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The electronic and optical properties of hexagonal and cubic Ge2Sb2Te5 have been calculated using the QUANTUM 
ESPRESSO and Yambo codes. The study has considered the variation of electronic band gaps with lattice constants using 
the LDA with non-linear correction, where it was established that both phases are apparently metallic at equilibrium. Upon 
increasing a, it was found that the hexagonal phase had a maximum gap of 0.22 eV at a c/a  value of 3.49 whereas the cubic 
phase had a maximum gap of 0.23 eV at a much higher c/a  value of 10.62. Findings of the optical absorption spectra of both 
hexagonal and cubic Ge2Sb2Te5 obtained using time dependent density functional theory (TDDFT) and the partially self-
consistent GW (GW0) are also reported. The absorption edge has been observed at 0.48 eV using TDDFT and at 0.21 eV 
using GW0 for the hexagonal phase. 
 
 
 

1.     Introduction 

Phase change materials such as ternary alloys along 
the pseudobinary line (GeTe)x(Sb2Te3)y are often 
used in optical storage media such as rewritable 
compact disks (CD-RW), digital versatile disks 
(DVDs), and blu-ray disks (BDs). Recently, phase 
change materials have been considered as natural 
candidates for electronic memory applications 
[1,2]. Phase change memory relies on a rapid and 
reversible, thermally induced amorphous phase to 
crys-talline phase transition [1,3]. The transition is 
accompanied by a change in reflectance (depending 
on layer thickness and wavelength) of up to 30% 
[4], as well as a change in the resistivity of several 
orders of magnitude [2]. In spite of the great 
technological significance of phase change 
materials, some of their fundamental properties 
such as optical absorption are yet to be clearly 
understood [4]. 

Among phase change materials, Ge2Sb2Te5 
(GST) is the most studied and widely applied due 
to its superior performance in terms of speed of 
transformation (∼ 50 ns) and stability in the 
amorphous phase [5]. GST has two crystalline 
phases; a metastable cubic phase, which undergoes 
the reversible crystalline to amorphous transition, 
and a stable hexagonal phase [6-8]. 
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The hexagonal phase has P3m1 symmetry and 
nine atoms per unit cell in nine layers stacked along 
the c-axis. Petrov et al. [7] proposed the sequence 
Te-Sb-Te-Ge-Te-Te-Ge-Te-Sb. Kooi and de Hosson 
[8] proposed the sequence Te-Ge-Te-Sb-Te-Te-Sb-
Te-Ge in which the positions of Ge and Sb are 
interchanged. Recently, Matsunaga et al. [6] have 
proposed a disordered phase in which Sb and Ge 
atoms randomly occupy the same layer resulting in 
a mixed configuration. In this study, the sequence 
of Kooi and de Hosson (Fig. 1), which apparently 
has the lowest total energy [9], has been 
considered. The cubic phase has a rock salt-like 
structure in which Te atoms occupy the anion (4a) 
sites whereas Ge atoms, Sb atoms and intrinsic 
vacancies occupy randomly the cation (4b) sites 
5,10-13]. In this study, cubic GST has been 
replaced by an equivalent hexagonal lattice by 
taking layer ordering along the [111] direction in 
the rock salt-like structure. This results in a unit 
cell having 27 atoms and three vacancies (v) 
arranged along the c-axis in the stacking sequence 
Te-Ge-Te-Sb-Te-v-Te-Sb-Te-Ge repeated three 
times (Fig. 2) [14]. 

This work considers the treatment of Te 4d 
electrons either as core or semicore and with 
different exchange-correlation (XC) terms, in this 
case, the local density approximation (LDA) and 
the generalized gradient approximation (GGA). We 
further explore electronic band gap dependence on 
lattice parameters within the LDA for the XC term. 
Using the LDA, Tsafack et al. [15] stopped short of 
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estimating the optical band gap using the 
intersection of 2/1)( ωαh  with the energy axis, ωh . 
This was due to a discrepancy in the calculated 
absorption coefficient, )(ωα . As an extension to 
the static DFT analysis of Tsafack et al. [15], this 
work attempts to estimate the optical band gaps of 
hexagonal and cubic GST from their optical 
absorption spectra, calculated using time dependent 
density functional theory (TDDFT) and the 
partially self consistent GW (GW0). 
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Fig.1: Hexagonal GST structure showing Te (yellow), Ge 
(red) and Sb (blue) atoms and intrinsic vacancy layers, v. 
Solid lines indicate the unit cell. 

2.     Computational Details 

The electronic structure calculations reported in 
this study were performed within the framework of 
DFT [16,17] as implemented in the QUANTUM 
ESPRESSO code [18] which expands the Kohn-
Sham orbitals on a plane wave basis set. The LDA 
Perdew and Zunger (PZ) [19] and the GGA 
Perdew-Becke-Ernzerhof (PBE) [20] have been 
considered for the XC energy functional. The 
interactions between atomic cores and electrons 
were described using non-relativistic norm-
conserving pseudopotentials with non-linear 
correction and with semicore electrons. 
Subsequently, the valence configurations in both 
cases is Ge 4s24p2, Sb 5s25p3, Te 5s25p4 with Ge 3d, 
Sb 4d and Te 4d electrons being treated as semicore 

in the latter case. Lee and Jhi [21] and Do et al. 
[22] have shown that including the Te 4d electrons 
in the valence configuration has an effect on the 
value of the calculated lattice constants. Van 
Lenthe et al [23] have noted the effect of spin-orbit 
coupling on bond distances (and hence lattice 
constants) in such heavy atoms as Te, Sb and Ge. 
An accurate description of spin-orbit coupling 
requires a relativistic treatment. However, as 
already noted, relativistic effects were not taken 
into account in constructing the pseudopotentials 
used in this study. 
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Fig.2: Cubic GST structure showing Te (yellow), Ge 
(red) and Sb (blue) atoms and intrinsic vacancy layers, v. 
Solid lines indicate the unit cell. 
 

Brillouin zone (BZ) integration was performed 
using an unshifted k-point grid of 8×8×2, generated 
according to the Monkhorst-Pack (MP) scheme 
[24], with a cut-off energy of 50 Ry for both GST 
phases. 

The lattice parameters were optimized by fitting 
the energy versus volume data to the Murnaghan 
Equation of State (EOS) [25]. The atomic positions 
were subsequently optimized at the equilibrium 
lattice parameters. The electronic band structures 
were calculated at the equilibrium lattice 
parameters. In addition, the dependence of the 
electronic band gap energy on lattice parameters 
has been investigated. 
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Processes that involve electronic excitation are 
many-body in nature and are accessible via many-
body perturbation theory (MBPT) and TDDFT 
amongst others. In this study, the optical absorption 
spectra of hexagonal and cubic GST structures 
were calculated using TDDFT, implemented within 
turboTDDFT [26], and the partially self-consistent 
GW (GW0) as implemented in the Yambo code 
[27]. 

3.     Results 

3.1.     Electronic properties 

The electronic band structures and the 
corresponding density of states for hexagonal and 
cubic GST were computed at the equilibrium lattice 
parameters as already stated. The LDA and the 
GGA were considered for the XC energy functional 
with the Te 4d orbitals being treated as core in the 
former case and as semicore in the latter case. The 
inclusion or omission of the Te 4d orbitals in the 
valence states has an influence on the calculated 
lattice constants [22,28,29], which in turn affect the 
energy gap values. The LDA calculations 
apparently show that no band gap exists for both 
hexagonal (Fig. 3) and cubic GST (Fig. 5). In 
particular, the top of the valence band and the 
bottom of the conduction band are degenerate at Γ, 
suggesting that hexagonal GST is apparently semi-
metallic whereas for cubic GST, the Fermi level is 
located slightly inside the valence band indicating 
that it possesses metallic character. The GGA 
calculations show for the hexagonal phase a band 
gap of about 0.33 eV at Γ (Fig. 4) and for the cubic 
phase a band gap of about 0.24 eV at Γ and an 
indirect band gap of about 0.04 eV along the Γ-K 
line (Fig. 6). 

In general, the GGA and LDA results give band 
gaps that are less than the experimental optical 
band gap of 0.5 eV for both phases [30,31]. In 
comparison, Lee and Jhi [21] have calculated an 
indirect band gap of 0.26 eV along the Γ-K line for 
the sequence proposed by Kooi and de Hosson [8]. 
Tsafack et al. [15] have reported a semi-metallic 
behavior for the sequence of Kooi and de Hosson 
[8] and an indirect band gap of about 0.2 eV along 
the Γ-K line for the cubic phase. Differences in the 
calculated band gap values between the theoretical 
studies mentioned above and this work lies in the 
approximation for the XC energy functional and 
treatment of the Te 4d electrons. The use of 
different XC-terms, and the treatment of Te 4d 
electrons as core or semicore, results in different 
lattice parameters and hence band gap values [15]. 
Moreover, the underestimation of the band gap is a 

well-known limitation of DFT since it does not take 
into account many-body effects; DFT [16,17] fails 
to give reliable quantitative values for the band 
gaps of insulators and semiconductors, which are 
often underestimated by as much as 1.0 eV or more 
[32]. Strong electronic correlation and exchange 
can be included using hybrid functionals, projector 
augmented wave (PAW) methods, quantum monte 
carlo (QMC) methods, MBPT and TDDFT among 
others. Using the projector augmented wave 
(PAW) method with GGA, Park et al [33] have 
calculated band gap values of 0.41 eV and 0.51 eV 
for hexagonal and cubic GST, respectively. 

Due to the fact that different XC terms and the 
treatment of Te 4d states could result in different 
lattice parameters, the dependence of electronic 
band gap on lattice parameters for hexagonal and 
cubic GST was calculated using the LDA for the 
XC energy functional and the findings are reported 
in Figs. 7 and 8. The band structure was calculated 
for several values of the lattice constant a, with c 
being kept constant at the optimized values of 
31.38 a.u. and 95.64 a.u. for hexagonal and cubic 
phases, respectively. In general, there is no gap at 
the equilibrium lattice constants (c/a = 4.02 and c/a 
= 12.26 for hexagonal and cubic phases, 
respectively). The energy band gap, however, 
increases with increasing a (decreasing c/a) up to a 
maximum value then falls off. For the hexagonal 
phase, the energy band gap is maximum (∼ 0.22 
eV) at around c/a = 3.49 whereas for the cubic 
phase, the energy band gap is maximum (∼ 0.23 
eV) at around c/a = 10.62. The dependence of 
energy band gap on lattice parameters gives an 
insight into the possibility of tuning the electronic 
properties of GST for various applications. 

The contribution of various orbitals to the band 
structures of hexagonal and cubic GST systems are 
also shown in Figs. 4 and 6, respectively, where the 
Te 4d states are considered as semicore. In both 
phases, the Ge s, Sb s, Te s, Ge d, Sb d and Te d 
orbitals are located inside the valence band whereas 
the Ge p, Sb p and Te p orbitals are centered near 
the Fermi level (∼ 7.4 eV). Hence, the Ge s, Sb s, 
Te s, Ge d, Sb d and Te d electrons are more tightly 
bound than the Ge p, Sb p and Te p electrons. 
Specically, the Te 5s, Sb 4d and Ge 3d orbitals are 
located deeper in the valence band, suggesting that 
they are more tightly bound as compared to the Ge 
4s, Sb 5s and Te 4d orbitals, which are shifted 
slightly towards the Fermi level. X-ray 
photoemission spectroscopy (HX-PES) studies by 
Kim et al. [34] established that peaks at the lowest 
binding energy (0 to 6 eV) were due to the Ge 4p, 
Sb 5p and Te 5p orbitals; peaks at the second 
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lowest binding energy (6 to 10 eV) are due to the 
Ge 4s and Sb 5s orbitals whereas peaks at the 
highest binding energy (at 12 eV) are due to the Te 
5s orbital. This is in agreement with this work. Kim 
et al. [34] confirmed that such a three-peak 

structure is characteristic of (GeTe)m(Sb2Te3)n 
pseudobinary compounds including Ge2Sb2Te5 
(GST) which is considered in this study. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3: Band structure of hexagonal GST system and the corresponding DOS calculated using LDA  
for the XC energy functional. The Fermi level is shifted to zero energy. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Fig.4: Band structure of hexagonal GST system and the corresponding DOS calculated using GGA  
for the XC energy functional. 

 



The African Review of Physics (2015) 10:0010                                                                                                                        73 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig.5: Band structure of cubic GST system and the corresponding DOS calculated using LDA  
for the XC energy functional. The Fermi level is shifted to zero energy. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig.6: Band structure of cubic GST system and the DOS calculated using GGA  
for the XC energy functional. 
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Fig.7: Dependence of energy band gap on lattice parameters c and a for hexagonal GST. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8: Dependence of energy band gap on lattice parameters c and a for cubic GST. 
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3.2.     Optical properties 

The charge density of the unperturbed system was 
computed at gamma point using a kinetic energy 
cut-off of 50 Ry for both phases. The calculated 
absorption spectra for hexagonal and cubic GST 
are shown in Figs. 9 and 10, respectively. For the 
hexagonal phase, a major peak at about 0.48 eV 
and a minor peak at about 1.65 eV are observed 
using TDDFT whereas the spectrum calculated 
using GW0 gave a major peak at about 0.21 eV and 
a minor peak at about 1.30 eV. For the cubic phase, 
TDDFT gave a major peak at about 0.66 eV and a 
minor peak at about 1.70 eV whereas GW0 gave a 
major peak at about 0.12 eV and a minor peak at 
about 1.50 eV. A major absorption peak 
corresponds to the fundamental absorption edge. 
Peaks at higher energies in the calculated spectra 
correspond to optical excitations of unbound states. 
From our calculated PDOS, Te s orbitals are the 
most tightly bound as compared to the Sb s, Ge s, 
Te p, Sb p and Ge p orbitals. Consequently, Te s 
electrons are, by a large part, not available for bond 
formation in GST. This is in agreement with the 

experimental findings of Sun et al. [14], who 
established that the valence band of thermally 
crystallized GST films (cubic phase) is dominated 
by Te p, Ge p and Sb p states with minor 
contributions from Ge s and Sb s states, whereas 
the conduction band is mainly populated by anti-
bonding Ge p/Sb p states and Te p states. Anti-
bonding states are known to be higher in energy 
and hence less stable than bonding states. Orava et 
al. [35] have assigned a peak at 1.77 eV in the 
spectrum of cubic GST system to transitions 
between Te p bonding states and Ge p/Sb p anti-
bonding states. Such a peak is obtained in this 
study for the cubic GST system at 1.70 eV using 
TDDFT and at 1.50 eV using GW0. Yamanaka et 
al. [36] have assigned a peak at 1.8 eV in the 
spectrum of hexagonal GST structure to transitions 
between Te p and Sb p states. Again, such a peak is 
obtained in this study for the hexagonal GST 
system at 1.65 eV using TDDFT and at 1.30 eV 
using GW0. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9: Optical absorption spectra for hexagonal GST calculated using TDDFT and GW0. 
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Fig.10: Optical absorption spectra for cubic GST calculated using TDDFT and GW0. 
 
 
 
 

4.     Conclusions 

The electronic band structures of hexagonal and 
cubic GST systems have been calculated using the 
LDA and the GGA for the XC energy functional 
with Te 4d electrons treated as core in the former 
case and as semicore in the latter case. The LDA 
results give no band gap for both GST phases. 
However, the GGA results give a band gap of about 
0.33 eV at Γ for the hexagonal phase and a band 
gap of about 0.24 eV at Γ and an indirect band gap 
of about 0.04 eV along the Γ-K line for the cubic 
phase. Both LDA and GGA give smaller band gaps 
as compared to the experimentally determined 
optical band gap of 0.5 eV for both phases. Using 
the LDA, it has been shown that the band gap 
increases to a maximum of 0.22 eV at a c/a value 
of 3.49 for hexagonal GST and 0.23 eV at a c/a 
value of 10.62 for cubic GST. The optical 
absorption spectra have also been calculated 
whereby for the hexagonal phase, the absorption 
edge is found at 0.48 eV using TDDFT whereas it 
is located at 0.21 eV when GW0 method is used. 
For the cubic phase, the absorption edge is located 
at 0.66 eV and at 0.12 eV using TDDFT and GW0, 
respectively. 
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