is T,x, L Ry and Tz, € Ry.
Therefore, Tz, L Tz,, V n € N, since, by pythagorean theorem,
o % igll> = 2l + )P for o L y and Jlo — yll? = (o — g5 —g) =
lall? + lyll® - (,4) — (9,3). Therefore, [lz — y|* = la]? + ly|/> since
(z,y)=0forz L y.

Now it follows that
1Twzn — Txo||* = | Tuzal® + || Tz,|*. (by Pythagorean theorem).
But since, | T,z, — T'z,||> — 0, we have
|7, — T|| — 0, implying ||Tz,||— 0, as n — oo

That is,
(T = 0I)z,|| = 0

That is,
0 € 0app(T)-

Let A\ € 00(T), (Note that o(T) is closed) then we can choose a sequence
(An) of points of p(T) such that

Ap — A as n — oo.
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That is, <

[An —A] — 0 as n — o0.

Now,

I(T =)= (@ =ADI = Il = A
= = Al

= |Ap—Al —0 as n —> 00

But (T — \,I) is invertible since A € p(T") and (T — XI) is not invertible.

Therefore 0 € 04,,(T—AI) (by the result proved) that is, there exists a
sequence y, € H such that ||y,|| =1 and ||(T — A)y,|| — 0 as n —
00. That is, A € Gapp(T). Therefore;

00(T) C 0app(T).
O

Now, we proceed to establish the relationship between the spectrum
and the numerical range in the following theorem which is a known result
but with reference to the work of Bachman and Narici [4], we give a new

approach to its proof;

Theorem 3.3.2. Theorem.
Let H be a complex Hilbert space, B(H) a set of bounded linear operators

on H. Let T € B(H), then o(T) C W(T) and ||T|| € W(T) if and only if
71| € oapp(T)-
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Proof. 1f X\ ¢ W(T), then d = dist(A, W(T)) > 0, (where dist is the
distance function derived from the modulus in C) then Al — T has an

inverse and ||(AM — T)7!|| < 1. So by definition of distance d, we have

d<|{(Tz,z)—- X, Y zeH |z| =1

This implies that,
dllz||* < [{(T - Aoy, B A
and using the Cauchy-Schwarz inequality, we see that
I(T = ADa] > d]a].

Now, since (T'— AI) is bounded from belo§v, (T — M)™! exists on Rr—xrp)

and is bounded; moreover

(T =Xyl > d Ylyll, ¥V y € Rzap.

Hence, there are only two possibilities, that is, A € p(T') or A € Ro(T)
Suppose A € Ro(T'). Since,

R-an}t = {Rag-ap}t
= ker(T* — XI) (Nullspace)

If A € Ro(T), then {Rqr_xp}* # {0}, that is, ker(T* — X\I) # {0},
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and hence ) is an eigenvalue of T*. ‘o

Itz e H, |lz[| =1 and is such that T*z = Az, then

Tz =Xz for z#0

(Tz,z) = (z,T*z)
= (z,%%)
= Mz,x)
= Alz|
=4

which implies that A € W(T), a contradiction. Hence, if A ¢ W (T), then
A & o(T); this shows that ‘

o(T) € W(T).

So from [[(T—AI)"'y|| > d~!||y]|, we have ||(T—AI)~|| < d~. Now on the

other hand, Po(T) C W(T) and 04,,(T) € W(T) such that [\ = || T|.
To see this, if A € Po(T'), then there exists x € H such that ||z|| = 1 and
Tx = Az. Then,

(I'r,zy = Ox,x)
= ME,5)

= Aaf?
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Thus A € W(T).
Now since gapp(T) C o(T') and o(T) C W(T), we have o4pp(T) C W(T).

<

Alternatively, A € W (T') implies that there exists a sequence (z,) of unit

vectors in H such that
lim ||(AM —T)z,| =0.
Since for such z,

A= (Txp,za)| = (M = T)Zp, zn)|
< “()‘I - T)xn“”-rn”

A

|(AI = T)zn|| = 0 as n — o0

Thus :
X = lim {Tz,, z,).

n—oo

Therefore, it follows that A € W(T).
Since |A| = |T|| = w(T) = sup{|A\| : A € a(T)}. So [T € Tapp(T)
implies that ||T|| € W(T). 0O

Ezample 3.3.3. Consider the Hilbert space C? of dimension two over C
and take the orthonormal basis {e;, ez} where e; = (1,0) and ez = (0,1).
Define T' : C2 — C2 linearly through Te; = ey and Tey = 0. Thus

matrix of T with respect to the given orthonormal basis is

0 is the only eigenvalue of T, thus o(T) = Po(T') = {0}, since C? is finite

41

MASEND ' 4IVERE -
S.G.S. LIBRARY |




dimensional. Let z = (21, 25) such that 2,2, € C; so z = 211 + 206

00 21
1 0 29

Tz =

0

2

= 0€1+2182
= 2162

= (0, 21).‘

Consequently,

(Tr,z) = ('(O,Zl)v(zl,zz))

If ||z|| =1, then |21|? + |20|* = 1. Thus

W(T) — {212_2 : Zl)z2 G C a,nd |21]2 + |Z2|2 = 1.}

Now let A = 2173, so we have A = |2||Z3| = |21|4/1 — |21|? ; hence
W(T)={reC : |N\*= |vz1]2(1 — |z1]*) where 0<|z| <1 and z € C}

If |21 =0 ;or 1, then A =0.
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We find the maximum value of \ as |2;| varies over the closed interval

[0,1]. We can use the technique of calculus or the following procedure

1

AR = a1 = ) = (= ) = (7 = (] = 5

Since [A| > 0, we note that maximum value of |A| is 3 and occurs when

|21] = 1. Hence
|
W(T):{)\EC : |A|§§}.
Also w(T) = § as is seen from the set just above.

Alternatively, we may also observe that
1 5 5 1
({Tz,2)| = |aZ2] < (1] +2[7) = 5.

For z1 = 2 = %, we obtain ’LU(T) > (%)2 = % Hence ’LU(T) - %

Note that

IT| = sup{|Tz| : z€H and ||z]| =1} for = = (21, 2)

sup{||(0,21)|| : == (z1,22) and ||| =1} =1.

Thus w(T') = 3||T|| for this operator.

3.4 Normal operators.

In this section, we consider a normal operator and investigate the rela-

tionship between its spectrum and numerical range. We actually establish

43



this using the spectral and the numerical radii. We first look at basic ex-

amples of normal operators.
3.4.1 Examples of normal operators
Ezample 3.4.1. All self-adjoint operators are normal.

Proof. If T is self-adjoint, then 7= T*. Then for all z € H,

IT*Tz|* = (T*Tz,T*Tx)
= (ITz,TTzx)
= (TT*z,TT"z)
= ||ITT"z|?

=TT = JT.

Ezample 3.4.2. All unitary operators are normal.

Proof. The proof of this follows from the definition 1.1.21 of a unitary

operator. O

3.4.2 Further properties of normal operators and
spectrum

For normal operators T' € B(H), we show the following results:

Theorem 3.4.3. Let T € B(H) be normal, then T* is also normal.
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Proof. If T is normal it implies that

T = T7T"
T*T** = T**T*

(TT*)* = (T*T)".

Thus TT* = T*T. Which implies that 7* normal. in

Theorem 3.4.4. If T € B(H) is normal, then the spectral radius (T)
equals ||T'||. That is v(T) = ||T||-

Proof. For all T € B(H),

IT°T|| = sup{IT"Tz|: =€ H, |lz|| =1}
< sup{|TIP|l=ll*: = € H, Il <1}

= 7%
To establish the reverse inequality, we have

|Tz|* = (Tz, Tz)
= {IT"Tz,z)

= [(T"Tz,z)| (since T*T > 0)

IA

IT*Tz|l]|]].
< T Tl

Thus (|Tz|| < \/|T*T|||lz|| Vz € H. That is |T|| < \/||T*T]], implying

that || 7|2 < ||T*T||, which is the reverse inequality. Therefore, T2 =
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|IT||?. By induction we obtain that for self-adjoint T,

|T%"|| = |IT|*", ¥ neN.

Now, let T be normal, since v(T') < ||T|| always hold, we only have to
prove that v(T) > ||T||. Since ¥(T") = (1), we have

(V(D)? = AT(T)
= lim {17 (@) |17}
= lim | T¥(T")”" |
= lim ||(TT")""|)7
= |77
= |7,

So this implies that v(T) = ||T||. O

Theorem 3.4.5. Let T' € B(H) be normal, then T is normal if and only
if |Tzll = Tz, ¥ =€ H.

Proof. We first assume that 7" is normal. Then,

\Tz|? = {Tz,Tx)

(
= (2,T"Tz)
(z, TT*z)
(T*z, T*z)
= |T*z?
= |T=z| = ||T =
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Conversely, we assume that T*T = TT*, V x € H and Kp/rove that T is
normal.

Now,

(ITa,z) = {Tx T
= || T=|?
= [|IT"z|
= (% Tz
— (TT*z,z)

= T*T = TT* = T is normal.

O

We recall that normal operators, those T" for which 7*T = TT*, may
be regarded as a generalization of self-adjoint operators T in which T*
need not be exactly 7" but commutes with 7.

Now we state and prove the following theorem,

Theorem 3.4.6. If T is normal, then ||T"|| = | T||", n = 1,2, ... More-
over, ¥(T) = w(T) = ||T|.

Proof. For any x € H,

ITz)? = (T"Tz,z)

IN

17" Tz|
Hence |T|* < |77l
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Conversely,

1% = |77
< ITHiT

Hence HT2]| < ||T||2

Therefore, since | 72| < ||T'||?> and ||T|* < ||T?|| we conclude that 172 =

| T||?. Now, for any z € H and n € N, we have

|T*Tz|)® = (T"T"z,T"T"z)
= (TT*(T"z),T"z)

Since T is normal, we have T*T = TT*. Therefore,

|IT*T"z|* = (T*T(T"x), T z)
(T*T™ g, T )
A <Tn+1x, Tn+1$)

= T

That is, |T*T"z| = ||T"z||. (3.4.1)
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Now,

T z||> = (T"z,T"z)
= (T*T"z,T" ')

IN

IT* Tz ||| T

VAN

1T ||| T 2|

< 7T e,
Taking sup on both sides with ||z|| = 1 we obtain,
17" < [T T, V¥ neN.

Suppose ||T¥|| = ||T||¥ for 1 < k < n, then we show that it is true for

k = n + 1. Therefore,

T = (T
= |IT"? (by induction)
< T

T IT™t (by induction)

Therefore, ||T|** < |T™|||T)|"". (3.4.2)
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(
Now dividing equation 3.4.2 both sides by ||T||*™!, we get<

1=

INA

I+

IN

TPy <)

”T“2n+l—n

IN

I+
I

IA

17"

That is, [T < |7 (3.4.3)

On the other hand,

[T = |TTT.T

—_—

n+1 times

< | ZINTINT---NTI]

-

n+1 times

= |7+

So that,
[T < 7|+ (34.4)

From equations (3.4.3) and (3.4.4), we get ||T™|| = ||T||"**.

Thus, ||T"|| = ||T'||*, V n and for T" normal. Moreover,

AWT) = tm |7
= lim (|7")>

Hence ~(T) = ||T.

Now by theorem 3.2.6, we conclude that v(T") = w(T) = ||T||. -
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3.5 Algebra numerical range. e

Definition 3.5.1. Let A be a complex normed algebra with unit. Denote
by E(A) the set of states on A. The algebra numerical range of an element

T € A is defined by
V(T)={f(T): fe E(A)}. | (3.5.1)

It is well-known that V(T'), is a compact convex subset of the complex

plane. See [5].

3.5.1 Properties of algebra numerical range.

We note that from now on, B(H) is considered as an algebra of bounded
linear operators on a Hilbert space H as opposed to the previous con-
siderations as a set. Algebra numerical range V(T') has the following

properties:

Theorem 3.5.2. For allT, S € B(H)

(i) V(T') s non-empty compact convex subset of scalars.

(1)) VIN[+uT) = X+ uV(T) for I is the 'identity in B(H) and \, u € K.
(iit) V(T + S) = V(T) + V(S).

(w) |A| < ||T|l, for all X € V(T).

Proof.

ol
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(i) Let T : H — H, then for all T € B(H), we show that dhe set
V(T)={f(T): f(I)=1=|f||} is convex.

Let A1, Xo € V(T). We seek to show that a\ + (1 — a)\2 € V(T) for
0<a<l

Now this implies that, there exists functionals ¢;, ¢, € E(B(H)) such
that

$1(T) = Ay, 02(T) = Xe

and

o1(I) =1=|¢1]l, and ¢o(I) =1 = ||¢.|

define ¢ by ¢(T) = ay(T) + (1 — a)és(T).
Then for 0 < @ <1 and 3y, B2 € K,

O(BTh + BoTs) = adi(BiTy + B2T2) + (1 — a)ha(BiTh + BoT2)
= abi(BiT) + adi(BT:) + (1 — )a(BTy) + (1 - a)é2(B.Ts)
= afigi(Th) + aBer(T2) + (1 — a)Biga(T1) + (1 — @) Baga(T2)
= Bif{adi(Th) + (1 — )g2(T1)} + Bof{adi(T2) + (1 — )a(T2)}
ST+ BT2) = Ao(Th)+ Bao(To). |

Hence ¢ is linear.

Next, we show that ||¢| = 1.
Since, ¢(1) = agi(I) + (1 — a)po(I) = 1.
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Now, it follows that, 1 = [¢(I)| < [|g][|IZ]| = [|¢]|.

<

|6(T)]

lagi(T) + (1 = a)¢2(T)|
algy(T)] + (1 — a)|g2(T)|
aflgu TN + (1 = a)l| ||| T
af|T| + (1 = a)||T|

A IA A

Il

7.

Thus, [|¢]| <1, [|¢]| > 1 so ||¢]| = 1. We note that the norm of ¢ is given
by
¢l = sup{|¢(T)| - |IT|| < 1}-

It follows that ¢(T') € V(T'). Hence V(T) is convex.

For compactness and non-emptiness of V(T'), we refer to H. M. Sadia [17].

(i) For all A\, € K,

VO +uT) = {f(M+uT): f € E(B(H))}
= {MW)+pf(T): f € B(B(H))}
= {M+uf(T): f € E(B(H))}
= A+ uV(T).

(iii)

V(T +S)

I

/(T +5):feE(BH))}
= /(D) : f e E(B(H))} +{f(S): f € B(B(H))}
V(T)+V(S):
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(v)[A] < ||T)|, for all X € V(T). If X € V(T), then A L f(T) for all
f € E(A)}. Then

A= 1D < AT = |IT|| since ||f]| = 1.

Hence, [A| < ||T||, for all X € V(T). O
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Chapter 4

SUMMARY AND
RECOMMENDATION

In this last chapter, we draw conclusions and make recommendations

based on our objective of study and the results obtained.

4.1 Summary

In the conclusion of our research, we would like to give a summary of our
study. In chapter one, we discussed the background information, basic
concepts, definitions, notations and symbols that pertains to this study.

Chapter two, dealt with numerical ranges and discussed exhaustively its
properties, for instance convexity, closedness among others. We further
considered some results on the numerical range.

In chapter three, we defined the spectrum of a bounded linear operator
on Hilbert space and gave its properties. We further established that,
the spectrum of a bounded linear operator is contained in the closure of

its numerical range. Moreover, we looked at normal operators and its
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examples where we established its relationship with the spectrum.
Lastly in the same chapter, we included some basic properties of algebra

numerical range.

4.2 Recommendation.

From this study, we recommend that the relaﬁonship between the specltra
and numerical ranges can still be investigated for other operators such
as hyponormal operators, subnormal, quasinormal, paranormal operators
among other large classes of normal operators. Further, the relationship
between algebra numerical ranges and the spectra can also be explored.

Much attention can be directed towards these mentioned areas.
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