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ABSTRACT

A closed densely defined operator H, on a Banach space X, whose

spectrum is contained in R and satisfies
[z = H)Y| < CLZ>— Vz R (1)

for some o, 3 > 0; ¢ > 0, is said to be of (a, B) — type R . If instead

of (1) we have

e — B < crf;ﬁ Vi ¢R, @)

then H is of (a, B) — type R.

Examples of such operators include self-adjoint operators, Laplacian
on L'(R), Schrodinger operators on LP(R") and operators whose spectra
lie in R and permit some control on HeiH tH

Important properties, especially those concerning the spectra, of op-
erators of (a, ) —type R | are studied. These include some perturbation
results.

For 8 € R, &7 is the space of smooth functions f:R — C such that
()] = &L = O(@" ™), ash] — oo ¥ r > 0. The space 2 := Up<o®?

dx”
is then a topological algebra under pointwise multiplication, containing

the sub-algebra C'2°(R) of all smooth functions of compact support. The
completions 2, of A or C®(R) with respect to the norms
I, = > S50 ()| @ da, are also algebras under pointwise mul-
tiplication.

Functions in 2 include exponential function and spectral map

vi



ro(z) := —L- for some w € C\R.
Given f € 2 and n > 0, the almost analytic extension of f
to Cis f(z,y) := (Z:‘:O MJ(”’[) o(z,y), where (z,y) =7 (@%) and

T € C®withr(s)=1ifl[J<landT=0if |§ > 2.
Ifn>a>0 feAand Hisof (o, a+1)—type R, then the
integral B
sy =-1 [

T .9z (z — H) 'dzdy 3)
is norm convergent and defines an operator in B(X) with ||f (H )| < ¢ |If]],,.,.
Then the map f — f(H), is a functional calculus for H.

Using the constructed functional calculus, we define roots and expo-

nentials of an (o, a +1) —type R operator with o(H) C [y, o0) for

some appropriate p. These allow us to treat various Cauchy’s problems.
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Chapter 1

Introduction )

1.1 Basic concepts

In mathematics, a functional calculus is a theory allowing one to apply
mathematical functions to mathematical operators. If f is a function, say
a numerical function of a real number, and M is an operator, there is no

particular reason why the expression

f(M)

should make sense. If it does, then we are not using f on its original
function domain any longer. This passes nearly unnoticed if we talk
about ‘squaring a matrix’, though, which is the case of f(z) = 22 and M
an n x n matrix. The idea of a functional calculus is to create a principled

approach to this kind of overloading of the notation.

The most immediate case is to apply polynomial functions to a square
matrix, extending what has just been discussed. In the finite dimensional

case, the polynomial functional calculus yields quite a bit of informa-
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tion about the operator. For example, consider the family of polynomials
which annihilates an operator 7. This family is an ideal in the ring of
polynomials. Furthermore, by the Cayley-Hamilton theorem, it is non-
trivial. Since the ring of polynomials is a principal ideal domain, the ideal
is generated by some polynomial m. m is precisely the minimal polyno-
mial of T', and it can be used to calculate, for example, the exponential
of T efficiently. The polynomial calculus is not as informative in the infi-
nite dimensional case. Consider the unilateral shift with the polynomials
calculus; the ideal defined above is now trivial. Thus one is interested in
functional calculi more general than polynomials. The subject is closely
linked to spectral theory, since for a diagonal matrix or multiplication

operator, it is rather clear what the definitions should be.

In studying unbounded linear operators, it is desirable to gain as much
information as possible by looking at the spectrum. One o‘f the most pow-
erful tools for such a study, if available, is a functional calculus. Perhaps
the most well known ftinctiohal calculus is Riesz—Dunford functional cal-

culus,

F(H) = %;/Tf(z)(z —H) e (L.1)

Where H € B(X), f is holomorphic in an open neighbourhood containing
o(H) and T surrounds o(H). To admit a richer functional calculus, H

would be expected to satisfy more additional properties.

Of more interest in applications are the unbounded operators such as
differential operators. Two problems immediately arise when one tries
to extend (1.1) to unbounded operators. The spectrum, o(H) may be

unbounded and functions holomorphic on o(H) may be unbounded.
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Since [ |(z — H)7Y| 4 is no longer finite, it is not surprising that,
even for bounded holomorphic f, f(H) may not be bounded, even when
I(z—H) | is O(1+})™1) as f — oo !, as is the case with a bounded
operator. For example let D be the open disc in C, let ¢{H := d/df on
LY(9D), the generator of the rotation group on 9D and let f := X[0,00)5
the characteristic function of [0, 00). Then it is well known that f(H),
the projection of L'(9D)?* onto H'(D) is unbounded. Even on a Hilbert
space, f(H) may be unbounded, although f is bounded and holomorphic

in an open neighbourhood containing the spectrum, o(H) (See [Mac89)).

For polynomially bounded f, one could modify (1.1) by replacing
(2= H) 'zdz with (z — H)™Y(r — 2)"z(r — 2)~"dz for n sufficiently large,
z in the domain of H", r € p(H) (see [BD91, Mac86]). However, this
collection of functions does not include functions of most interest (par-
ticularly in considering Abstract Cauchy problems) such as exponentials

and cosines.

When H is unbounded there are a number of ways of bringing bounded
operators into the picture and using their functional calculi to define a
functional calculus for H. One could apply (1.1) to (w — H)™!, for some
w € p(H). This defines f(H) only for f holomorphic in the neighbour-
hood of co (see [DS58]), hence even more restrictive than the requirement

of polynomial growth.

For unbounded operators with real spectra and slowly increasing resol-

vents when approaching the spectrum, we define f(H) by modifying (1.1)

'We shall write “g(z) is O(f(2)) as z — A” to mean lim,_, » % < o0
2LP(Q) is the set of p—integrable functions, while HP(Q) are p—differentiable,
bounded functions.
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in such a way that f is replaced with %, where f is a sort of holomorphic
extension of f initially defined and smooth (i.e. infinitely differentiable)

on R, and evaluate the integral on C.

1.2 Literature Review

The existence of (a, a+1) —type R operators can be traced in literature
as sampled in this paragraph. According to H. Tanabe [Tan79], a closed
operator T on X is said to be of type w where 0 < w < 7, if supp (T") C B
and for 0 < € < m—w, (S, = {z : hrg(z) < w}) there exists a
positive constant ¢, such that |(z —T)7Y < %, 2 ¢ S,.. So operators
of type 0 are a bit restrictive but correspond to (0, 1) —type R operators
in our nomenclature. In both cases, the names indicate the location of
the spectrum and the growth condition of the resolvent. DeLaubenfels
[Del93] also uses this idea in the study of oo — type V' operators, whose
resolvents are polynomially (“degree a”) bounded with spectra in V. Hille
and Phillips [HP81] have shown that o(Hy) C [0,00) and —Hj is the

infinitesimal generator of Gauss-Weierstrass semigroup

=

Gy =50 [ fa-yetdy, e @)

In Kato [Kat80, IX, sec. 18] it is shown that

E H(z - HO)_IH < 3 Fin2 ! arg(z)|, =z € p(Hy) =C\[0,00),

I 2

Theorem 8 in S. Nakamura [Nak94] is stated for (o, a+1) —type R
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operators. However, the proof given shows that Schrodinger operators

are of (o, a+ 1) —type R which is stronger than the stated result.

For unbounded self-adjoint operators acting on a Hilbert space, Helffer

and Sjostrand [HS89] proved that the integral formula,
1 [fof

H):=-= | ==(z— H) Ydzd 1.2

$UH) = = [ 52— H) dady (12)

is an alternative characterisation of the standard Cy-functional calculus.

Contrary to their approach, our approach will not assume the existence

of a functional calculus but constructed one in a more general Banach

space setting. We then need to verify that our functional calculus, de-

fined on a Banach space, coincides with Cpy-functional calculus for an

unbounded operator acting on a Hilbert space.

W. J. Ricker [Ric88, Theorem 1], showed that the Laplacian H,, act-
ing on LP,1 <p < oop#2is not scaler. We therefore conjecture that

FCE) > (], for some f € 2.

For a class of operators associated with spectral distributions, Jazar
[Jaz95] showed that if an integer n > 1, real t > 0 and f(x) and g(x) are
two smooth functions which equal e~*"* for « > 0 and f(z), g(z) — 0 as

r — —o0, and H is an operator of (o, a+ 1) — type R for some a > 0

then f(H) = g(H) =: e 7" and

N
e H Mt +t2) _

_ Ny, _gn
thlth2
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for all ¢;,t5 > 0. Moreover there exists ¢, < oo such that
e < e (1.3)

foralln > 1 and 0 < ¢t < 1. We wish to proved it here within the context

of our functional calculus.

1.3 Statement of the problem

First, we fully characterise the operators with real spectra and slowly
increasing resolvents when approaching the spectrum. We shall identify
important operators that arise from familiar physical problems, and study
their connection with this class. We shall study properties of these oper-

ators and attempt to obtain some perturbation results.

Secondly, we study the algebra of smooth functions on R that decay
like (v/1+ 22)? as jif — oo, for some § < 0. Among other things, we wish
to establish that C°(R)* is dense in this algebra. We shall characterise
this algebra fully. It would be of great significance from application point
of view to demonstrate that important functions like = — e® are either

in the algebra or can be extended to functions in the algebra.

Thirdly tools developed above are used to define the almost analytic
Junctional calculus for operators with real spectra and slowly growing re-

solvents when approaching the spectrum. An immediate application of the

3CP(R) are p—differentiable complex valued functions on R, while CP(R) are
p—differentiable functions on R with compact support
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functional calculus would be in the proof of standard theorems like the

spectral mapping theorem.

1.4 Objectives of the study

e To fully characterize the algebra of smooth functions on R that

decay like (v/1 4 22)? as i — oo, for some § < 0.

e To define the almost analytic functional calculus for operators with
real spectra and slowly growing resolvents when approaching the

spectrum.

¢ To provide alternative, easier proofs to known results using the func-

tional calculus.

e To tackle outstanding problems whose solutions need the existence

of the right functional calculus.

1.5 Significance of the study

Using the constructed functional calculus, we wish to define roots and ex-
ponentials of an (@, a+ 1) —type R operator with o(H) C [u, c0) for
some appropriate f. These allow us to treat various Cauchy’s problems.
We examine applications for our functional calculus in semigroup theory,

and some aspects of LP spaces.



CHAPTER 1. INTRODUCTION 8

1.6 Research Methodology

For completeness of our exposition, we will often re-state known results.
However, for the most part we will omit the proofs. Instead, we will
indicate where the proofs may be found. In some isolated cases, which
will be explicitly indicated, alternative proofs to the known results will be
provided by taking advantage of the functional calculus constructed here.
In so doing the effectiveness of the functional calculus will be demonstrate
in greatly simplifying existing proofs. On the other hand, a lot of technical
details will be relegated to the appendices so as to facilitate a free flow
of the presentation. For this reason, the appendices will be considered to

be integral parts of the study.
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1.7 Notations and organization of the study

Let X, denote Banach spaces. Unless otherwise stated we will assume
that the underlying field is the complex field C* and the norm on X
is |I.  Except in specific cases, which will be stated, we shall denote
arbitrary complex numbers by z := z + iy or w := u + v, x,y,u,v € R
and i :=+/—1. Let Rt := [0, 0o) be the non-negative real numbers,
N := {1,2,...} be the positive integers, Ny := {0,1,2,...} be the
non-negative integers.  ‘B(X,)) will denote the space of all bounded
linear operators from the linear space X' to linear space J). We write
B(X):=B(X,X). “H is an operator on X” means H is a linear
operator from its domain, ®(H) C X to X. We will denote the range
of H by R(H).

Definition 1.7.1

An operator H on X is said to be closed if its graph

G(H) ={(f,Hf) : feD(H)}

is a closed subspace of X x X or equivalently, f, € ®(H), f, — f and
Hf, — gimplies f € D(H) and Hf = g.

Definition 1.7.2

An operator H on & is said to be densely defined if its domain D (H)

is.dense in X.

4C, R and Q denote complex, real, and rational number fields respectively, while Z
and N denote integers and positive integers respectively.
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Let H be an operator on X'. The resolvent set of H is
p(H):={2z€C : zI - H:D(H)— X is bijective and (2I — H)™! € B(X)}.

Observe that if p(H) # 0 then H is closed. See [Dav95, Lemma 1.1.2 page 4].

Lemma 1.7.3 (Closed Graph Theorem)
If H is a closed operator on X and domain D (H) is a closed subspace of

X, then H is bounded.

PROOF. See Bachman and Narici, [BN66, page 272]. O

Corollary 1.7.4
If H is closed then

p(H)={2€C : zI — H:D(H) — X is bijective}. (1.4)

We write z— H for 2 —H. R(z, H) := (z— H) 'is called the resolvent
operator of H. The set o(H) := C\ p(H) is called the spectrum of H.

Lemma 1.7.5
R(z, H) is a norm holomorphic function of z and satisfies the resolvent

equations
R(z,H) — R(w,H) = —(z — w)R(z, H)R(w, H) (1.5)

R(z, H)R(w,H) = R(w, H)R(z, H) (1.6)
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dn
PROOF. see [Dav95, lemma 1.1.2 page 4]. O

C(R) will denote the algebra of all continuous complex valued func-

tions on R.

In Chapter 2, we characterise the operators with real spectra and
slowly increasing resolvents when approaching the spectrum. It turns out
that important operators that arise from familiar physical problems, are
in this class. We also study properties of these operators and obtain some

perturbation results.

Chapter 3 looks at the algebra of smooth functions on R that decay
like (v/1+22)% as pf — oo, for some § < 0. Among other things, we
prove that C2°(R)® is dense in this algebra. Important functions like
x +— e® are either in the algebra or can be extended to functions in the

algebra.

In Chapter 4, tools developed in Chapter 2 and Chapter 3 are used
to define the almost analytic functional calculus for operators with real
spectra and slowly growing resolvents when approaching the spectrum.

Standard theorems like the spectral mapping theorem are proved.

Finally in Chapter 5, we examine applications for our functional cal-
culus. We look at applications in semigroup theory, and some aspects of
LP spaces. We believe there are many more areas not considered here in

which this functional calculus could be found valuable.

SCP(R) are p—differentiable complex valued functions on R, while C?(R) are
p—differentiable functions on R with compact support



Chapter 2

Growth Condition on

H(z - H)_1

Suppose H is a closed densely defined operator on a Banach space X

whose spectrum is contained in R and there exists ¢ > 0 such that

e < o @

for all z ¢ R and some a, 3 2 0. We will say that H is of («, 3) — type R .

Here, we define () by &)* := 1+ > and 32 denotes the imaginary
part of z (the real part of z will be denoted by Rz) . If instead of (2.1)

we have

ke — B)Y| < céﬁﬁ (2.2)

forall 2 ¢ R and some «, 3 > 0, we will say that H is of (o, B) —type R .

REMARK 2.0.6
1. Condition (2.2) is stronger than (2.1), since |§ < () Vz € C. Thus

(o, B) —type R implies (o, ) — type R . However the converse

12
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is not true.

2. Appendix C has details of the properties of ().

2.1 Examples of (o, () —type R operators

Proposition 2.1.1
Let H be a self-adjoint operator on a Hilbert space H. Then H is of
(0, 1) — type R .

Proor. If S C H, denote the closure of S by S and its orthogonal
complement by S+ . Let the adjoint of an operator H be denoted by H*,
its kernel be ker (H) := {f € ©(H) such that Hf = 0} and suppose
z € C\R, then

23((z= H)f, /) = ((z=H)f,.)) = ((z=H)[.])
= {2, ) —HSf, [y = {f,2f) +{}, Hf)
= z|*=ZIA® (since H* = H)
= (z=2)|A°
= 23z |f|?
if and only if I(f, (z — H)f) = Sz|fiI*>.
Which implies 4[] < [(z — H)/Il. (2.3)

That is, z — H is bounded from below. Thus z — H is injective,

so ker (z — H) = {0}. Since H is self adjoint, we have

ker ((z — H)") =ker (2 — H) = {0}. (2.4)
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But because H is closed densely defined,
R(z— H) =ker ((z— H)*)*.
Therefore using (2.4),
R(z-H) = {0}* =
Conclusion:

1. (z — H) ! exists and is bounded,

2. R(z — H) is dense in H

thus z € p(H).

The conclusion of the proposition now follows from (2.3). O

Proposition 2.1.2
Let Hy = —&; on LY(R) where
D(Hy) = {f € L'(R) : f" e LY(R), f’ absolutely continuous}. Then

1. (2 — Hy)™! is a convolution operator, for each z & R.

2. Hyisof (0, 1) —type R .

PROOF. Let z € p(Hp). Then

e

(z = Ho) ' f(¢) = (2 — a(¢)) "' F(C), C€R



CHAPTER 2. GROWTH CONDITION ON |(Z — H)7Y. 15

where g denotes Fourier transform of g and a(¢) is the symbol of Hj.

That is
aC) = —(i¢)?
= g2,
So that
CHIQ = —=50)
= (2m)zg(¢)f(C)
= g+ J(0)

where g * f denotes the convolution of g and f and

(2m)~1/2
z—C2

9(¢) =
Since g decays rapidly.enough as || — oo, g€ LYR).
Thus (:— Ho) ' f(a) =g+ f(@), [ L'(R)

where g € Cy(R)" will be determined explicitly shortly.
This proves the first part of the proposition.

- Next, set
fi(x) =M X e C\iR

'CY(R) will denote p—differentiable functions on R with f(z) — 0 as i — oo
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where iR := {iz : z € R}. Then,

MO = (@2m)7 / " ety

0 o]
= (2m)"1/2 / ex(’\‘iodx—k/ e*z(’\“odx}
—00 0

{
- (2”>_1/2{)\—1¢g " /\izg}
{

= 2
= @n7” )\2+C2}
Now given z ¢ R,
T G < e
z—(?

—(2m)7Y% 2i\/z
2z (V2 + )

= ﬁﬁﬁ(g), since iv/z ¢ iR.

} (912
Thus  (27)"%g(—¢) = g(¢) = (Z\/)E fiz(—C)

(where f denotes the inverse Fourier transform of )

and hence g(z) = VK,

VE
Next
[z = Ho) || = sup{lg=fl, - feL' A, =1}
< dl,
(since flg = All, < lglly A, f,9 € L")
= /OO L.e_"\/zm dx.
oo 128/2

By means of a change of variable and reflectional symmetry we conclude
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that

Iz = Ho) |

Theorem 2.1.3

IN

‘__“e—md

—R(iv/z)r
— e dr
YE /0

1

1

VA RGVZ)
1
YE 31/51

1/2
172 [4-%
o R

IH-HRZ 1/2

72
1/2 |7~ §}?Z)zll
R

2 Izil/Q

B -
e
4 [l — cos? 4/
(where 6 := arg )
2
Hl bin g
2

REN

&21/2
K

Let H be a bounded operator with o(H) C R, and

e < e+,

17

(2.5)

where « Is an non-negative integer. Then H is of (a, a4 1) — type R .
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fooo e #tett gt Rz >0

- ffoo e *tetfitdt Rz <0
(see Bratteli and Robinson [BR87, Proposition 3.16]). Therefore for z

PROOF. Let z ¢ R. Since (z —iH)™ ' = {

with Rz > 0 we have

IN

oo =it < [ e e

d |m[/ e P (1 4 £)dt.
0

IN

If Rz < 0, put s = —¢ then

G < e e as
< /Ooe—PRds e—iHSfHdS
0
< C||ﬂ|/ A (1 4 5)0ds.
0
But
Rt agr - |1 mar a]™ _ T 1 Rt a1
/0 (14 6)%dt {W (1+t>]0 /0 = (1+ 0 dt

R A
B“EZI+P)‘€21/() é (I4+¢)* " dt

_ ot yafl o=l /% g pet

TERTY {mzﬁ " Jo ol

Tt e
PR21+§R212+ ER212 /0 (1+t) dt

e! afa—1) !

1 al
.M-FW—}— ERzis + ...+ W.
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Consequently we may conclude that

o =il < oMy 14+ B e ]
= Ol g - 1+——+(—a_—1—)+ '}
Rl TR RS T RT
al | a  ala—1) !
< CIMIM_HH}%N gt W]
= mzi‘ @)a
< 2/Ca 'mgaﬂ I

where we have used Hélder’s inequality to obtain

L+ R < V201 + R4 < V2.

Now put w :=4"'z. Then w ¢ R and

o =)A= iz —iH) 7
= [z =)~ |

a/QC [ <>
< 2 PRZP“ il

2a/2c I

MQH e

REMARK 2.1.4
1. Note that the converse of theorem 2.1.3 is false. A counter example

is the following:

Let Hy = —4 on L'(R). Then by proposition 2.1.2, (z — Hy)™! is
a convolution operator, for each z ¢ R and is of (0, 1) — type R .

However, operators ¢fof

ple [BTWT5, page 27].

, are unbounded for all ¢ # 0, see for exam-
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2. Since the map z — €™ is in H>®(£,),
where €2, := {z € C: Q4 < ¢} for some € > 0, one may conjecture
that the conclusion of theorem 2.1.3 holds even for unbounded op-
erators whose spectra lie in €2, and admit the bound (2.1.3). This

problem remains open.

By a Schrodinger operator, we mean a partial differential operator

on RY of the form

1
H:=—-A+V
2
with A == ¥ 2 and V a real valued measurable function on RY 5

i 2
j=1 3rj

called the potential. Properties of a Schrodinger operator are essentially
determined by properties of the potential. For our purpose (which is quite
general) we will select potentials as described below.

Definition 2.1.5

A real valued measurable function V' on R¥ is said to lie in Kato class,

Ky if and only if

1. For N > 3

a—01| 4

lisg [sup /@ el dNy} —i0

2. For N =2

lim [S‘ip /@ga In {4~} V() de} =0.

@ f
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3. For N =1

T

sup/ V(y) dy < co.
b—y<1

We say V is in K¢ if Vxg € Ky for all R > 0, where g is the

characteristic function of {z : | < R}.

A Schrédinger operator, H := —A+V on LP(RY), 1 < p < oo consid-
ered in this study, has potential V' such that V, € Kl and
V_ € Ky. ? For more details on properties of these operators see B.
Simon [Sim82]. The spectrum of the Schrodinger operator with poten-
tial chosen as outlined, is real and independent of p (see, Hempel and
Voigt [HV86][Prop. 4.3(a)]). The operators e'2! are however unbounded
on LP(RY) for all ¢ # 0, N > 1 and for all p # 2 in the range [1,c0]
[BTWT5, page 27].
Theorem 2.1.6
Let H be a Schrédinger. operator on LP(RYN) then H+Xis (N, N + 1) — type R

for A > 0 large enough.

PRrOOF. See [Pan90]. O

Theorem 2.1.7
Let H be a Schrodinger operator on LP(RY) then H is
(@, a+1) —type R for o := NL% — %’

PROOF. See S. Nakamura [Nak94, Theorem 8]. See also note 4 at the

end of this chapter. O

2V_(z) := max{0, V(z)} and V4 (z) := min{0, V ()}
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r' Theorem 2.1.8

Let H be an n x n matrix with real eigenvalues. Then H is of

(n—1, n)—type R . H of (0, 1)—type R if and only if it is diagonalizable.

Proor. Consider an n x n tridiagonal matrix :

a; by 0
SR
A= (2.6)
Ap—1 bpy
0 Cp—1  Op

with either ¢; = 0 for all 4 or b; = 0 for all 7. Let cof(A) denote the matrix
of cofactors of A, that is cof(A) = (d;;) where d;; is the ij — th cofactor

of A, given by

(—1)i+j(a1 14 .'aj_l)(bj 1585 bi_l)(aiﬂ %% 8 an) 1 1> ]
dij = (a1 i e ai_1>((17;+1 55 (ln) ., =7

(—1)i+j(a1 sis ai_l)(ci s Cj_l)(aj+1 5% .an) . 1 7

Inspired by []}_,, » = 2" we assume [[}-,.s; = 1 for any s € R,

whenever n — m = —1.

Expanding along the first column we get the determinant of A,

det(A) = (ar...a,) —cibi(ag. .. ap)

= (a1a2 = Clbl)ag oGy
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Since either ¢; = 0 or b; = 0,

det(A) = [] a. (2.7)
=1
Next, suppose Aj,..., A, are the real eigenvalues of H and z ¢ R.

Then H has the Jordan canonical form

/\1 bl 0
H =
bn——l
0 X
where b, = 0 or 1 for all v.
Thus
& = )\1 —bl 0
(z— H).=
—'bn——l
0 zZ— )\n
This is a special case of (2.6) with ¢; = ¢y = ... =¢,_; = 0.
Hence
det(z— H) = [[(z=X\)  (by (2.7))

—_

N
<
]

(since z # A, for all v).

Thus cof(z — H) = (d;;) where
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(~1)i+j(z~)\1)...(z—/\j_l)(—bj)...(—bi_l)(z—)\iﬂ)...(z—)\n) , 1>7
dij = { TT% (2= A) , i=j

0 , B
If [l ;75 denotes the Hilbert-Schmidt norm and AT is the transpose of the
matrix A, then by the above together with the fact that

(z— H)™' = (det(z — H))""(cof(z — H))T we see that

o=y = |- o)

HS

n n d

:sz&m

n i H 1<v<ji-1 (Z - )\u) ’ ngugi—l(_bl’)

= Z Z iHSVSé (o " ’

v=1

2

(since d;; = 0 for all 7 < j).

Here we have used the fact that [|4]%¢ = 3.7 [[Aed|? for any orthonormal

system eq,...,e,.
Thus
2 B 1 ’
=m0 = TSI 2 11 o) e
siiﬂ{% (2.9)

i=1 j=1 j<v<i
(since |-b,] <1 for all v).
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Now, recall the distance of z from the spectrum o(H) is
dist (z, o(H)) :=inf{z—u| : 2 € o(H)}. (2.10)
In this case o(H) = {\,..., A}, and we can find A € o(H) such that
dist (z, o(H)) =} — N. (2:11)

So, k=N <]k —A] foralliand

2 nooi 1 |26+
H(z_H)_HHSSZZ o (2.12)
i=1 j=1
Case 1: ]ﬁf < 1.
i 1 2 1 |26=9)
H(2~H) HHS = Y Zzlz_/\
i=1 j=
1 2 n i
= 7 X ZZI
i=1 j=1
I Ps,
- z— A\ ;Z
- 1 Pam+1)
 la=23 2
Hence
n(n+1)
" 1 n(n+1) Vo2
H(Z—H) 1HHS £ L_)\; 2 5 gj (2.13)
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Case 2: ﬁ[z > 1.

2(i—j+1)
(from (2.12))

o= < 30

Nl

IN
w
I
>

IN

L (2.14)

From (2.13) and (2.14) we observe that in any case

nn+1) @™

”(Z - H)_IHHS = 9 : 54"

forall 2 ¢ R. (215

Since all norms in a finite dimensional space are equivalent, we con-

clude that

n—1
H(z - H)_IH < c@— for all 2z ¢ R and some ¢ > 0. (2.16)

REN

If H is diagonalizable, then
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This is a special case of (2.6) with ¢; = b; =0 forall t=2,1...n—1.
In this case cof(z — H) = (d;;) where

0 , 1>
dg=9q [Dulz=X) , i=j
0 i<
and
n 2
2 Hu;éi(z—)\l’>
(z=H) s < R
I les = 20 e
n 1 2
- ; 2% — Ay
12
<
T olz—=A
with A chosen as in (2.11).
Therefore
: vn
(z=H)|ps <
o=y < 22
< é—j (2.17)
Thus,
Iz = B)7|| < BCE for some ¢ > 0. (2.18)

Conversely, if H is not diagonalizable, then from (2.8) we have

2

=7l = 3T sy IT (00

i=1 j=1 [j<v<i j<v<i—1
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with by, # 0 for some k € {1,...n —1}. Thus

2

n

z= B Ns = D=

i=1

. 4=l

—b

e =
1=2 j=k; <v<i— 1

Where kl = mll’l{j : bj7bj+11‘-~7bi—1 ;é O} But 'SZ‘ = IS(Z—' )\1)1

foralls =1,...,n and b = 1 for all k; < j <i—1. So if we set

R(z+ A) = max{R(z — ;) : i=1,...,n} then

R R
34 H(z H) HHS & 1“%,314—@%2— )2

i=

1

© g &
* 2 AT R~ F 2= ﬁwmzmm

i=2 j

with a; > 2 for all j.

: nK+ZKZ 4+p}%z+/\)\]% (2.19)

B4’
(4 + R(z — A*

where K =

K — 0as Sz — 0 but gy — 0° @i times faster, as 3z — 0
for any fixed R(z + A). Therefore it follows from (2.19) that there is no
D > 0 such that [84%|((z — H) Y|%s < D for all z ¢ R. O
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2.2 Properties of (a, §)—type R operators.

Definition 2.2.1

A Cy— Semigroup T on X is a family of operators

T:={T{t) :t eR*} CB)

satisfying
Tt)T(s) = T(t+s) Vtsc R" (2.20)
TO) = I (2.21)
T()f € CRYX)Vfe X. (2.22)

Further, T'is said to be a contraction semigroup if for each t € R, T(t)
is a contraction, i.e. |[I'(¢)| < 1.

Definition 2.2.2

IfTisa Co-Semigroup. on X, then the (infinitesimal) generator, H of
T is defined by the formula,

TWf-f d

t—0 t

with maximal domain, that is ©(H) is the set of all f € X for which the
limit (2.23) exists.
Lemma 2.2.3 (Hille - Yosida Theorem)

H is a generator of a Cyy-contraction semigroup if and only if H is closed,

densely defined and for each A > 0, A € p(H) and |(A — H)7 Y| < A1

PROOF. See [Gol85, pages 16 — 17]. ' O
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Lemma 2.2.4

If {T(t)}¢>0 is a strongly continuous semigroup with generator H, then it
can be extended to a strongly continuous one-parameter group {U(t)}icr
if and only if —H generates a strongly continuous semigroup {S(t)}:>o.

In that case {U(t)}ier Is obtained as

Tt)  fort>0
S(—t) fort<O.

L(t) =

PROOF. See Davies [Dav80, Prop. 1.14]. O

Theorem 2.2.5
H is of (0, 1) — type R with the constant ¢ = 1 if and only if iH Is a

generator of a one-parameter group of isometries on X .
Proor. First,

necessity: Assume H.is of (0, 1) —type R .

Clearly +iH are closed densely defined (by the hypothesis on H).
Suppose A > 0. Then A\ € p(£iH) since o(H) C R, and

1. X
(= 4+ H)!
ﬂi )

= |(=x£H)TY|

(A £iH)TY| =

< R(iA) T
= AL

Thus by Hille - Yosida theorem (Lemma 2.2.3), &iH are genera-
tors of contraction semigroups. Finally, the conclusion follows by

invoking Lemma 2.2.4.
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sufficiency: Suppose i1 is a generator of a group of isometries {T'(¢)}.

Then for all w € C with Rw # 0, w € p(iH) and

2 'H)‘1 fo T(t)e ™Mdt  if RA>0
— Z o
- fooo T(t)e Mdt if RA <0

(see Bratteli and Robinson, [BR87, Proposition 3.16]).

From this

I = a7

IN

T e dt

< / e PNt gt
0
R

Now put z :=

3"

Theorem 2.2.6
IfH is of (o, a+1) —type R then \H is also of (o, o+ 1) — type R

with the same constant ¢ for all A > 0.

PRrROOF. Let z ¢ R, then

AR Yy
- -

< e ’3341 ( |

> (hypothesis)

o 2
"’,\

= Wep W ()

- o ()
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REMARK 2.2.7

The type of stability shown in theorem 2.2.6 will be called scale invari-
ance.

Theorem 2.2.8

If H is of (o, a4+ 1) —type R then AH is also of («, o+ 1) — type R

with the same constant c for all 0 < A < 1.

PRrROOF. Let z € C\ R, then

[z =2l = G -]
- btz
< 1A—1i013§‘1<‘§%> (hypothesis).

) PN RVACEN -
Thus |[(z = AH)TY| < PYeRd™ W | Fg—

< 47! —ﬂ (since A < 1)
RE '

REMARK 2.2.9

The type of stability shown in theorem 2.2.8 will be called scale sub-
invariance.

Theorem 2.2.10

If H is of (a, 8)—type R then H + ) is also of (a, ) — type R for all
AeR.
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PROOF. If A € R and z ¢ R then $(z — A\) = $z. Therefore, using

Lemma C.0.9 we get

Iz = E+0)7 = Iz = %) = )7
=N
Sk

IN

(hypothesis)

where ¢; = ¢2%/2 (). 0

If Hisof (a, §) —type R then it is also of (a, ) — type R with
the converse not true in general, Remark 2.0.6. However the following
result provides some sort of converse to this. |
Theorem 2.2.11
If \H is of (o, ao+ 1) —type R for all A > 0, then H is of
(a, a+1) —type R with the same constant c.

PROOF. Let z ¢ R, then

[z =) = [pO=—am)
= W[z = 2H)7Y|

< Wcﬁud*<§§g

[P
= ¢S4 for all A > 0.

) (hypothesis)

TR
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Letting A — oo, we observe that

o) < e ()

Conjecture 2.2.12

If Hisof (o, B) —type R, > aand 0 &€ o(H) then H is of
(a+1, 5) —type R .

Theorem 2.2.13

Let H be of (o, ) — type R. Then H? is of (%’8_1, B) — type R .

PRrROOF. Given z ¢ R, let 0, := argz (the argument of z). Therefore

using (C.1) of Lemma C.0.7, we have

1 1
BVA Ll - R4

2
I — | cos 8,
2

Kl — cosb,
2l + cos b,
H ksin® 6]
21 + cos b,
3 bin 0

4 1

REE
4H
SEN

Also <\/E>2 < ﬁ(z), Lemma C.0.8.
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So, from

We(z—HY) = (Vi-H) ' = (=Vz—H)™

(v = 17+ vz = )

EARYEN

VARV

(V2 ()" ( 14 )ﬁ”
e 34°

cQa/42ﬁ <Z>a/2 1215/2—1/2
REN

/440 @ (o +p-1)/2

s .

we get “(z — HQ)_IH

IN

i
1

IN

(hypothesis)

IN

IN

Proposition 2.2.14
Let A be of (a, a+1)—type R with

@°

”(z - A)_lu <e—2 —  for some ¢; >0 and a > 0

- ’_C\\Szia+l

and B of (8, f+ 1) — type R with

B
I(z=B)7| < 02%,64_1" for some ¢, > 0 and § > 0.

<Z>a+ﬁ+2

F\\Wja+ﬂ+2 :

2= =GE=-B)7Y < (1+V2a)1+v2e)|i+A) -+ B)7

PROOF. (z—A) and (2 — A)~! commute on D(A) and hence (i + A) and
(z — A)~" also commute on D(A) since by linearity of (z — A)~!, for all
g € D(A), we have
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(z—A)'(i+A)g =

Also, (i+ A)~! maps into D(A) and hence (i+A) and (z — A)~! commute
on R((s + A)~1) .

The operators D := (i + A)(z — A)™!, H := [(i+ A)~' — (i + B)™!]
and E := (i + B)(z — B) ! are defined everywhere and bounded on X as
can be seen by writing D = (i+2)(z—A) ™ —I and E = (i+z)(z2—B)"!—1.

Now for f € X we have

D[(i+A)™ - (i+B)"' Ef
= (i+A)E-AT[(i+A4) 7 - 6G+B) ) (i+B)(z—B)"!f
= (i+A)(z-A)"(i+A) ' (+B)(z-B) ' f-(+A)(z— A (i+B) i+ B)(z—B)"'f
= (-ATH(+AGC+ATE+B)z-B) - (i+ A)(z— AN (z—- B)'f
= (=A)7(i+B)z-B) ' f-(i+A)(z-A) ' (z-B)'f
= —(-A) M -E+2)z=B)f+[I~(+2)(z=4) " (z=B)'f
= —(-A) T +({i+2)-A(z-B)f+ (2 - YV~@+@@—M”@—BVV
= — (=47 -(z-B)']f.

)"
4)”

Using lemma C.0.8 we have,
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iD= i+ 2)(z =47~
= 1+(1+L21)H(z—;4)"1H
< 1+(1+M)Cl|<5<21>a+1
< 1+V2@ ¢ I%?““
& (1+\/§cl)$
Similarly, B < (1+ v3e,) .

Therefore

Z> a+42

O R IR N[t

at+fB+2°

Definition 2.2.15

Let § be a topological algebra of complex-valued functions, H be an
operator on a DBanach space X and there exists complex number
A € p(H), such that the resolvent function 7\(z) := (A —2)"! € §.
Then H has a § functional Calculus (or admits § functional Calculus)
if there exists a continuous homomorphism f +— f(H) from § to B(X)
such that whenever A € p(H) and r € §, we have r\(H) = (A — H)™L.
Theorem 2.2.16

If H is of (o, oo+ 1) — type R | for some a > 0, then H admits

C°(R) functional calculus.

PROOF. See Balabane et al. [MJ93, Theorem 4.11] O
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Notes and remarks on Chapter 2

1. According to H. Tanabe [Tan79], a closed operator T' on X is said
to be of type w where 0 < w < m, if supp(7) € S, and for
O<e<m—w, (S, :={z : hrg(z) < w}) there exists a pos-
itive constant c, such that |[(z — 7)Y < &, z ¢ S,4c. So operators
of type 0 are a bit restrictive but correspond to (0, 1) —type R op-
erators in our nomenclature. In both cases, the names indicate the
location of the spectrum and the growth condition of the resolvent.
DeLaubenfels [Del.93] also uses this idea in the study of a — type V
operators, whose resolvents are polynomially (“degree a”) bounded

with spectra in V.

2. Proposition 2.1.2(1) appears in Hille and Phillips [HP81] where it is
shown that o(Hy) C [0,00) and —H is the infinitesimal generator

of Gauss-Weierstrass semigroup

i

(Guf)w = 5(nt)”

o=

/_ fx—y)edy, fe PR

3. In Kato [Kat80, IX, sec. 18] it is shown that

e = o) < & Fm? Larg(z), =€ p(Ho) = C\ [0,00),

i

This is our Proposition 2.1.2(2).

4. Theorem 8 in S. Nakamura [Nak94] is stated for (o, o+ 1) — type R

operators. However, the proof given shows that Schrédinger opera-
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tors are of (a, a+ 1)’ —type R which is stronger than the stated

result.

5. The following are known results used in this chapter:

Lemma 2.2.3 Lemma 2.2.4 Theorem 2.1.6
Theorem 2.1.7  Theorem 2.2.16

6. Our contributions in this chapter include:

Proposition 2.1.1  Proposition 2.1.2 (new proof)
Proposition 2.2.14 Theorem 2.1.3  Theorem 2.1.8
Theorem 2.2.5 Theorem 2.2.6  Theorem 2.2.8
Theorem 2.2.10 Theorem 2.2.11 Theorem 2213




Chapter 3

Smooth functions of rapid

descent.

3.1 Preliminaries

We may view self-adjoint operators in Hilbert space as the best un-
derstood properly infinite dimensional abstract operators. If we desire
to recuperate some of their nice properties without the stringent self-
adjointness hypothesis, we are led to a non-self-adjoint theory such as
Dunford’s theory of spectral operators [DS71] with the key tool being
the resolution of the identity, or Foias’ theory of Generalised spectral Op-
erators [Foi60, CF68] with the key tool being the distribution theory. Our

basic concept, as in Foias theory, will be functional calculus.

We have already seen that if H is of (o, o+ 1) — type R | for some
a > 0, then H admits C§°(R) functional calculus (Theorem 2.2.16). In

fact a bounded operator with the spectrum lying in a compact set V' C R,

has C*°(V') functional calculus. On the other hand, an operator H acting
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on a Hilbert space H, admits a C'(R) functional calculus if H is self-
adjoint. So we are really interested in a large enough intermediate topo-
logical algebra 2, with C5°(R) C % € C(R) such that (a, B) — type R
operators in particular (and spectral operators in general) admit a A

functional calculus or albeit for a restricted range of « and 3.

In this chapter, we construct such an algebra and prove some related
results of independent interest. We characterise this algebra fully to en-
able us construct a functional calculus for (o, o+ 1) — type R operators

in Chapter 4.

3.2 The topological algebra 2.
For 3 € R, we define &” to be the space of smooth functions f : R — C
such that for each r > 0 there exists ¢, > 0 so that

d’f
AT

) =

f(x)‘ < @, forallz e R (3.1)

REMARK 3.2.1
e Observe that GG C &P+ for all 3,7 € R.

o If f € &P then so is f where f(z) := f(2) for all z € C.

Define the translation operator 7. on the space of functions f: R — C
by 7.f(z) := f(z +¢) forall z € R andsome e € R.  Then we have

the following Lemma.
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Lemma 3.2.2

For 3 < 0, the space & is invariant under translation 7. for e > 0.

PROOF. Tet € & then by (3.1) we can fing ¢ > 0 such that
- f(z) < e B forallz e R.

d’f‘
dxr 7e/(2)

r

But

flz+e)

dzr

< o @+gtr by use of the chain rule,

o (@@l e.vyhﬁ

Pl
with (E%)) bounded on R and the bound goes to 1 as € — 0, see
figure 3.1.

IA

Therefore  (y7=# \j; Tef (@\

6 T ]
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r=0
Now set D, . := ¢, sup ( @@é) , then we have
z€R )

d7‘

S ie <D,.0" " zeR.
dar < Drew ‘

TEf(x)

Thus 7. f € &°.

Theorem 3.2.3
The space
A = Upo&°

Is an algebra under pointwise multiplication.

43

(3.2)

PrOOF. Let f,g € A and a, A € C. Then f,g € C*°(R) and we can find

Cfny Cgm € (0,00) such that

d" ¢
< g,n

dar "
E;nf(x)( < @;{’_ﬁl and

for some Gy, 3y < 0 and all n > 0. So we have

(010 + 2g(a) = o @) + AL (0

(by linearity of £-). Therefore

n

= (@ (z) + 2g(a)

n

= ’ad—i% (LL‘)-I*)\@; (x)

Cfn Cgmn
S Wges TR s

bl ern+ Wegn
@"’ /
(where (1= max{g,, 5:})

Cr+gn

IN

= Chpgm > 0, ﬁ'< 0 forall n>0.

@
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Therefore of + A\g € 2, showing that 2 is linear.

Next, by the Leibniz rule,

n

nl &, A
Z m%ﬂm)dwn_ﬂ(fﬂ)

7=

ar
daxm

(f(2)g())

< Yo
- n!
[ where C; := m max(Cy i, Cgni) |
_ @)ﬁﬁ-ﬂz—n Zn: 94
i=0
= d, """ d, >0
Thus fg € 2. (3.3)

Definition 3.2.4

The support of f is the set

supp (f) == {z € R+ : f(z) # 0}

This notion of support of a function will feature prominently in the rest

of our work.

The algebra 2 contains the sub-algebra C°(R) of all smooth functions
with compact support. The completions 2L, of A or C°(R) with respect

to the norms

|m:Z[Wmewx (3.4
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are also algebras under pointwise multiplication, and much of what we
prove below could be extended to these spaces. In fact we have the
following.

Lemma 3.2.5

The space C°(R) is dense in 24 for each norms ||||,,, ;.
PROOF. Suppose that f € &” for some 3 < 0. Let ¢ € C2° such that

1, <1
0, >2

¢(s) =

see Theorem B.0.6 in the Appendix.
Set pim(s) := ¢(s/m) and f,, := ¢, f. If n > 1 then

n+1

= flln = 3 /

n+1

> zk.r_

— Gl # Y d.

dr—k i
W(l = ¢m(2)) @ dr,

IN

i)

by the Leibniz formula.

We make the following observations:

1. For k=r,
{ e { =@ W = L @) L gl @7

< @ dmlz) @

= cll— ¢n(z) @

for some ¢ € (0, 00).
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2. supp (%(1 - gbm(x))) C{r : m <p <2m)} for k < r, while
supp (1 — ¢ (2)) C {z : W > m}.
3. For s > 1 we have the bound,

dS
das

(1= ¢m(2))

< M7 X (2) < € @7 Xim(@)

valid for m > 2, where y,, is the characteristic function of
{z : m<W <2m}.

4. From 3, we conclude that -

£ /(@)

for0<k<r.

These yield

n+1

If = Ball iy = EZ @W° 1 dz  for some &> 0
r=0 M>m
which converges to 0 as m — oo. O

It is important for application and our proofs in Chapter 4 that the

functions in 2 need not be R-integrable.

3.3 Functions that lie in 2.

Definition 3.3.1

Let By(R) denote the space of bounded complex valued functions on R
with the uniform norm. A set § C By(R) is said to distinguish
between points of R if for each pair s,¢t € R with s # t, there is a
function f € § such that f(s) # f(¢).

do=r (1= 6m(@) @™ < e, @7 xm
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Lemma 3.3.2 (Stone-Weierstrass Theorem)

Let § be a closed sub-algebra of Cy(R), with the supremum norm ||||,
and closed with respect to complex conjugation. Then § = Cy(R) if and
only if § distinguishes between points of R and for each finite point of R,

contains a function which does not vanish there.

PROOF. See for example Dunford and Schwartz [DS58, page 274]. O

Example 3.3.3
Let w € C\ R and set r, := ==, = € R then r, € L.

Indeed

dr n!
@Tw(fﬁ) = W for all n Z 0

showing that r,, is smooth on R.

Next, set I' := R and 2z := #, in the notations of lemma C.0.10, (see

Appendix C). Then using (C.8),

n!
2001/ 2) )" H!
(VBo &)™
nl (V2 )™

= —Cayei @ '" forallz € R, and alln > 0. (3.5)

dTL

a1

With Gy € (0,1 — @u)~") in this case.

Thus 7, € 671 C 2. O

Corollary 3.3.4

2 is dense in Cy(R) with respect to uniform norm.
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Proor. Note that 2 is closed with respect to complex conjugation, see

Remark 3.2.1.

For z,y € R,
r#y <= 1y(z) #r,(y) for some w ¢R.

But from example 3.3.3, r, € & for all w ¢ R. Thus 2 distinguishes
points of R. Therefore by Stone-Weierstrass Theorem (lemma 3.3.2),

2 = Cy(R) with respect to the uniform norm. O

We are now in a position to prove the following perturbation result:

Lemma 3.3.5
Iff € Aandc,w € C withSw # 0 then (x + ¢)(w —z)"1f, (f+c)(w—2)"t €U

Proor.
@+o(w—a2)""f={-1+(c+w)(w-2)""}f = —f+ (c+w)r,f.
(where 1y, == (w — z)~1), and
(f + o)w—2)™ = fry, + cry.

Hence the result follows from Example 3.3.3 and Theorem 3.2.3. O
Theorem 3.3.6

For an arbitrary t € R and f € %, define [, by
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Then ft e 2.

PRrOOF. For z #t,

ZW%W B (@) (=1 m = R =)

k=0

+(m) fO(E —2) ™ (=)™

m)

M) < S e VO T -

Z k'(ka— 1)l @ 4" +em @ﬁ)

k=0

Thus

m)

p—o™"

IN

> oy @20 e <t>ﬁ>

IN
3
T+ N TN

k

e (@ﬂz%@mcm@") A
' @™ using (C.8)
' )Y@ ™ since B < 0.

|
=
bW
3

i

IN
S8
3
g
=
A
|
3
_|_
S

IN
=
3
+
8

Next, the fact that f € C*°(R) implies that

there exists a function f,,, continuous on some neighbourhood

(t — Oyt +0m), Om > 0; of t such that

fnla) =

[UOSE g (t— Gyt + 6m) \ {1}
f(m+1)(t), T =t.




CHAPTER 3. SMOOTH FUNCTIONS OF RAPID DESCENT. 50
From Taylor’s expansion
(t— )

1) = f@)+ ¢ =) @) + S5 ) 4 5 [ -0 )y

we have

HO=I@) iy C 2 py s L o

t—=x 2 2(t — x)
Therefore
W) ft) = ful=)
) = tm S
fl(t) f(t) f(ac)
= lim
r—t t—x
. f/ t) — f/ 1 " 1 ! "
= lim <%—§f (x)—m/w t—u)*f"(y )dy>
= 310,

Inductively,  f™ (t) T I ().

Consider [t —€,t + €] C (t — 0y, t + 0,,,) for some € : 0 < € < 6,,.
Then

1. fm and ft(m) are continuous and bounded on [t — €t + €].
2 (m+ DU () = fult) = 0 0)

Because of continuity of ﬁ(m) and f"1 we can find p,, € R such

that
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f;(m)(x)! < ‘f(m“)(x)‘ + pm, on[t—et+ ¢

<l @7 ol

which implies @™ " ' ft(m) (x)‘ < g1+ @

Since @)™ is continuous on [t — €, t + €], it is bounded and attains its
bounds there. Let ¢/, .1 = ¢pi1 + o] max {(m)m“_ﬁ} ,
TE[t—e,t+€]
4 -m~—1
Then t(m)(ac)l < do @
£ Cig @™ (since B < O and () > 1)

reEt—et+e.

Thus f, € L. O

3.4 Extensions of C°([0, 00)) functions to R.

We next present a series of results about smooth functions initially defined
~on the half real line but extendible to the whole real line. In particular

we wish to obtain an extension preserving the decay condition (3.1).

Lemma 3.4.1

There are sequences {ay}, {bx}  such that

1. b, <0 forall k.
2.5 dbd" <ocon=0,1,2,...
3. ¥ e tidbe)” = 1 forn=0,1,9, ...

4. b, — —oco0ask — oo0.

PROOF. see Seeley, [See64]. O
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Theorem 3.4.2 (Seeley)
Let ¢ € C*(R) be such that ¢ is bounded on R and

L, O0LE<l
o(t) =
0, £> 2,

Define E : C*°([0,00)) — C*(R) by

> o e (bit) f(bit) , <0
f@) £ 0

(EN)(t) =

Where {ax}, {by} are the sequences described in Lemma 3.4.1.

Then E is a continuous linear extension operator.

PROOF. Again, see Seeley, [See64]. O
Lemma 3.4.3
If f € C*°(R") with

L 39

for some 3 < 0, all 7> 0 and for all x >0, then Ef € &% C 2, where

E is Seeley’s extension operator.

Proor. Using notations of theorem 3.4.2 and lemma 3.4.1,

first observe that @) (b.z) vanishes everywhere except on the set

Q= {r : 1 < b <2} Soforz e @ wehave 1 < (hyz)? < 4
1

whence 2 < 1+ (byz)? < 5 or equivalently 7 < <b—,c1i)" < 5 So we

can find a constant n, such that G2’ < n, 2" ", B < 0 and all

0<v<r.
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Thus
BN < Zm b Zy, 7 B b 7 )
< Zm b zy, B e bt
< Zpk\ |bk|’"MTZc,,nr by’ forall z <0

where

< 00, since ¢ m) is bounded on R for all m.

Next, since by, — —o0 as k — oo we can find ¢ € R such that <i> < %
for all k£ and hence () = < bkx> < \/~< > brx) < ¢ br®), (Lemma C.0.9).

Thus

1 c
— — forall z €R andall b
o) ~ @ ’

implies (32" < &P @7 forall z €R, and all k,v e N.

IN

So we can choose ¢, so that

r- Max (e, 2" <@ P WP forall ze R

and hence,
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< S ldbd ME @

o0
< dEPRTY b
k=0

=: N, (r)ﬁ_r, z <0, and some N, >0  (3.7)

after summing up the series which converges by Lemma 3.4.1 .
Now set D, := max{c,, N,} then

d’l‘

<D, @
Ao’ < Drf)

(Ef)(x)

for some D, >0, forall » >0 and for all « € R. That is

Ef e 6% c . O
Theorem 3.4.4

Let f € C(R") satisfying (3.6) and define ||| by

=3 / O] @ da

Then
IEAL, < el

for some ¢, > 0 (where E is Seeley’s extension operator defined in

Theorem 3.4.2).

PROOF.

e, =3 { [ iroah e Oo o) b o

=0
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where

Therefore

F©(x)

Also,

W lde <

SMOOTH FUNCTIONS OF RAPID DESCENT.

k=0

A A dv

N Z % Z vi(r —v)! dxr—”(b(bkw) dx”f(bkx)
k=0 v=0

X - & r—v 4 (r—v) vr(v)

= ) & V,(r_y)!bk " (br) b £ (bie)
k=0 v=0

= Sy Z,ﬂ 0 ) )
k=0

% . <‘<E@1> li‘b—kd“ )
b ()

using Lemma C.0.11, in the Appendix C and Lemma 3.4.1[(2)]. Thus

EA,

(where M,

since

= g+ Z { i " Pow| e dx}

0
< MY kb Zy, / 5 b
r=0 k=0 —0o0
v) <k> <bkm B
x | (b <m|> T d(bea)
71 - &6
< I +ZM }:iak|< |>> Z/O @) 0 e

fr'
max e G
o<v<r | wi(r —v)! x<%

o™ (brz) Per)™ =0

¢(r U)(bkx) bra)” 71/’} < oo,

for all m and all z : bz > 2).

99
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That is

EAl, < ILﬂlZ+ZMrlLﬂliZml<@>

Py
< IE A +n)Lalifl,
% b\
where L, = 01;1%}; (Mrkgglakl <m> )

But

Since b, — —oo as k — o0, we have <b%> — 1 as k — oo and
k

1

< 1 for any k. Therefore we can find a constant N, > 0 such

—>T —L ) < N, for all £ and hence
Pl >

<L
2]
b%

Ly < max (MTNT;M bl )

( < oo  byLemma3.4.1.)

So,
IEAlL, < callflly (3.8)

with ¢, = 14 (n+ 1)Ly 0
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Example 3.4.5
Let f(z) := e™®"t, ¢t > 0, integer n > 1. Then Ef € A, where E is

Seeley’s extension operator.
Indeed,
f(z) - u,<oocasz — 0 forall 7>0. (3.9)

Thus by Theorem 3.4.2 Ef € C*°(R).

Further,
(r) Zerk tlc nk— rf( ) 7“21

where e, (n) € Z is defined in the Appendix A. (See proposition A.0.1
and remark A.0.2).

Therefore for z > 1, and r > 1
Z erk(m)t" ™ f (2)
n'r r Ztk

= @)Y = (3.10)

IN

with ¢, = 1IEI§2<T{€M( )}
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Also by means of Taylor series expansion,

(r+1)!
tr+l Mnr—}-n

[fiz) = ™ < >0, 7>0. (3.11)

Substituting (3.11) into (3.10) and using é = %x) < %)5 for x > 1 we
get,
’ e (T DTSR
\f( )(x)‘ S Cr m el I:dnr-l—n
I i
= r<r+ )tXJk:O Mnr, x>1
ISk (V)"
S e, (7"+ ) Zk:O (\/7) <x>—n—r

t
= d.@ , r=2l

From (3.11) and comments following it we can set do := (‘/?)n.

For the case z < 1, since f(z) is bounded on [0,1] for all r >0,

) < sup [fO()

z€[0,1]
- 1,

< o

(with I = [0,1]).

But then we can find a constant M, > 0 such that

o, <dM @™, wel
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since 1 < () < /2 for x € [0,1]. Now set

pri=d.max{1,M}, r>0 (3.12)

whence
lf(’")(x)‘ <p, @ """ foral x € [0,00); 7 >0. (8.18)
Thus by Lemma 3.4.3, Ef € 6™ C 2. O

REMARK 3.4.6
Note that if ¢ > 1, then the constant d, (and hence p,), does not depend

on ¢, since in this case

(r+ 1! (V2)" St
t
T’(T’—i— 1>' (\/—Q‘)n+r

t
cr(r+1)! (\/5)
=

de = &

IN

By

n+r

IA

Notes and remarks on Chapter 3

1. The following are known results used in this chapter

Lemma 3.3.2 Lemma 3.4.1 Theorem 3.4.1
Theorem 3.4.2

2. Our contributions in this chapter include:

Lemma 3.2.2 Lemma 3.2.5 Lemma 3.3.5
Lemma 3.4.3 Theorem 3.2.3  Theorem 3.3.6
Theorem 3.4.4 Example 3.3.3  Example 3.4.5
Corollary 3.3.4



Chapter 4

The functional calculus

4.1 Pre-requisites

In this chapter and the subsequent chapters we will need some notations

and theorems from the theory of functions of complex variables. Proofs of

theorems in this section can be found in Conway [Con95] and are therefore

omitted.

Definition 4.1.1

If v is a rectifiable Jordan curve and n(y : a) denotes the winding
number for a € C\ 7 then v is said to be positively oriented if

| n(y:a)=1. A curve v is smooth if it is continuously differentiable and

7'(t) #0 for all ¢. A positive Jordan system is a collection

[':={m,...,7m} of pairwise disjoint rectifiable Jordan curves such that

for all a ¢ ;, for all j

n(I :a) ::Zn(yj:a):Om*l

J=1

The outside of I'is the set out I':= {a € C : n(I': a) = 0} and the

60
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inside of of I' is the set ins I':= {a € C : n(T":a) = 1}.

We shall use the same notation for the trace of a curve and the curve

itself. What is meant will be clear from the context.

The following lemma will be used a lot in our proofs.
Lemma 4.1.2
If G is an open subset of C and K C G is compact, then there exists
a smooth, positively oriented Jordan system I' := {11, Yy, ..., T} con-

tained in GG such that K Cins " C G.

PROOF. See [Con95, page 4]. O

It is often convenient to think of functions f defined on C as functions
of the complex variables z and Z rather than the real variables z and .

These two sets of variables are related by the formulas

Z = x4y Z = xz-—1y
2z
2%

N

T = Z y =

e ‘

Therefore if f is differentiable on an open set G, we define the deriva-

tive of f with respect to z and Z by

8f = ¥ =

- of _ 1

af - 9z T2
) 1

0z 2

These formulas can be justified by an application of the chain rule.



CHAPTER 4. THE FUNCTIONAL CALCULUS 62

Integrals with respect to area measures on C will be denoted by

/ fdzdy = / Fle)ydudy = / f(z,y)dzdy with z =: x 4+ dy.
e & @

Contour integrals will be denoted by [.. fdz = [.. f(z)d=.

Often we will switch from area to contour integration with the help of
Green’s Theorem,
Theorem 4.1.3 (Green’s Theorem)
If T is a smooth positive Jordan system with G := ins I,

f € C(G)NCYG) and &L is integrable over G then

_g [ %
/Ff(z)dz——2z/G gdxdy. (4.1)

Corollary 4.1.4
Let H be an operator on X with G C p(H) and g(z) := f(2)(z — H)™ ! is
such that g € C(G) NC*(G) and is integrable over G then

/ (z— H)~ 1da:dy—~—/f (z — H) dz. (4.2)

Proor
0 -1 _ d 1 1
s @G-8 = %%f(z)'(z—H) + 5oz~ H) f(a)
= 5;/(2) (2= H) P—(z—H) f{ )55

Using the formula % =1 (g—i + ig—g) , put g(z) =z:=x+1iy.
Then & = 1(1-1)=0.
Therefore Z (f(z)(z — H)™) = 2 f(2)-(2— H)™". (4.2) now follows from

(4.1). O
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Theorem 4.1.5 (Cauchy-Green formula)
If f € C}(C) and w € C then

fw) = —1/ 8—{(2 —w) tdzdy. (4.3)

w CGZ

4.2 The definition

The motivation for our definition of f(H), for H of (a, a)—type R and
f € 2, comes from two ideas. Firstly, a version of Hormander’s concept of
almost analytic extensions [Hor70, Hor83], as contained in the following
definition.

Definition 4.2.1

Given f € 2 and n > 0, an almost analytic extension of f to C is

[0 (z)(iy)"

Foulma) = ;—T!——w(ﬂc,y) (44)
- {f<x>+ ) }m,y)
where
ow) =7 (&) (45)
1, H<1

and 7 is non-negative C>°(R) function such that 7(s) =
- 0, 4>2

Lemma 4.2.2
Let f € 2, then

2 fonl(z, y)‘ =O0(}y") asy — O for a fixed x. Moreover

we can find ¢ € R such that

ggﬁp,n(m‘,y)‘ <dpy"asz—zeR



CHAPTER 4. THE FUNCTIONAL CALCULUS 64

PROOF.

7!

- n o oe(r+1) )" ) () (i)
2 ooy = IO ) 15 O oy
r=0 '

and T:O
d = - x)i(iy) ! “L F0) () (iy)"
2 (fane)) = 2—((—[%—)— eto)+ o
thus %(fwn(z)) = %( gpn—l—ia—g?) (2)
n ) ()0
= Iy O g i) +
1 [ r0 (2)( (1) ™) (&) (i)™
+ E{Z_:lf ((T)_(ly))‘ + 1 Zf (T)_Zly ]w(x,y)
"0 (@) (iy)T 0
- %(Z f—(—?(y—)> <<pz+isoy><z>+§f<n+1><x>%w<z> (4.)
r=0 ' i
Now,
supp (@ +ipy) C {(fc,y) : 1S%§2}
= {(zy) : @<U<2@} (4.7)
C {(zy) 1Y <2@}
Therefore @, + i@, vanishes on the strip @ = {(z,y) : -1 <y < 1}
So
Gona))] = 2@ for @y e 0
8_ em\ T V) = g n! b
= Mmty‘”
With M, = L0 g |2 F = oy
= PO Thus, [2f,n(s,y) = O as B — Ofora

fixed z.
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Moreover, since f € 2 we can find some 5 < 0 and ¢/ > 0 such that

\f(n+1)(x)‘
2n!
@ for all (z,y) € Q

M,

IN

CI

IN

A

o0

since (:c)ﬂ_"_l < 1 for all z € R. Therefore %(f%n(fc,y)) < " as

g g€ R =
Lemma 4.2.3
fplzy) =7 (%) with 7, a non-negative C2°(R) function such that
1, H<1
7(s) = :
0, I>2,

then [y + tp,)(z,y) < % for some K > 0.

Proor.

putal = ot (%))

Also

el y) = "
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Therefore, since 7' is bounded on R, we can set K := 3sup,cg ['(5)

to obtain,
K[y 1
Pz +i0y)(T,Y) = = [——Jr—}
K[2@® 1 } :
< —|=5+—| (using (4.7))
3 [@2 @
g 2
S
O
The second idea in our definition of f(H) comes from the
Helffer and Sjostrand [HS89] integral formula,
1 {of _
H)=— | —{z—H)" :
() = = | (e~ H) dady (19

for a suitable function and operator H.

Theorem 4.2.4
Letn >a >0, f&®AandH be of (o, a+1)—type R. Then the
integral )
1 [of
H)=— [ =2(z— H) 'dad 4.9
== [ St~y (4.9)

is norm convergent and defines an operator in B(X) with

If(H)| < callflly, for some ¢, > 0. (4.10)

PROOF. Suppose |z — H)7Y| < céﬁ%f forall z ¢ R (hypothesis).

We will use the notation (z,y) = z + iy := 2.

We observe that by (4.6), gé is continuous and hence the integrand is

norm continuous for z ¢ R.
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Further,
i, .
wwp() € (@) 7(%)>0)
o
C {(w,y) @32}
= {(z,y) : 0< Y <20}
=i ¥
2. '
supp (@g +ipy) C {(x,y) : 1S—<3-§§2}
= {(z,y) : @ <Y<2@}

67
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3. For z € [supp (¢) Usupp (¢, + @y)] \ R,
_1 @
z—H (e
( 7Y < e
)"
ly'ole
ST mﬁ 0"

w28
S cd /Qly|a+1

4. [z +ipy)(z,y) < % for some K > 0, Lemma 4.2.3.
Also, since ¢ is bounded, let M := sup,c{lp(2)}.

Therefore, using the expansion (4.6) and the estimates above, we have
» K
=X (Z) + M

pay < & / / ( 0y

-2 (Z D K 6 (e

D @) W v (2)) dady.

f(r)

f(”+1)(aj)‘ 78 Xv(2)> h/‘@Jrldat:dy

+M

Integrating with respect to y yields the bound

IA

ol < <27 (ZW i P i Rl [W‘“}Z@-W)dx
-/ (Z
r=0
c5/2on—

= Ca “ﬂ|n+1 with ¢co = T . max{K,M}.

@) @+ e @>”) dz

For an operator H of (o, o+ 1) — type R , we can now associate each

element f of 2 with an operator f(H) € B(X) given by the formula (4.9).
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We then study the properties of the map

B(X)

k:2A —
[ f(H).

REMARK 4.2.5
1. The integral (4.8) appears in Helffer and Sjostrand [HS89], see
note 1 at the end of this chapter. Similar integrals play a central

role in the theory of uniform algebras, Gamelin [Gam69).

2. It may seem from the computation above that our definition of f(H)
depends implicitly on the cut-off function ¢ and n. However we will
prove shortly that f(H) is independent of both ¢ and n, provided
n > a.

Lemma 4.2.6
IfF e C®(C) and F(z) = O(W°) asy — 0 for some B> a + 1, then

1 [ OF 3
—;/c%(z—H) dady = 0. (4.11)

PROOF. Let F' have support in {z = (z,y) : bl < N andff < N} and

- define {25 for small > 0 to be the region {z = (2,y) : pf < Nandd < | < N}
(see figure 4.2).
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Lgl
Ly Ly
Ly f
)
1 o
N
Ls
Lg 1 Lg
, o

Figure 4.2: Close up on the support of F' by compact regions.

1 [OF
A= —= | —=(z-H)"
= (2 | ) dxdy
1 [ OF
= —— | =—(2— H) 'dzd
T Jo 0Z (= ) dedy
= — lim ! 8—F(z — H) 'dady

§—01T Qs 0z

= lim L/ F(z)(z — H)"'dz (Green’s Theorem)
~ fim e
= lim 2WZ / F(2)(z — H) 'z

S 6lgn0 é </L1 F(2)(z — H)'dz + /1:5 F(#){z — H)_ldz>
since [supp (F)] N [(Ur_yL,) U (UE_4L,)] = 0.




CHAPTER 4. THE FUNCTIONAL CALCULUS 71

Now for (z,y) € Ly ULs C C\ R,

O _ (+WP+er 2Py
F\}Zia-i_l - ga+l = Jotl

e-m ) <e
Therefore
A < 2 0 Jim [ (PG +i8) + (o - iB])0 s =,

since by hypothesis the integrand is O(6°~*~1). O
Theorem 4.2.7
The operator f(H) is independent of n and the cut-off function ¢ defined

in (4.5), provided n > a.

PROOF. The norm density result of Lemma 3.2.5 together with (4.10)

imply that it is sufficient to prove this for f € C2°.

If f e CP(R) while ¢; and ¢, are cut-off functions define in terms of
say 71 and Ty, let ' /

Qi = {(x,y) : % < 61} for some ¢; > 0
= {@y) : —a@ <y<a@}
C (=1

Similarly let

Q= {(z,y) : —&@® <y<e@} forsomee >0

S {2z : pa(2) =1}

Now set Q = Q; N,

= {(z,y) : —e@ <y<eld} vwith € := min{e, €}
# 0.
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Then for z € €2,
. . " (@) (i)
Fonl®) = Fonle) = 3O 0y o)

= 0 since p1(2) = pa(z) =1 forall z €.

This exceeds the hypothesis of lemma 4.2.6, so invoking lemma 4.2.6, we

have f,, ,(H) = foom(H). That is fom(H) is independent of (.

On the other hand, if m > n > « then

2 - O () ()T " O ()G
Foum(2) = Fonl(z) = (Z PHEF 5~ UM) -

=: y""'K(z)  (some bounded K :C — C)

and since n + 1 > o+ 1 we invoke Lemma 4.2.6 to conclude that

Form(H) = Form(H). That is f,,(H) is independent of n. O

4.3 The homomorphism A > f — f(H) € B(X)

Henceforth we will assume that the condition of theorem 4.2.7
holds and write f instead of f%n unless a specific cut-off function
or n is needed for some purpose which will be stated.

Theorem 4.3.1

Let H be an operator of (a, o+ 1) — type R for some a > 0. If
I € CZ(R) has support disjoint from o(H), then f(H) = 0.

PrRoOOF. By definition 3.2.4, supp ( f) is a closed set. Thus by regularity
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of C, we can find an open set G with supp (f) CGand GNo(H) = 0.
Since by hypothesis, supp ( f) is compact, there exists a finite set of
smooth curves, {Y,}™, ‘enclosing’ supp (f) in G, Lemma 4.1.2. Thus if
we put I' := U, T, and D := insI" then

sy = -2 [y

= —2%2 f(2)(z — H)\dz

= 0 since f(z):O forall z e T, r=1,2,...,m

Corollary 4.3.2
Let H be an operator of (a, o+ 1) —type R for some o > 0. If f € A
has support disjoint from o(H) then f(H) = 0.

PROOF. Follows from theorem 4.3.1, inequality (4.10) and lemma 3.2.5.
- .
Theorem 4.3.3

If f,g €A and H is of (a, a+ 1) —type R then

(f9)(H) = f(H)g(H).

PROOF. We first assume that f and g lie in C®(R). Let K := supp (f)

and L := supp (g) so that K and L are compact subsets of C and write

1 [of . o
AH) = > C5’5—/(2—H) dzdy, z=:z+1y
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and g(H) gj;( — H) 'dudv, w=:u+iv
_ af 39 _ ir, =1 1
Then f(H)g(H) = //KXL o 8w H) (w— H) ' dxdydudv.

Using resolvent equation (1.5)

(2 — B (w = H)™ = (z = w) ™ w— H)™' — (z —w) (e~ H) ",

we may expand f(H)g(H) as

af o
f(H)g(H) = =) //K Laﬁai w)” 1(w—H)_1—(z»w)_l(z~H)_1]da:dydudv
_ -1 99 of -
Y <aw( ~TT feaste ) ld‘“dy) duce
=1 of Bg _
But
e 8f =1 ey [ i af =i
8z( —w) dzdy = 82( —w) dxdy

= f(w) (Cauchy-Green Theorem).

Also

( —w) tdudv = gi( — 2) " 'dudv

= g(z) (Cauchy—Green Theorem).

LK x L= {(k,1) : ke K,leL}
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These lead to the identity

sngny = -2 [ B8+ 2 [ O 52) (2 — ) oy
T R TR O 32)(x — ) ey
- -/ {f(z)ag(;) + %gu)} (= — H)*dudy
_ _%/KXL a(fg;(z)(z—H)_ld:vdy.

In order to prove that

we must prove that

1 [ 0k(2)

T Je . 0z

(z — H) 'dzdy = 0,
where k(z) 1= f(2)3(z) — (,f\g/)(z) Since k is of compact support and by
Theorem 4.2.7 and Lemma4.2.2 may be assumed to satisfy the hypothesis

of Lemma 4.2.6, this follows by invoking Lemma 4.2.6.

Finally, suppose that f,g € 2 and let ¢ € CZ° such that

1, <1
o]

0, l4>2
(See Theorem B.0.6 in the appendix), set ¢n(s) := ¢(s/m) and
fm = ¢mf7 Im = Qsmg, and hm = ff’fnfg

Then f,, — f, gm — ¢ and h,, — fg in the norm [, for some p > a.
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See proof of Lemma 3.2.5.

From above we have
hp(H) = fo(H)gm(H)  for all m.

We finally invoke Lemma 3.2.5 and (4.10) to complete the proof. O
Lemma 4.3.4

Let g € 2 with g = 0 on [0,00). If H is of (o, @+ 1) — type R énd
o(H) C [0,00) then g(H) = 0.

PROOF. For € € (0,00), let H. := e+ H. Then H, is of

(o, a+1) —type R, Theorem 2.2.10 . But o(H) C [0, 00) implies that
o(H) C [e,00), and since supp (g) C (o0, 0] we must have g(H,) = 0 by
Theorem 4.3.1.

Now 1 0
0 = H) = —— [ — - 4
o) = = [ SZaw)w - (e + 1) dude
= —1/3~(z+e)( _ H)ldzd
I @829 : s
1 0 9
= ) (2)(z — H) 'dzdy
= 96<H)
where z:=w —¢ and g. := 7.9 € Aby Lemma 3.2.2.
So by (4.10)

lge(H) — g(H)| = llg(H)|| < ca llge — ANy, forsomen > a, c, > 0for all € > 0.

Suppose g. € &% for some 3, < 0 and € > 0, where we set go := g. Then
ge (@) < ¢ @ for each x € R.
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Let 8 :=sup{f; : €€ (0,00)} < 0and c:= max sup {c..}>0.

O<T<" e€(0,00)
B and c exist and are finite, see the proof of Lemma 3.2.2. Thus

b @) @ < el T =

and the function h(x) = ¢ "~

i (9e(2) = g(2))] @ < hx)

for each €. Therefore by dominated convergence theorem we have

/ g (z) — ¢ (=) @ 'dr — 0ase— 0,

that is |lge — d¢l|,..;, — 0 as e = 0. Thus |lg(H)| = 0. O

nt1
For f € C*=([0,00)) such that Ef € 2 we define f(H) to be Ef(H)

where E f(H) is given by (4.9) with appropriate condition on |[(z — H)™Y.

Theorem 4.3.5

If f :]0,00) — C is such that

dT
dx”

o] < (36)

for some § < 0, forall r > 0 and forall © > 0; and H is of
(a, a+1) —type R with o(H) C [0,00), then f(H) is uniquely de-

termined and

If(H)| <k ”ﬂlnH k >0, whenever n > a.

ProoF. By Lemma 3.4.3 we observe that Ef € 2. So that
f(H)= Ef(H) is defined and f(H) € B(X).
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Moreover,

FCEN = IENHE]

Cnt1 Bl [(410)]
a1 |flli,;  (Theorem 3.4.4)

IN

IN

K |fl

n+1"*

I

Finally if g € 2 is another extension of f, set
h=g—Efe
which implies h = 0 on [0, 00) and thus by Lemma 4.3.4
R(H) =0,
Corollary 4.3.6

Let f,g € C*([0,00)) satisfy (3.6) of Lemma 3.4.3 with H of
(o, a+1) —type R and o(H) C [0,00). Then

(fg)(H) = f(H)g(H).

PROOF.

(Ef)(t) := { Yoo axd(bit) f(bt), t <0
1 (@), t>0
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and
> oneo akd(bit)g(byt), <0
g(t), t>0

(Eg)(t) == {

Thus (Eg)(t)(Ef)(t) := { (20 axd(bit)g (Bit)) (Xiczo axdBrt) f(bet)) , £ <0
gt f(t), t>0.

Clearly gf satisfies (3.6) of Lemma 3.4.3 and

E(gf)(t) := 2 o @k P(bit) (9.)(bet), t <0
g9(t) f(t), t>0.

Thus, (Eg)(t) - (Ef)(t) = E(gf)(t) =0, t=0.

Therefore by Lemma 4.3.4 (Eg)(H)- (Ef)(H) = E(g9f)(H).

ie. g(H)- f(H)=gf(H). m
REMARK 4.3.7

Theorem 4.3.3 and Corollary 4.3.6 show that the map

B(X)

k:2A —
Foihe FUE

- is an algebra homomorphism. We prove one more result to verify that x
is a functional calculus, a concept we will define shortly.
Theorem 4.3.8
Let H be an operator of (o, a + 1) —type R for some o > 0. If w ¢ R

and r,(z) == (w—2x)"' forallz € R thenr, € A and
ro(H) = (w— H)™%

PRrROOF. We have already seen that r,, € 2, Example 3.3.3.
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Without loss of generality, suppose that Sw > 0. For large m > 0

define Qs o= {l2:9) 1 W <mand % < < 2m}.

Y3 2m
é!
w
-m 72 12gl
O
-2m

Figure 4.3: Close up on C, over which 7,(2) is integrated.
The boundary of Q,, consists of two closed curves, both traversed in

the anti-clockwise direction, see figure 4.3.

With 7 as in definition 4.2.1, put

where A > 0 is chosen

1. large enough to ensure that w ¢ supp ().

2. so that for each m > 1, f < @ < 2m, for all (z,y) € Q,,. Thus,
(1/m) < X. Since (I/m) < 2 for all m > 1 we may assume that
A > 2.
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An application of Green’s Theorem yields

1 or
= —lim = | Z2G_m)4
Bil L) mlgnmﬂ Bz (2 )" dxdy

= i —/ Fu(2)(z — H) dz.
Om
We next show that

lim

m — o0

[rol2) = Ful2)}(z - H>—1dz“ o,

(0197

052, consists of four vertical straight lines, two horizontal straight
lines and two curves. The integral is estimated separately on each of

these.

1. Vertical lines: Suppose v; is the vertical line in the first quadrant.
Using Taylor’s approximation theorem to expand 7,(z) at (m,0),

we obtain, for all z € vy,

n

) (m) (iy)*
El2) = Z ru (m)(iy)" + R(z;m)

s!
s=0

(n+1) 58 INTE
with R(z;m) := ﬁ“——%ﬁ, d =m + eiy for some € € (0, 1).

Therefore, for any z € 7y, we have

" S m)Gy)s Y (d) (iy)
iy = S )

which implies
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f'"w(z) - fw(z)|
< (1= p(@)rule) +0l2) WZ) -

n_.(s) i)® 7'1(11”+1) n+1 bl
ax(2) @7 +e(2) E e (n(cjr 1)! ZT(S)

s!

Il

n+l
ax(z) @+ cw Mn” (see Example 3.3.3)

IA

=

where x(z) := { L @ <A

0 otherwise.
But z = m + iy, d = m + ey implies ) > (m) and (m) < {@. So,

tl/ln_H

Fu(2) = Fu(2) < eix(2) 07 + cur s e

Also, for z := m + iy € 7, % < I < 2m and hence

@ = 1+ + Y
< 14+m?+4m?
< 5(m)°.
- 572 (m)
Therefore H(z — H) H = e (4.12)

for some ¢ > 0.

Hence
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(@) = R e - 1) e

71

< 5a/2 2m< >‘1 @d -+ 53/2 am Un_a < >a~n—2d
£ g n oy + e w ) y
¥ 2m )\a+1 ' ) 2m
< cer52 )T / |y + ey 52 )" pm|" " dy
@ m )
a+1
«a a—1 (m} /2 T - <m>
< a5 m) m)t1 m— T‘ + ceu5™? ) "2 " om — m
1
= (m™ {c’l a/m2k - Q@’ +d, (U /me 2 p - M’}
m

provided n > «. The estimate is valid for all vertical lines.

2. The curves: Let 75 be the curve in the upper half plane,

e =9 1 y= %}
Since = (@) < 1@ for allm > A, p(z) =1 forall z € 4, and
m > A Therefore using Taylor’s approximation at (z,0) with

d := x + eiy for some € € (0,1) we have,

rw(2) = 7u(2)

IN
—
—
|
!
.
1
g
S
—+
©
—
N
~
g
—
N
~—
l
<
S
N
~

IN

IN
I
m

S
s
Y
>

where (& > @). Also, for z € 7y,
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@ = 1
- @

Hence |[(z — H)7Y| < @ for some ¢ > 0 and

i a‘yla-t—l

T A

IN
o
€

/ {ro(2) — Fu(2) Hz — H) 'dA

= C1/ @(xf”?@f:idz

; mn/@

me=e
an

= asm — o0

provided n > a. The estimate here is also valid for the other curve.

3. The horizontal lines Let 3 be the horizontal line in the upper half

plane, i.e 13 := {(z,y) : y = 2m}. Now supp (p) C {(:C,y) : @h;l < 2}
Thus p(z) =0 forall z € Q,, with 1y > 2(’77)

So, for z € v3, (z) =0if 2m > 2—@, that is A > (1/m).

Therefore if we choose m large enough so that A > (1/m), then for

Z€ 3,
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ro(z) = 7uw(z) = Fu(z)

& ) using (C.8)
) 1+ |+ pm?
L o

Also, for z € 73,

INIA

Hence ||(z — H)™Y| < SN for some ¢ > 0 and

£ S
[yg{rw(z)—fw(z)}(z—H)“ldz” < eb? 75%(—2%;—1 2
< eomTEA/2m T {1/ m) /::L dx

= 2e,m72A/2m) " A/m)* m

= Om™) asm — o

provided n > «. The estimate here is also valid for the other hori-

zontal line.

Combining all the cases we obtain

ol = e B 1 el =BT

a 27Tm—’00 m

The integrand is holomorphic on and inside the part of 92, in the lower
half plane, so the contribution of that integral is zero by Cauchy’s theo-

rem. The integrand is meromorphic in the upper half plane with a single
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pole at z = w.

Therefore
rw(H) = —Res,—w{rw(2)(z — H)™'}
= (w-H)™?
where Res,—,, f(z) denotes the residue of f at the pole w. O

Definition 4.3.9
By a 2-functional calculus for an operator H of (o, a+ 1) — type R

we will mean a continuous linear map & from 2l into B(X’) such that

1. k(fg) = k(f)k(g), forall f g, €.

2. If w ¢ R then r, € A and k(r,) = (w— H)™'  (r, is defined in
Example 3.3.3 and Theorem 4.3.8).

Note that in this definition x(f) = f(H).

Lemma 4.3.10

Let f € Cy(R), H a closed operator with o(H) C R and A € R\ {0} such
that f~'(\) # 0 and f~'(\) N o(H) = 0. Then there exists a smooth
function ¢ € C*(R) and a neighbourhood G of o(H) such that

0 if te fYN)
1 ifteq.

¢(t) =

PROOF. Let 2y € R be such that f(zy) = X and d := dist(xg, 0(H)) > 0.

Choose ¢ € R : 0 < ¢y < d. Let Gy be an open set such that

[ZEQ “—Eo,ZUo-f-E()] i GO C [330 —'d,.L()"r‘d]
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(Using Theorem B.0.6 in the appendix), choose a smooth function g such
that

1 Zf t € [.TO—E(),.T()—FE}

0 ifte R\ Gy.

%(t) =

Next, set ¢g := 1 — 1), then clearly ¢q is smooth and

1 if te R\ Gy.

Po(t) =

/
/
\ /

pod ¢ Foo o jV4

f{UQ—Fd

T I 1

b e

* Figure 4.4: The graph of ¢

GO = (CL, b)

Now set Oy, = (¢ — €g, o + €0). Similarly choose open sets O, for
each z € f~!()). Since A # 0 and f(z) — Oasphl — oo, f71(\)isa
compact set and {O, : z € f~'(A\)} is an open cover for f~1(\), hence

we can find a finite sub-cover {O; : i=1,...,m} C {O, : z € f7}(\)}.

Corresponding to each O;, let ¢; be the smooth function constructed
above. So ¢; =1 on O;, and ¢; = 1 on R\ G;. Finally, put ¢ := [, ¢,
G :=(RU™, G;)° D o(H), whence

1. ¢ is smooth on R.




CHAPTER 4. THE FUNCTIONAL CALCULUS

2. ¢=0on fHN).

3. p=1onG.

Theorem 4.3.11 (Spectral Mapping Theorem)
Let f € A and H is of (a, aw+ 1) —type R, then

PROOF. Let A € o(H) C R and suppose if possible

fA) ¢ o(f(H)).

Then [f(A) — f(H)]™' € B(X).

) SN=SE) gty
If fi(z) := fifs
FN),  x=X

then by Theorem 3.3.6, f; € 2 and
(A= H) ()G — H)™ = (F(N) = F(H))(i — ).

Thus (A — H)(\(H)(i — H)™' (0= H)(f(\) = f(H)) ' =

88

(4.13)

= (f(N) = fH))(i = H)7'(i = H)(f(N) — f(H))™

= A-H)AME)FN) - fH) =1
Therefore (A — H)™' = fA(H)(f(A) = f(H))™! € B(x) 112

2We denote contradiction by !!
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This contradicts the choice of A\. Hence (4.13) is not possible. Thus
F(0) € o(f(H)) implies f(o(H)) C o f(H)).

Conversely, if X ¢ f(o(H)) then h(z) := ;ﬁ is finite for all
r € o(H). Moreover at each x € o(H) (and * € G where G is the

neighbourhood of o(H) constructed in lemma 4.3.10)

W) = [A=f@)]7f ()
= @] f(2)
K(z) = fO@)[A@)] +2f (@)h(z) ()
= f(Q)[ (@) + 2[f'(@)]*[h())®
@) = fO@h@) + fO@2f (@)h@)h=) f () +
+2{2f'(2) fP (@) (@) + [f'(@) + 3[h(2)*[A(z))* f' ()}

= fO@)P@)) + 6 () fP(2)[1(z)] + 6[f ()] [A(z)]*
(@) = fD()h ( N2+ 81 () fO (@) [n()] +
[f@( )] (@) + 36[f (@)D (e MR()]* + 24[f ()] [())?
;n+1 (k) m
h(m)(x) _ Z ZH p(Sl)l

where [, € Z,1 < r(k) < m,0 < p(s,i) < m and >, ip(s,i) = m.

Therefore since f € 2, we can find some 8 < 0 such that
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m+1 r(k) m
W@ < SRS O
k=2 §=1. 4=1
m+1 r(k) m
< Y b)) S Tl @ peo 1
k=2 s=l-4=1
- = S Bp(syi)—2iny ip(s0)
= 3 )t @E= AR
m—+1
< @'Y bla) b
k=2
< c¢c@™, >0, <0 (4.14)

(Here we have used the fact that Y7, p(s,7) > 1 and Ji; < c0.)

If ¢ is the smooth function such that

- = |
¢(t)={0 ifte f1()
1 iftedG

also constructed in lemma 4.3.10, set

g(@) = (i — )" $(x)h(z).

Then using (4.14) and Lemma 3.3.5 we conclude that g € 2 and

(A= f(H))g(H) (@ = H) =TI

That is, A — f(H) has an inverse. Therefore, A\ ¢ o(f(H)). Hence
o(f(H)) C f(o(H)). .
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4.4 Extending the functional calculus to Cy(R)

In this section we extend the functional calculus to Cy(R). For more
general extensions, see DeLaubenfels [Del95]. First, we have the following

preliminaries.

Let Cy(R) denote the algebra of all continuous functions f: R — C
such that f(z) — 0aspf — oo with the supremum norm ||| ,. Then

2l is a dense sub-algebra of Cy(R), Corollary 3.3.4.

Lemma 4.4.1
If f € A and H is self-adjoint on Hilbert space H, then ||f(H)| < |Ifl..-

PROOF. First, observe that H is of (0, 1) — type R [proposition 2.1.1].

Also from (4.9),

in this case. Now choose d € R such that d > ||f]| . and set
g(t) = d— /(= [f(t))
then clearly 0 < g € 2, and
(d—g(t)? = d* - |[f(t)?, for eacht e R.

SO

ff—2dg+¢*=0€e .

Thus
JH)" f(H) — dg(H) — dg(H)" +g(H)* g(H) =0
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implies FOH) fH) +{d = g(H)}" {d - g(H)} = d*.

If v € 'H, then

(D + IKd — g(EDYU® = d* I
and therefore ()Y < dIpil-

We are now in a position to describe the 2~ functional calculus for a

self-adjoint operator in a standard fashion.

Corollary 4.4.2

If f € A and H is self-adjoint on Hilbert space H, then the functional

calculus
k:2ASf — f(H)€B(H)
can be extended to a unique map
F:CoR)> f — f(H) € B(H)
such that:

1. & is an algebra homomorphism.
2. f(H) = f(H)."
3. MFUH < Wl -

4. ifwe C\R and r, := (w—s)~! then r,(H) = (w— H)™".

Proor. The existence follows from Theorem 4.3.3, Corollary 4.3.6,

Theorem 4.3.8 and Lemma 4.4.1. So we need only to establish the uniqueness.
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Suppose 7 is another extension of k to Cy(R) and let X C Cy((R) be
the set of f for which &(f) = n(f). Then X is norm closed sub-algebra of
Co(R) which contains r,, for all w & R. Thus whenever z,y € R,

x Ay <= ry(x) #ry(y) for somew ¢ R

Therefore, by Stone - Weierstrass Theorem (lemma 3.3.2), X = Cyp(R). O
REMARK 4.4.3

Corollary 4.4.2 and Theorem 2.2.5 provide a proof to a version of the
spectral theorem for a self-adjoint operator on a Hilbert space, which

asserts:

1H generates a uniformly bounded strongly continuous group

if and only if H has a Cy(R) functional calculus.

The most natural infinite dimensional analogue of a diagonalizable
matrix is a scalar operatbr (short for spectral operator of scalar type
in the sense of Dunford [DS71, Chapter XVIII]). For an operator H with
real spectrum, this means that there exits a projection-valued measure F

such that
Hgi= /tdF(t):v
R

with maximal domain.

The class of scalar operators includes (but is not limited to) self-adjoint
operators on a Hilbert space. However on a general Banach space, it is
hard to find a scalar operator. If H is an operator with ¢(H) C R and
acting on a reflexive Banach space X', then H is scalar if and only if iH

generates a uniformly bounded strongly continuous group [Kan89, page
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155]. So, via the spectral theorem, a self-adjoint operator H on a Hilbert
space H is scalar if and only if H has a Cy(R) functional calculus. In fact

this is true in general. That is;

an operator acting on a reflexive Banach space is scalar if
and only if it has a Cy(R) functional calculus [Dow78, Theo-
rem 6.10].

In the light of the discussions in this section, it is therefore reasonable to
have the following conjecture:

Conjecture 4.4.4

A densely define closed linear operator H, acting on a reflexive Banach
space A, is scalar if it is of (0, 1) —type R and [|f(H)| < |Ifll,, for each
fe

Notes and remarks on Chapter 4

1. For unbounded self-adjoint operators acting on a Hilbert space,
Helffer and Sjéstrand [HS89] proved that (4.8) is an alternative
characterisation of the standard Cy-functional calculus. Our ap-
proach has been different in that we did not assume the existence of
a functional calculus but constructed one in a more general Banach
space setting. In section 4.4 we showed that our functional calcu-
lus coincides with Cy-functional calculus for an unbounded operator

acting on a Hilbert space.
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2. W. J. Ricker [Ric88, Theorem 1], showed that the Laplacian H,,
acting on LP,1 < p < co p # 2 is not scaler. It is therefore the con-

tention of conjecture 4.4.4 that ||f(H)| > ||fl|., for some f € .

3. The following are known results used in this chapter
Lemma 4.1.2 Theorem 4.1.3  Theorem 4.1.5.
4. Our contributions in this chapter include:

Lemma 4.2.2 Lemma 4.2.3 Lemma 4.2.6
Lemma 4.3.4 Lemma 4.3.10  Lemma 4.4.1
Theorem 4.2.4 Theorem 4.2.7  Theorem 4.3.1
Theorem 4.3.3 Theorem 4.3.5  Theorem 4.3.8
Theorem 4.3.11 (New proof)

Corollary 4.3.2 Corollary 4.3.6  Corollary 4.4.2




Chapter 5

Applications of 2l functional

calculus.

In this chapter we examine properties of operators admitting 2 functional

calculus and consequences thereof.

5.1 Fractional powers of (o, a+1)—type R
operators.

Theorem 5.1.1
Suppose H is of (a, a+ 1) —type R and o(H) C [0,00), then H'/? is

uniquely defined and is of (n, n) —type R for any integer n > a + 2.

PrROOF. If f(z) := (Y2 —2)7!, >0, 2 € R, then f(H) is defined in

the following manner:

g(z) =

da)flz) ,0<2<1/2
f(x) ,x>1/2

96




CHAPTER 5. APPLICATIONS OF 2 FUNCTIONAL CALCULUS.97

where ¢ is the cut-off function for [1/4, 1] constructed in Theorem B.0.6.

Then clearly

1. g € C(0,00).

2. 9" z) - I, <ocoasx — 0% forall »>0.

Thus by Seeley’s extension theorem (theorem 3.4.2), Eg € C*°(R). More-

over, for x > 1/2, we have by the Leibniz rule that

PO = [ (/e - 2
= D TZT:Z 1/2 )—1—1/
(lVeZI)
N |
; Zlv'w-w

1//2‘

- 2 rm le’/| @1/2 1+V

Now write z := u + v, whence z € R implies v # 0 and

g = e = (T e

In addition

by Lemma C.0.13, whence

v

(o 2 e 2 o
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using (\/53)2 > (@), see Lemma C.0.8 in Appendix C.

<Z1/Z—u> , U > 0

@y

Figure 5.1: The graphs of <£1—/i—_7ﬁ> and ()" &/?).

Therefore by (5.1),(5.2) and (5.3)

v/2
@) < 2R Zm L MLU

g N(z,r><m> ”"‘
= r. max —ﬂ'— ’
where N( ) ) A 'U:1,2,...,r{<z>_l—'/ MHV}
Thus p@) =2 NN T (6

where N/ is a constant such that

2
i

Since z > 1/2 implies that z? = $(4z® + 2?) > li+a%) =3 @? we can

= (N;)I/Ti r>1/2,r>0 (and N = 14f r=10}:

@
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put N} = (1)"/2. Also, since ¢ is bounded on (0,1/2] for all r = 0,1,2,....
and the function @)T’L% is continuous on [0,1/2], the function @2 g (2)
attains its bounds on [0,1/2]. Let

D, = max {@“1/2 ¢V () - zeo,1 /2]}, then

g™ (z)| < D, @V, xe(0,1/2] forall 7> 0.

Now set C, := max{D,,27"N(z,r)N]}.
Then
g™ (z) < C, @ 2 e(0,00) forall v > 0.

Therefore for each r > 0 we have by Lemma 3.4.3 that

& (B

<CL@ T (5.5)

for some C. >0, forall > 0 and for all x € R and

g(H) := (Eg)(H).

(Here, E denotes Seeley’s extension operator.) Finally we now make a

natural definition

The uniqueness follows from Theorem 4.3.5.

Next, by Theorem 4.3.5

IFCED < kAT k>0 whenever m > .

m+1"
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But from (5.4)
() = R(z,r) @7, > 1/2
where

R(z,7) = 27"N,r max

< 27"N'r Jnax U (%) VH}
< 27"Nirs, <%>T+l with s, = max {}}}
Therefore HQH;FLH = i{é /OOO b(T)(f)‘ @}7«—1 dx

INA

1/2

mZ R ([ e ot ase )

with
1 1/2 . o
P, = e T)/O g™ () @)~ da
T 1/2

@ tdx, T >0.

R(z,7) Jo

m+1

So, i, < D Rz
r=1
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(T ;:/ @~ 4z + P).
; 1/2

That is

IN

ol nfz "Nirs,T, (%)
< (nfzﬂv;m:n) (%)W

Hence by Theorem 4.3.5, we now have

I (H)| < Cn (%)m .

That is

() < Cn (%)m "o

or

= - BV <, (%) R

where we have put n :=m + 2. O
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5.2 Semigroups of (o, a+1)—type R operators

In this section we will have the following standing hypothesis:

The operator H isof (a, a+ 1) —type R acting on a Banach
space X and H is positive in the sense that o(H) C [0, 00).
Theorem 5.2.1
Let f(x) :=e®"t ¢t >0, n>1, then f(H) is uniquely defined and

If (H)|| < e¢D(n,m)E(t,m) somec>0, wheneverm>a  (5.6)
. = | n+m+1 / ,
with D(n,m) (m+ 2)!(V2)  Jmax {max{l, M} 11;11?57"{@,7,9(71)}} :
10 | 1
and F(t,m) = Z—ngzﬁ’
with M/ defined in example 3.4.5 and e, (n) defined in Appendix A.

PROOF. The existence and uniqueness of f(H) follow from example 3.4.5

and Theorem 4.3.5.

Using (3.13) we have,

1L, = /OOOZ\f(”(w)! @ do

oo m+1
< [(Yawprew
0 =0
(where p, is defined in (3.12))

IA
c\g
M3

=

<

&

3
i
jo8

S

0
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But

and

(r+ 1)!t(\/§)n ) gt—k

pr = max{l,M}- ax {erk(n)}

= max{1, M)} - g(n,r)u(t,r) r>1
(v2)r

Po = 7

(Example 3.4.6)

where

Thus

m+1

> »
r=0

IA

IN

q(n,r) b 11?]?2{ {er,k(n>(7" + 1)|(\/§)n+r} r 2 1
= | n-+r
(r+1)!I(V2) lrélkaécr{er’k(n)}
with e, x(n) as in Appendix A

Q(nvo) = (ﬁ)n,

w(t, r) = % t™*, r>1 and
k=0
1
t = -
u(t,0) = 1
m+1 v :
Z max{1, M} - q(n,r)u(t,r)
r=0
m+1
3 | n+r
 Jnex, {max{l, M} gll?%cr{enk(n)}} g(r + DI(V2)"* T u(t, r)
m—+1
I | n+m+1
 Jnax {max{l, M} 121132(7«{6“]“(”)}} (m +2)!(v/2) ; u(t,r)
m+1
D(n,m) Z u(t,r)

D(n, m)F:(t, m)

which implies ||| < cD(n,m)F(t,m).

m+1 ==
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Thus by Theorem 3.4.4 and Theorem 4.2.7 we have

If(H)| < eD(n,m)F(t.m) m > a.

Theorem 5.2.2
Let an integer n > 1 and real t > 0. If f(x) and g(x) are two smooth
functions which equal e=*"t for x > 0 and f(z), g(z) — 0 as x — —o0,

and H is an operator of (a, a+ 1) —type R for some a > 0 then
FlH)= g(H) =: ¢ 7" and

o~ H"(ti+t2) _ —H"t1 ,—H"t
for all t1,t2 > 0. Moreover there exists ¢, < oo such that
He_HntH L €, (B.7)
foralln>1and0<t<1.

PROOF. f—g=0o0n[0,00)and o(H) C [0,00). Thus from Lemma 4.3.4,
we observe that f(H) = g(H) =: e #".

Let fi, () 1= e~ 2"2 and f(E) =",
Then (Fo i) (@) 1= et g=a e _ o—a™(t1+t2)
Therefore, using Theorem 4.3.3 we have

e HM(t1+t2) (flfQ)(H) 3! f]_(H)fQ(H) — o H M1 —H ™
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Let fo(x) := e ", x >0, then f(z) = fo(¥tz), x>0, t > 0.
For 0 <t <1,set#:=/t, then0 <6 <1 and

0

5] = n H >~ = ~n - H ~t dxd
b = W < [ ) e - ) ey
< f() <>a+ldxdy for some o« > 0, ¢ > 0
= c[n.
Also
. 9 -
H€_H tH = |fa(0H)| < —_fn(z) (Z—HH)ngdxdy
< ‘Pdaﬂdwdy’ using Theorem 2.2.8
= cIn.
Therefore

le 5] = el =t g, forallte(0,1)

REMARK 5.2.3
1. (5.7) holds for operators of (o, a+1)" —type R for allt > 0. In
this case e "t can be defined as a bounded holomorphic semigroup

for Rt > 0 by a similar method, see Davies [Dav89, Theorem 2.34].

2. Since F(t,m) = T + 1 Zm“ e 0 + has a maximum at ¢t = 1
on the interval [l,oo) we observe that from Theorem 5.2.1 and

—H"t

Theorem 5.2.2 the semigroups e are uniformly bounded.

3. In the light of Theorem 5.2.2, the estimate (5.6) in Theorem 5.2.1

is much worse as t — 0. In fact we prove shortly, in Theorem 5.2.6
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that the semigroups e "t are strongly continuous at ¢ = 0, that is

He‘H"t” —~1ast—0.

Corollary 5.2.4
Let A be an operator of (o, a+ 1) —type R with ¢(A) C [0,00) , B be
an operator of (8, 8+1)—type R with o(B) C [0,00) and Fla) =™

for some real t > 0, some integer s > 1 and all x > 0. Then
F(A) = FB < capsFt,n) i+ A = @+ B)|, Caps>0

where

3
3
i
s
<
|
—

1
F(t,n) = z

L -0

&+ | =
e

+

ﬁ
Il
P
>
I
=)

andn > o+ 0+ 2.

PROOF. Since by Example 3.4.5 [(3.13)], [ satisfies (3.6), f(A) and f(B)
are defined as in the comments preceding Theorem 4.3.5, and by Theorem 5.2.2,

are independent of the behaviour of f in (—00,0). Therefore,

. of
R = e e e R L

1 [lof o )
O R L
dli + A — G+ B)7Y o] @

5 - /C 03| dzdy
some d > 0, (Proposition 2.2.14)
dK af <z>“+ﬂ+2

= —W*/(ngj dedy
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Hence |f(A) — f(B)] < ca,ﬁK/ (Z ‘f(r)(x) @+ n+1) !@n-&—l)
=0 \r=0
n>a+0+2 (see proof of Theorem 4.2.4)
n+1
Cs 5K/ (Zpr > dx using (3.12)

n+1

=i Cual s Zp,n

VAN

with J(s) := [*° ()~ dz. Therefore using the approximation for "7/ p,

in the proof of theorem 5.2.1,

,_\

If(A) = F(BN < caps|li+A)" =+ B)7Y|

~

1+1n+1r 1
t ¢ k
0

=i

,3
E
Il

where in the notations of theorem 5.2.1,
Co s T Bl (8) DS 0 ) O
REMARK 5.2.5

It is evident from corollary 5.2.4 that if ¢ > 1 then

IF(4) - F(B) ScmAW+m”-@+BYWE+

Theorem 5.2.6

=i

The semigroups e are all strongly continuous at t = 0.

PROOF. Since the semigroups are uniformly bounded Remark 5.2.3(2),

it suffices to prove that

lim e 7" f =
t—0 f f
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for all f in a dense subset of X'. We prove that

lim |[e™#™ = 1)(H +2)7| =0

t—0

for large enough m, and then let f be any element of the domain of

(H +2).

If T = [0,00), w = —2, and z = s then w ¢ T and hence by
Lemma C.0.10 (and notations there), #; < %%Ql for all s € [0, c0).
Now set g(s) := (e™*"t = 1)(s + 2)7!, s > 0 and then proceeding as in

Example 3.3.3 we have

r

ds”

T

ds”

(s+2)7) < G " foral s>0

Also,

(et - 1)’ < p """ for all s € [0,00) and all 7 > 0, from (3.13).

and hence by the Leibniz formula we have

dr n
ds’"[(e_s F-1)(s+2)7Y <D ©° ", for some [ <0 and r >0
and also
gi(s) = [(e™"* = 1)(s +2)7]

VAN

te—s"t(s _%_2)71’ 5 ‘(8—*‘ 2)—1’
i@+ dy 97!

ds 9"

IN

IN
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Hence by Lemma 3.4.3 Eg, € .

Now,
oo m+1
. + T 'r' 1
11_12% g4l i1 = tlgno . Z 5t ds = 0, for large enough m.
Hence the result follows from Theorem 3.4.4 and Theorem 4.2.4. O

Example 5.2.7

Let Hy := —A on LP(RN). Then we may write e~ 0" f = k; * f, where

ke = (2nNt)N/2e~ B is the Gaussian pdf with k; > 0 and |kd|, = 1
So e~ ot is actually a contraction semigroup. However {e™"8'},5, is a
uniformly bounded semigroup, but not positivity preserving, for each

e 2 2

Indeed, we can find k,; € L'(RY) such that
e_Hgtf = k,lm x f for each f € LP(RY)
See Simon [Sim82, Theorem B.7.1]. Taking Fourier transform we get
o o(z) = e,
Whence by scaling we have
[Fndl 2 =cn>1
for all t > 0. Thus on L}(RY)

He—H(;tH = Hkn,tHLl =G, = 1
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So {e~#t} is uniformly bounded but not positivity preserving since oth-
erwise |e~0Y| < [fe="!|| < 1, See Davies [Dav80, Theorem 7.11]. O
REMARK 5.2.8

Note that He—H*f <lon IP(RM) forall ¢ >0, 0<A<1, 1<p<oo

and N > 1, because for such A, {e_HAt}tZO, is positivity preserving.

5.3 Operators with consistent resolvents.

Let. Hy = —%A +V be a Schrodinger operator acting on LP(R™) with
potential V from the Kato class K, (See definition 2.1.5), and 1 < p < oo.
B. Simon [Sim82] conjectured that o(H,) is independent of p. This was
finally proved by R. Hempel and J. Voigt [HV86] and generalised further
by W. Arendt [Are94].

In this section we give a quicker proof of this result taking advantage

of the functional Cafculus'constructed here.

Recall that H, is (o, a+1)'—type R with o :=n ’% — 3, Theorem 2.1.7.
Also Hempel and Voigt [HV86], proved that o(H),) C [0, 00).

Lemma 5.3.1

Let H be an operator admitting 2 functional calculus. If A € R, then
A & o(H) if and only if there exits f € C®(R) such that f(z) = 1 in
(A —€e,\+¢) for some e >0, and f(H) = 0.

PROOF. Suppose A & o(H).
Then (A — e, A +¢)No(H) = O for some ¢ > 0. Choose f € CP(R)

with supp (f) € (A — €, A + ¢) using the scheme in Theorem B.0.6 in
Appendix B. Then f(H) = 0, by Theorem 4.3.1.
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Conversely, suppose there exits f € C°(R) such that f(z) = 1 in
(A — €, A+ ¢€) for some € > 0, and f(H) = 0.
Set

gu(z) = (w—2)"{1-f(z)}, w¢gR
Then g, € 2, by Lemma 3.3.5 and

gu(H) = (w—H)™ = (w=-H)"f(H)
= (w—-H)!
= ru(H), by Theorem 4.3.8,

1

where r,(z) = (w—2) forall z€R.

Therefore  |lgasis(H)| = lrasis ()l < cliragidll, 4,  for some ¢ >0, (4.10).

n+1

But i = Y [ )@ de
k=0 Y~

-5 [ awte wrt e
2/

n+1
Where we have put ¢ = ?/@%(;21—)5 from (3.5), in the notations of Example 3.3.3.

n+1 )
So I < S / &~ do
k=0 =

< D, (w)”Jrl for some D,, > 0.

Therefore ¢ |ravidlpq < ¢Dn A +i)™" — cD, N as ¢ — 0. In any

case ||f(H)| < [fll,yq, for all £ € A and some n > « (Theorem 4.2.4).
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Thus

lgavas(H)| = [[(A+1i0 — H)7Y)

VAN

¢ lrasiellngs

eDy Q410" = eD, W <00 as 6§ — 0.

IN

Thus by Principle of Uniform Boundedness (see [DS58, Theorem I1.1.18])
A—H)'f = gin%()\ +i0 — H)™' f exits for each f € X and is bounded.
We finally invoke Lemma 4.2 of M. Schechter [Sch71], which states:

If Ais a closed operator, then A ¢ o(A) if and only if (A\—A)~*

exits and is bounded on X.

Definition 5.3.2
Let X', ) be two Banach spaces and suppose there exist a topological vec-
tor space Z such that XY~ Z and ) — Z. Two operators Hyx € B(X)

and Hy € B())) are then said to be consistent if

Hx¢p=Hy¢p forallpe XNY.

Theorem 5.3.3
Suppose X and ) are two Banach spaces such that X N'Y is dense in X
and Y separately. Further, let Hx act on a X, Hy act on ) and both

admit 2A-functional calculus, and (2 — Hx)™! and (2 — Hy )™ be consistent

for each z ¢ R. Then o(Hx) = o(Hy).

PROOF. If A € R\o(Hx), then there exits f € C°(R) such that f(z) =1
in (A —¢€,A+¢) for some € > 0, and f(Hy) = 0, Lemma 5.3.1. But by



CHAPTER 5. APPLICATIONS OF 2 FUNCTIONAL CALCULUS.113
consistency of the resolvents we have
g Hx)p = -3 o5z~ Hx)""¢dady = -1 [ 52z~ Hy) '¢dudy = g(Hy)¢

forany ¢ € XNY, and for all g € . In particular,

f(Hx)¢ = f(Hy)p=0 forall g Xn.

But X N Y is dense in Y, so f(Hy) = 0 and A ¢ o(Hy), (invoking
Lemma 5.3.1 again). By symmetry we are done. U
REMARK 5.3.4

If {T,(t)}:>0 is a consistent Cy-semigroup on LP(§2) with generator A,
(1 < p < oo and Q is some open set), it is natural to ask whether the
spectrum o(A,) of A, is independent of p € [1,00). This is not the case
in general (see Hempel and Voigt [HV86] or Davies [Dav89]). In fact it
is not immediate that (z — A,)~' and (z — 4,)~! are consistent for any
z € p(A,) N p(A,) (see Halberg and Taylor [HT56)). So, it is important
that consistency of the resolvents be established in order to take advantage

of theorem 5.3.3.

For Schrodinger operators H,, (cited at the beginning of this section),
we have

Corollary 5.3.5

The spectrum of H, is independent of p, 1 <p < o0.

PROOF. Hempel and Voigt [HV86, prop. 2.1] established the consistency

of the resolvents, (z — Hy)™! and (z — H,)™! for 1 < p < o0.
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Secondly, L? N L? is dense in L for all p € [1,00). The conclusion now

follows from Theorem 5.3.3. O

Notes and remarks on Chapter 5

1. Theorem 5.2.2 was originally formulated by Jazar [Jaz95] for a class
of operators associated with spectral distributions. We have proved

it here within the context of our functional calculus.

2. Our contributions in this chapter include:

Lemma 5.3.1 Exampleb.2.7
Theorem 5.1.1 Theorem 5.2.1
Theorem 5.2.2  (new proof) Theorem 5.2.6

Theorem 5.3.3
Corollary 5.2.4 Corollary 5.3.5 (new proof)




Appendix A

Derivation of a‘%{e_xnt}

fl@) = e
= fllz) = -nta""'f(z)
= f(2)(a:) = —n(n—1)ta" " 2f(z) + (~ntx""1)(—ntm"‘1)f(x)

= [-n(n—1)tz""2 + (=n)2%2?" 2 ()
= [P = [-nn-1)(n-2ta"> + (—n)22(n - D2z % f (z) +
+H{(—n)?(n — )22~ + (—n)*t32373) £(z)
= [0t = 1)(n - 2)ta" 7 + 3(—n)’(n — )22 73 4+ (—n)3523"3) f(z)
= [P = [=am-1n-2)(n-3)tz"* + 3(—n)2(n - 1)(2n — Blitia st 4
+3(=n)’(n — D f(2) + [(=n)2(n — 1)(n — 2)¢22>"* +
+3(=n)’(n — De*z® 4 + (—n)t%z* %) f(2)
= [-n(n=1)(n = 2)(n - 3)ta"* + (—n)%(Tn — 11)(n — 1)222"* +

+6(—n)3(n — 1)t3z®* + (—n)*t*2i " f (2)

= fO2) = D enm)(=DFtam T f(x) (A1)

where 7 < n and e, ;(n) € Z.

115
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We now establish the validity of the expansion (A.1) by induction on

r, and thereby obtain a reduction formula for e, .

Proposition A.0.1
Let f(x) := e " for an integer n > 1, and all x € [0, 00). Then (A.1) is

valid for all 0 < r <n and

[Zi(n—s), ifk=1
Cr.k (’I’L) = nr} if k=r

(nk =7+ De—14(n) + ne,_1p1(n), if2 <k<r-—1

PROOF. Assume (A.1) holds for some r € Z and 7 + 1 < n. Then

f(r+1)(l,) = Zer,k(n)(—l)ktk% {ank_rf(x)}

- Z erx(n)(—=1)5t {(nk - r)m”k""*lf(x) + x”kfr(-n)txnﬁlf(x)}

= 3 e (1) uk — ) ()

k=1

i Z erk k+1tk+1 n(k+1)— (7+1)J¢-($>
= %N)@ﬂﬁm~fﬂ WP fil)

+Zerk tk(nk ) nkﬂ”flf(x)

+Z Tk k+1tk+1 n(k+1)— (r-H)f( )

_i_er,r(n)n<_1)r+1tr+1$n(r+1)—(7-+1)f(x).

Now set e,41,1 := (n —7)e,1 and €41 41 1= ne,, and adjust the index of
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the second summation, then

(@) = er,l(—l)(n—r)tx”‘(’"“’ﬂx)
+Zerk — 1) t*(nk — r)z™ " f (z)

+Zerk 1(n i (1) £ ()
ey n(— 1) HLgnetD=04D) £ ()
— (D)=t f(z)
+ Zr: {(nk = r)e, k(n) + ne;p—1(n)} (_1)kthnk—(r+1)f($)
k=2

+ne, 7-(—1)T+1tr+1$n(r+1)_(r+l)f(ﬂ:)
7l

= Zer+1k n)(—=1)FtFg™ =0+ £ ()
where

[Ty (n = 8), i k=1
ert1,k(n) = < Wl if k=r+1

(nk = 71)erk(n) + nepp—1(n), if2 <k<r

The validity of the formula (A.1) for r = 0,1,2,3,4 has already been
shown in the heuristics preceding proposition A.0.1 , hence establishing
the result. : £l
REMARK A.0.2

For arbitrary r > 0, the expansion (A.1) is still valid except that in this
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DXE

case we we may define e, := e, := 0 for all » and then we have

0, it nk <r

(nk —r+1)e,1x(n) +ne,14-1(n), if 1<k <r<nk.



Appendix B

Cut-Off functions

Lemma B.0.3

There exists a non-negative function ¢ € C®(R) with $(0) > 0 and

PROOF. Set f(t)

Il
R T
= Cb]
=
- A
N N
(=] o

: . Ps e‘%, t>0

Then (by induction), Fol)= (%)
0, t<0
where P, is a polynomial of degree 2n and therefore f € C°°(R). Next,

define ¢ by
¢@) = f(1 - *).

Then ¢ € C*(R) and moreover
H>1= 1-W'<0= g¢@=0

showing that ¢ € C°(R). Moreover ¢ is positive if pf < 1. O

REMARK B.0.4

If ¢ is the function constructed in Lemma B.0.3, then dilation of ¢ by

119
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has similar properties as ¢, with support in [—a, a]. Also the translation
of ¢ by y,
Ty ¢(x) = ¢(x +y)

is such that 7,¢ € C>°(R) with support in the interval [—y — 1,1 —y].

Definition B.0.5
A function ¢ € C°(R) is called a mollifier if

1. >0 forallzeR

2. [Z ¢(z)dx = 1.
Theorem B.0.6
If X is an open set in R and K is a compact subset of X, then one can find
a mollifier, $ € C>*(X) with 0 < ¢ <1 and ¢ =1 in a neighbourhood of
K,

PRrROOF. Choose € > 0 so that g —1f > 4e when x € K, y e R\ X. Let

xx be the characteristic function of
Ko :={y : ly— o < 2¢for some z € K}.

By Lemma B.0.3, we can find a non-negative function 3 € C°(—1,1),
with $(0) > 0. Set ¥e(x) = e '9(2), then 1) has support in [—e¢,¢].
Moreover it is easy to see that [¢.dz =1. Now set

¢ = XK*wea
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Ke == {y : y—a <efor somezc K}, and
Ky t= {y¢ [y—adﬁ 3¢ for some z € K}.

Then ¢ € C3°(K3) and since 1x¢pe =1, 1—¢=(1— Xk)*%. =0 on
K.. O




Appendix C

Some useful estimates

We need the following elementary facts (stated without proof):

Lemma C.0.7
Let z € C, then

Vz = V1/2(H + Rz) +isgn(32)1/1/2(H — R=2) (C.1)
=gl (C.2)
el = 1 < z€Ri (C.3)
]\/a _ \/H (C.4)
PROOF. Standard results from the theory of Functions of Complex
Variables. O
Lemma C.0.8
For any z € C,
@ < 1+H < V20 (C.5)
. @ < (/3 < V20 (C.6)
122
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PROOF.

@

= @

IN

1+ K

(1+H)*

1+ | +2H

2, trueforall z € C.

IN

= 1+

IN

o
IN

Also,

1+ K
(1+H)?
1+ +2H
2

IA

V2§

2’

2+ 2

1+ R

14+ K —-2H

(1—K)?, trueforallzeC.

[

o
IA

Lemma C.0.9

For all z,w € C,

1 E+w) <V20 W
2. fw) < @ W

2\ < O
3 @) <S5
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ProoF. We have

1 gtuw? = 1+pxuf
< 14 (H+ )
= 1+ + 20k +
< 1+ H ol + R+ 2
= @@ +2H M

< W+ R W (ab< a4+ < (1+a*)(1+0Y)

2. (zw)2 < 1+M2M2
< 1T+ A+l + H f?
&% w? .

A

I

3. Replace w with w™" in 2 to get

) < ow
= Q@™ w#o
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Lemma C.0.10
1. For allw, z € C,

1 " V2 (w)

=3 @ (©7)

2. Let w be a fixed point in C and I' be any path in C with w ¢ I’

then,
1 = V2 W)
w—4 7 VB @

where By € (0,1 — {do~") with dy := dist (w, T') and dist (, ) is
defined in (2.10).

for all z € T. (C.8)

PROOF. Here,

1. @=C-w+w < V2w-2@ (lemma C.0.9)
L V2 ()
MR B
o — 4 w—-2"-1
i 1
 (w—2 - D(w—2+1) (C.9)
< > (C.10)

(=2 -1)w-2

Sincew ¢T, w—2-1>0 forall ze ' thatis 0< w—2—-1< W — 2
for all z € I', we observe that for a given 2z € I" we can find a, € R

such that

O<a,<land W—2—1=a,w-—2.

N
R\
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Moreover
Bw—2<w—2z—1 forall B suchthat 0 <f < a,.

In fact the map

is continuous, bounded above by 1 and below by 0 and has only one

minimum,

o= d(z) =1 — o' >0 (with do = dist (w, ') > 0).

0.8 - il

0.6 - M

0.2 -

0 '
0 Zw

Figure C.1: A 2D view parallel to the C-plane, of the graph of ¢

Next, choose 8y € (0, @), small enough so that

Bolw—2 <w—2—1 forall z€T.
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Then
1 1

<
w—4"" fow—2*
Thus (C.8) now follows from (C.7).

forall z eT.

Lemma C.0.11

PROOF.

@°0° = 1+W+ W+ 1

= @)’ +§°+§°

; @)’ + 1’ + B
<b>2

<ab>2+|a|22+la2,

i H#0

IN

Lemma C.0.9)
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Lemma C.0.12

Forany z+1iy = z€C,

8 A A 8 A A—1
= < ddiy
5@ AT ad <y
PROOF.
0 0
o @ S+ )
A
= _2_(1 & MQ g tle)/\/Q_l ) M
= A
sl
The proof for % @* <A@ is analogous to the one above. O

Lemma C.0.13
Let 2 = u+iv, u,v € R with v # 0. Then (H5=%) > ()= ("
= U, . Then > @ (W°) for all

v

xz e R.

Proor.

oy
S

= 1+ = ST (1+M>

= 0 (C.11)

V2

put s := pf'* — u, then z = (u + s)2.
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Therefore, using (C.11)

1+ u? + 2us + s2

IN

(14 u? +v2)(1 + %)
L+ u? 02+ 5 4 w2y 2
R
(022204 28) 4 2

us) 2 2
)+ 5 0
True for all v, s,u € R.

I

<= 2us
i 0

INIA

I
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