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ABSTRACT

\onlinear Black-Scholes equations have been increasingly attracting

interest over the last twenty years. This is because they provide more

accurate values by taking into account more realistic assumptions, such

as transaction costs, illiquid markets, risks from an unprotected portfolio

or large investor's preferences, which ruay have an impact on the stock

price, the volatility, the drift and the option price itself. Recent models

have been developed to take into account the feedback effect of a fund

hedging strategy Or of the transaction costs of large traders tv[ost of these

models cue represented by nonlinear variations of the well known Black-

Scholes Equation.On the other hand, asset security prices may naturally

not shoot up indefinitely (exponentially) leading to the use of Verhlusts

Logistic equation. The objective of this study was to derive a Logistic

Nonlinear Black Scholes f\. lertou Partial Differential equation by consid-

ering transaction costs (which \\ere oVBrlooked in the derivation of the

classical Black Scholes model) and incorporating the Logistic geometric

Brownian motion.The methodology involved, analysis of the geometric

Brownian motion, review of logistic models, Ito's process and lemma,

stochastic volatility models and the derivation of the linear and nonlinear

Black-Scholes-Merton partial differential equation. Illiquid markets have

also been analyzed alongside stochastic differential equations. The result

of this study may enhance reliable decision making based on a rational

prediction of the future asset prices given that in reality the stock market

may depict a non linear pattern.



Chapter 1

INTRODUCTION

1.1 Background inforrnation

Stochastic differential equations are fundamental in describing and un-

derstanding random phenomena in different areas in physics, engineering,

finance, economics and other areas. In particular, they sel've as a model

for asset price fluctuation in finance and is the driving force behind the

famous Black-Scholes-Merton option pricing partial differential equation

used for deriving the Black-Scholes-Merton model in the year 1973

Whereas ordinary differential equations are usually interpreted as describ-

ing evolution in time and hence determining dynamic systems, the future

becomes quite predictable from the knowledge of the present state. There

are however systems which are known to exhibit randomness and hence

are non-deterministic, like the predator-prey ecosystem and the markets

This leads to partial differential equations( which invoke more than one

independent variable and their corresponding derivatives).

In the derivation of the Logistic Nonlinear Black-Scholes-Merton partial

differential equation, three processes shall be considered namely

1
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(l)The arit luuet ic Brownian motiontBachelier process)

d.S = Wit + (JdZ (11)

(2)The Ito process

clS(t) = f(S, t)dt + f(S, t)clZ (1. 2)

(3)The geometric Brownian motion(Wiener process), which is a special

type of the Ita process in which f(S, t) = S

ciS = pSdt + (J S cLZ (13)

o

where S is the stock price,!L is the expected rate of return per unit time

and (J is the volatility of the stock price, whereas cLZ is the addition of

noise.

Of necessity, we note that in stock price modeling the price of an asset is

assumed to respond to the excess demand which is the difference between

the quantity of an asset demanded and the quantity of the same asset

supplied, That is,

EDS(t) = QoS(t) - Qss(t) (14)

where

EDS(t) is the excess demand,QoS(t) and QsS(t) are the quantities

demanded and supplied respectively at a given tirne.t and price, S(t)

Just like in the predator-prey ecosystem where there is "give and take",
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the market structure with forces of supplv and demand exhibit two forces

in the market which affect each other suiviug to strike a balance called

the market equilibrium

This comparative phenomenon has made it possible to apply the idea of

logistic equation, first used by Verhlust.aud Reed ([361,[:371,[381)

In Verhlusts model for studying dynamics of human population growth

in the United states, he took p" to represent the environmental carrying

capacity in which a population lives, which favorably compares to s' in the

vvalrasian equilibrium market price, a point where the quantity supplied

and demanded in the market are equal

In this study we intend to formulate the Logistic Nonlinear Black-Scholes-

~[erton partial differential equation

1.2 Statement of the problem
o

Although much work has been done to model the nonlinear Black-Scholes-

~'[erton partial differential equation, The Logistic Nonlinear Black-Scholes-

Merton partial differential equation has not been derived, In this study we

consider the Logistic Geometric Bro\Vnian motion alongside more realis-

tic assumptions such as transaction costs, risk from unprotected portfolio,

large investor's preferences or illiquid markets, which may have an impact

on the stock price. the volatility, the drift and the stock price itself.
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1.3 Objective of the study

The objective of this study was to derive a Logistic 0ionlinear Black

Scholes i\[elton Partial Differential equation by considering transaction

costs (\\"hich \"ere overlooked in the derivation of the classical Black Sc-

holes model) and incorporating the Logistic Geometric Brownian motion

which was not used in the derivation of the recent linear models.

1.4 Significance of the study

The Solution to the Partial Differential Equation derived in this study

may enhance reliable decision making based on a rational prediction of

the future asset prices given that in reality the stock market may- depict

a non linear pattern

1.5 Research lVlethodology

The methodology involved, analysis of the geometric Brownian motion,

review of logistic models, [to's process and lemma aud stochastic volatil-

ity models Illiquid markets have also been analyzed An analysis of

stochastic differential equations has also been done extensively.



Chapter 2

LITERATURE REVIEW

2.1 Linear models

Brown in the year L827_ first observed the continuous movement of pollen

particles suspended in a liquid. In 1905 Einstein derived the mathematics

of random walk from the conservation equation with an empirical law of

physics and eventually obtained the diffusion coefficient in physics known

as diffusivity, which later carne to be referred to in price dynamics as

volatility Louis Bachalier a contemporary of Einstein applied this ran-

dom pheuomenoulstochastic process) in his PhO thesis titled Theorie de

La spewLation(The theory of speculation) ([2))

Wiener introduced rigorous mathematical and probabilistic concepts and

proof that resulted into the theory of stochastic process(also known as

Weiner process) Later [to gave a rigorous treatment to stochastic pro-

cess and stochastic differential equations and ended up with the laws that

govern stochastic integration and solutions to stochastic differential equa-

tions, hence the norm of [to processes and [to's lemma, also Ito's laws

However it was not until 19605 and 1970s when applications of stochastic

NlASENO UNIVERSITY
S.G. s. \JBRARY --'
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processes started finding inroads into the financial markets. Samuelson in

the year 1965 developed a geometric Brownian Nlotion (also known as the

economic or exponential model) that became an alternative to Bachalier's

stochastic model The disad vantage of Bachaliers stochastic model was

that it allowed negative asset prices([18IJ-l5j)

Black and Scholes together with Merton in 1973 made a major break-

through in pricing stock options in the celebrated Black-Scholes-Merton

option pricing model(BSMOPM) They used geometric Brownian motion

to derive the formula, which has become a benchmark in option pricing

and has been researched by both practitioners and in academia ([71,[331)

!\[any researchers have modified and relaxed assumptions due to the

Black-Scholes-Merton model thus several models have been developed,

amongst others:

Hull and White[1987]([16]) developed a stochastic volatility model due to

the fact that in real sense volatility may not always be constant. ln the

year 2003, Onyango ([37]) using Walrasian excess demand principle devel-

oped a logistic equation for asset security prices considering the fact that

naturally asset prices would not usually shoot indefiniteiyfexpouentially)

due to a regulating factor that may limit the asset prices Recent work

has focussed on steady market conditions defined by the Ita process

d S = uSd: + oSd.Z, ('2.1)

where the drift coefficient ~L reflects price trading driven by constant

investors' expectation of gain, while the diffusive Wiener process od.Z

reflects the response of trading random fluctuations of supply and de-

o
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maud.This leads to the [to process of the form

(2,2)

Hence the corresponding Black-Scholes-Merton partial differential equa-

tion to (2,1)i5 given by

8C ,8C' 1) ,) (j2C'- + rS- + -crS-- - iC= O.
8t 85 2 852 '

(2,3)

where I' is a risk free interest rate, C' is the price of the call option while

5 is the spot price of an asset at time zero,

Other developments that have come up are by Cox and Ross in 1976 on

stochastic volatility model, and borrowing the mean reversion model by

Ornstein and Uhlensbeck in 1930 from physics ([91,[:391),

Given that historical volatility estimates in a moving window may be het-

eroskedastic (stock volatility varies over time with periods of high volatil-

ities and periods of calm) and not al ways homeskedastic (constant volatil-

ity ): Onvaugo considering excess demand developed an [to process of the

form

d5 = ~l5(5' - 5)dt + u5(S' - 5)dZ (2A)

where 5' is the equilibrium market price of an asset, 5 is the market

price of the asset and fl is the speed of market adjustment, a is constant

volatility and dZ is the Wiener process ([371),
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2.2 Nonlinear models

The uoulinear dynamic process was first noticed by l\[allclelbrOL in the

year 196:3. he established that speculative market prices followed a frac-

tioual distribution leading to the fractional Brownian motion (rBt\ l )

Years later in L999 Lo and Mackinlay came to the same conclusion as

a followup to l\[uller's cletection (in 1990) of non linear market dynamics

These findings were later confirmed by Karuppiah and Los in the year

2005 ([301,[271,[3-11,[221)

Nonlinear dynamic systems became of interest since it offered a new ap-

preach to financial predictability as observed bS' Frauses and \'CLn Dijk in

the year 2000 The models therefore became useful in predicting asset

prices in the long run while linear models only proved useful in the short

run as observed by Savit( in the year 1988). This is because Linear mod-

els are modeled under a number or assumptions which in most cases may

not reflect the reality in the market ([521,[471). o

vVorks by Jarrow in L994,Platen and Schweizerin L998 .Frey in L998 , Frey

and Streme in 2000, Sicar and Papanicolaou in 1998, VVilmott III the year

2000 and Baum in the year 2001 among others have contributed richly

to Nonlinear models of finance. In all the cases however, the geometric

Brownian motion was used ([19IJHI,[121,[1:.l1,[511,[581,[5J)

In t\·[uhannad's analysis on stock prices for the European option in the

.'rear 2000 for the Log-normal t\[odel and the Log-logistic models, he

proved that option prices were overpriced by the Log-Normal model as

opposed to the Log-logistic model. This gives room for us to analyze the

effect of using the logistic Geometric Brownian motion ([351)
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BASIC CONCEPTS

3.1 Stock Market

A stock market is a designated place where stock traders transact shares

and securities Iu a stock market, stocks are floated for purchase and

sale. The following definitions are therefore necessary in our study as far

as stock markets are concerned.

3.1.1 Stock pr ices and strike pr ices

The stock price is the price of an asset at a given time t , while the strike

price (exercise price) is the specified asset buying or selling price in future

3.1.2 Options

An option gives its owner the right but not the obligation to buy (in case

of call option) or sell (in case of put options) a certain quantity of an asset

by a certain future date at an agreed price.

9
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3.1.3 Types of options

There are two main types of options which we define as:

Call option-This type of option gives the holder the right to buy an

underlying asset by a certain date at a certain price It therefore gives one

the option of calling for stock at a specified price(strike price).

Put option -This type of option gives the holder the l-ight to sell the

underlying asset by a certain date for a certain price

The buyer or seller in both cases is not under compulsion to exercise the

option but may chose to exercise the option or fail to do so depeudiug on

market prospects _

3.1.4 Styles of Option Contracts

The two most popular styles of options are:

i)European style option- This kind of contract can only be exercised

at maturity datetou the date of maturity).

ii)American style option-This type of contract can be exercised any

time prior to the maturity date

In this study we shall concentrate on the European style option

3.1.5 Portfolio

This is a list of security holdings by an individual, a bank or an invest-

ment company or any given investor Since in every investment profit is

expected, The choice of a portfolio is crucial to the portfolio holder in a
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stock market.

3.1.6 Derivatives

These are financial instruments in the stock market whose prices depend

on. or is derived from the price of other underlings assets or primary finan-

cial quantities such as stocks interest rates, currencies and commodities

[L 71·

3.1.7 Hedgers

Hedging involves all activities that are aimed at reducing the uupre-

diet.ability of certain unknown future prices. Hedgers are therefore in-

Lerested in reducing the risk they already have by making sure that they

use the market to take cover against unpleasant asset price movements.

o

3.1.8 Delta Hedging

This is the perfect elimination of risks by employing correlation between

tw-o instruments (in this case an option and its underlying)([561,[57J,[58J)

3.1.9 Arbitrageurs

These are people or portfolio holders whose main interest is to enter into

two or more markets simultaneously in order to make risk free profit. A
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non-arbitrage principle is therefore ill place suggesting that it is unnatural

to make profit with zero investment and without risk bearing.

3.2 Stochastic Processes

3.2.1 Definition of stochastic processes

A variable whose value changes randomly (in an uncertain way) is said to

follow a stochastic process It could also be defined as a sequence of events

governed by chance (probabilistic laws). This is a process that can occupy

one among a number of states at any given time and which with certain

probability, makes transition front one state to another as time progresses.

The set of possible states may be finite or infinite ([17),[37),[57))

3.2.2 The lVlarkov process

In this type of stochastic process only the current value of a variable is

relevant for predicting the future The past history or the way the present

has emerged is not important (the past is irrelevant) since it is believed

that the current price already contain what is relevant from the past.

Stock prices are assumed to follow the ['vIarkov process.

By this [\:[arKov property it is implied that the probability distribution of

the price at an}' particular future time is not dependant on a particular

path followed in the past Thus the past does not determine the future,

In a Markov process the variance of change in successive time is additive

while the standard deviation is not. ([17),[37)),
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3.2.3 Wiener process/Brownian motion

This is a type of a markov process with a mean change of zero and a

variance of 1 iu a given period of time [f ,\(t) follows a stochastic process

where fl is the mean and cr is the standard deviation,

that is .\.'(t) '" N(fL, cr) t heu for a standard Wtener process. Y(t)

N(O, 1), that is X(t) is a normal distribution whit h p = 0 and cr = 1

Expressed formally, a variable Z follows a Wienel process if it has two

properties:-

3.2.3.1 The change in Z, 6Z during a small period of time 6t is

rSZ=EJrfi, (:J.1 )

where E is a random drawing from a standardized no rtual distiibu-

tion , that is E "'-' N(O, 1)
o

3,2.3.2 The value of 6Z for any two different short intervals of time 6t

are independent. That is ua,.(6Zi, 6Z)) = 0, i -:f. j

It follows from property (32:3.1) that 6Z itself has a distribution with

mean of 6Z = 0

standard deviation 6 Z = l'lt
Variance of 6Z = St.

that is,

6Z", N(O, J6t)

o
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Property (3.2:32) implies that t follows a 1\1.,\,[[,;0\' process. Consider the

increase in the value of Z during a relatively long period of tunc T, this

can be denoted by Z(T) - Z(O). It can be regarded as the sum of increase

in Z in n small intervals where ti = £ thus

"
Z(T) - Z(O) = LEi J(5t. (3.2)

i=l

where the EJi = 1,2,3 ... n) are random drawings from N(O,l) From

property (32.3.2) of the Wiener process, the e.s are independent and

identically distributed. It follows from equation (3.2) that Z(T) - Z(O)

is normally distributed with

mean = E( Z(T) - Z(O)) = 0

variance of (Z(T) - Z(O)) = not = T, and,

standard deviation of (Z(T) - Z(O)) is .ri:

hence,

Z(T) - Z(O) ~ N(O, JT)

([171,[371)

3.2.4 The Generalized Wiener process

So far the standard Wiener process elZ, has a drift rate of zero and vari-

ance of 1. This implies that the expected value of Z at any future time

is equal to its current value whereas the variance rate 1, means that the

variance of change in Z in time interval of length T equals T

o
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.-\ generalized \Viener pmccs.s for a variable "\ call be defilled in terms of
dZ as fallaH'S

dX = adt + bd.Z,
(3.3)

for

.\'(0) = Xo, t 2' 0,

where a and b are constants, adt is the expectation of eLX and bdz is the

addition of noise or variability to the path followed by X while b is the

difFusivity In a small interval (5t, the change in the value of X,(SX is

of the form ;5X = (LSt + br:/li where as already defined, r: is a random

\'ariable drawing from a standardized normal distribution thus 6X has a

normal distribution with

o

mean =E(6X) = aot.

variance of (6X) = b"2St, and,

standard deviation of SX = b/li,

hence

6X .", N(ai5t, bV6t)

Similar arguments to this show that for a vViener process, the changes in

the value )( in a time interval T is normally distributed with,

mean change in X = aT

standard deviation of change in .Y = bfl
variance of change in X = b"2T.,

that is,

dX r-;» N(aT, bJi)

MASENO UNIVERSITY
5.GI S. LIBRARY
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([ 17), [:36),[:37) ,[:38) ,[57), [58))

3.2.5 Ito Process

This is a generalized \Vieuer process where the parameter a and 6 are

functions of the value of the underlying variables .\ and time t '

Algebraically the [to process can be written as

d.X = a(.\, t)cLt + b(X, t)dZ (3.4)

([17),[:37))

This implies that both the expected drift rate and variance of an [to pro-

cess can undergo change

In a small time interval between t and t + iSt the variable changes from X

to .\ + i5X where;
->

o

6X = a(.'{, t)i5t + 6(X, t)EJrt, (:3,5 )

([17],[:37))

This relationship involves a small approximation which assumes that

the drift and variance rate of .\ remains constant; equal to a(X, t) and

6~(X, tf respectively during the Interval between t and t + iSt

that is,

dX r--;» V(a(.\,t),6(.y,t)J6t)
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3.2.6 Geonletric Brownian l\!Iotion

A specific type of Ito process is the geometric Brownian motion of the

form

d)( = (L.\-cLt + b.'\cLZ where a(.'\. t) = a.\· and be-'\, t) = bX (:36)

The geoructric Brownian motion has been applied in stock pricing and is

given as equation (L:3) which can also be written as

d85 = iuli + o d : (J.7)

This model (:3.7) is the most widely used model of stock price behavior.

A review of this model gives Cl discrete time model

68 . r;-;S = {lot + (JEVot, (03.8 )

where 68 is the change in stock price 8 in a small interval of time 6t

and E is a random variable drawn from a standardized normal distribu-

tion N(O; 1) Hence in a short time St , the expected value of return is

{~6t and the stochastic component of the return is (JEJri The variance

of the fractional rate of return is (Jl6t and (J J6i is the standard devia-

tion Therefore r5l is normally distributed with mean W5t and standard

deviation, (J J6i, that is

68 (- rt:S"'N W)t,(JvOt)



CHAPTER J. BASIC CONCEPTS 18

3.2.7 Volatility

Volatility is the measure of how uucert.aiu we are about future stock price

movement. The volatility of a stock price a is defined so chat a.J6i is the

standard deviation of the return on stock in a short period of time ct. As

volatility increases therefore .the chance that a stock wil! do very well or

very poorly increases. This results in both the call and put options rising

or falling respectively.

3.2.8 Stochastic Volatility

One assumption in the Black-Scholes-Merton model lS that volatility is

always constant. However Hull (wet \Vhite [19S71 among others consid-

ered stochastic volatility models. They' considered the fact that in a leal

market situation volatility may follow a stochastic process of the form

(3.9)

or

(:3.10)

where ~L, b and v are constants and clZ refers to the \Viener process, a

is the asset volatility while Pa and Va the mean and variance of asset

volatility respectively In equation (3.10) the variance late has a drift

that pulls it back to a level b at a rate ~La

o
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3.3 Ita's lem ma and its derivation

Ito, achieved a rigorous treatment for integrating a wide range of Wiener-

like differential processes into a strict mathematical framework Ito's

lemma is therefore used to solve stochastic differential equations which is

analogous to the chain rule in Nevvtonian calculus.[16),[17]

Suppose that the value of S follows an Ito process

dS = p(S, t)elt + a(S, t)dZ

where dZ is the Wiener process aud u and a are functions of 5 and t and

the variable S has a drift rate of 1"(5, t) and variance rate of a(S, t) Ito's

lemma states that a continuous function C(S, t) = C, that is twice differ-

entiable in 5 and once in t, follows an Ito process given by ([17j,[561,[571)

o

,(8C BC 182C .») 8Cde = -liS + - + --a-S- dt + -aSdZ8S t- 8t '2 8S2 85
(:3.11)

Consider a continuous function C(X) that is twice differentiable in X If

6X is a small change in X and 6C the corresponding change in C then

_ dC .
iJC~ -oX

dX
(:3.12)

6G being approximately equal to the product of the rate of change with

respect to .<'\ and 6X. For more accuracy, the Taylor series of 6C is given

as,
'C _ dC 'Xr 1 d2C - \r2 1 d3C . v3 Io - -iJ + - --0 '\ + - -0 '\ TdX '2 dX'2' 6 dX3' .. ,
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iu which the terms in 6.,'(2 and above C:\t·econsidered to be too small in

equation (2.3) For G continuous and differentiable iu two variables X

and V, the result analogous to equation (:312) would be

(313 )

whose second order Taylor series expansion is

;...IG sc 1 :::l"G =c 1 ;...1"1G
6G = _u_6X+_u_'(j}'+ __u_SX"..L o: , 6X6V+-_u--6V"+ (314)

oX 81' 2 f)X2 I f).X. f)Y "2f)}/"2

Taking limits as 6X and c5Y tend to zero, equation (3.1-1) becomes

oc oc
de: = 8.Y d ..\ + f)}' eLi" (315 )

Suppose the variable X follow's an [to's process (equation 3-l) and that

e: is a function of .''\ and of time t then we can from equation (3.14)

extend equation (315) tv cover functions that follow [to processes hence

by analogy, equation (31cl) becomes

Equation (3et) can be discretized to form equation (35) which can also

be written as

6 X = a6 t + be J c5t (317)

\Ve observe here that there is a significant difference between equation

(3.16) and equation (3.14), because although all the terms in c5X2 are

dropped in equation (315) (since they are too small), equation (317)
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6-,\2 = b2c26t + terms of higher order in ot: (:3.18)

hence terms in 6X'2 cannot be ignored since it contains r5t as a component.

From equation (3 LS) therefore conclude that 6X2 becomes uoustochastic

(deterministic) and is equal to b2elt as 6t tends to zero as can be seen from

the multiplication table below,

x elZ elt

elZ elt 0

elt 0 0

Taking luuits as oX and 6t tends to zero in equation (31G) and ignoring

the terms in r5X:J and 6(2 and l}igher terms we obtain

o

(:J 19)

which is the Itos lemma Substituting for elX from equation (3.3) we

obtain
oc ec 1 a2G)

elC = a v (aclt + belZ) + -at elt + ) a Y2tntt
/\. . ~ .'\.

Collecting the terms in dt we obtain

(
8C 8C 1 a2c») ocelG = -CL + - + - -b- elt...L -belZ
ax at '28.,'(!. I ax (3.20)

in this case the drift rate is g~CL+~~+~g~~b2and the variance is (g~)\2

o
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Mu lt id.imeusio nal It os Lern rna

Occasionally functions may have more than one random variable. In

this case we refer to equation (1.:3) from which we can get a family of

differential eq uat ions using models for d illereut underly ing assets as

where Xi is the Stock price of the ith asset,l = 1, .... , N, and ~li and

a, the drift and volatility of thetth asset respectively, while d.Z, is the

increase of the Wiener process of the [tit asset. We have cLZi is equal to

Ei JJi where Ei is a random number drawn lrom the normal distribution

table, Thus cLZ, has a mean of zero and a standard deviation of JJi hence

£(eLZi) = 0 and £(cLZ(~) = dt

[f Z, and Zj are correlated, the Wiener processes eLZi and eLZ), where

Var(dZi, eLZj) = £(eLZ,eLZj = pijeLt), ill this case Pi) is correlation coeffi-

cient between the tth and j'" Wiener processes.

To be able to manipulate functions of many stochastic variables we need

the multidimensional [to's lemma.

In general we can consider a function C( Xl, X~, ,XN, t) of stochastic

variables Xl, X2, ...X'v and t,

then by Ito's lemma we have

(
oc 1 tV ,v 02C) tV oc

dC = - + - ~ ~ a.o ip XX dt + ~ -elXot 2G 0 ' ) t) t ) oX,oX 0 il X, t
i=l j=l ) i=l

(322)
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where elZ/ = di . dZ} = ell and cLZ,cLZj = pi)cLl, [17j.[:37J,[5GJ[5Tj.

By [to's multiplicat iou table we have-

* az, eLt

az, pijelt 0

elt 0 0

In a case of t\VO random variables Xl and X2 and a deterministic variable

t, that is,

and

in which elZl and elZ-2 are Brownian increments, both normally distributed

with variance dt ( since elZ? = elZ} = dt ) and correlation coefficient fl·

-1 < P < 1, therefore from equation (:3.22), we have[17J,[:37J,[SGJ[S7j[SSJ,

dG =

3.3.1 Black Scholes lVlerton Partial Differential Equa-

tion

The following assumptions were made in deriving the Black-Scholes-Merton

option price model [17j.
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l . The stock puce follows a geoiuetuc BlOwnian motion with ~L(drift

rate) and CT(volaLilitv) as constant

2 Short selling of assets with full use of proceeds is allowed

:3 There are no transaction costs or taxes.

-l The asset lS perfectly divisible.

) There are no dividends during the life of a derivative

G. There Me no riskless arbitrage opportunities.

7. Asset trading is continuous.

8. The risk-flee late of interest r, is constant tluoughout the trading

time.

Suppose C is the price of a call option ot other derivatives and is a function

of Sand t, twice differentiable in Sand t, where S IS the spot price of

the asset at any time t . Flam assumption (L), the stock price follows the

geomet nc Brownian motion given in equation (:314), we have,

oc .ec L", e2 C- +15- + -CT-5--- - iC = 0
et eS"2 eS2 '

which is the Black Scholes Merton Part ial Pifferential Equation
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3.4 The Nonlinear Black Scholes Merton

Partial Differential Equation

3.4.1 Feedback effect of hedging in illiquid markets

ln the traditional derivation of the the Black Scholes i\[erton Partial Dif-

ferential Equation there is always an assumption that the replication trad-

ing strategy has no influence on the price of the underlying asset itself,

that the asset price moves randomly. This could be justified by random

flow of information concerning the asset and the economy specifically ap-

plicable to large investors. It is therefore necessary to ~l::;ses the influence

of these trading strategies on the price of the underlying and thus in the

feedback loop.

The following strategies are used by Portfolio managers of large invest-

meuts which ruay cause replication. This strategy known as portfolio

insurance is popular in the European Put option Any simple options hav-

ing values C(8, t) can be replicated by holding 6(8, t) = ~~(8, t) shares at

a time if the share price is 8 \Ve can now consider 6(8, t) to be a corre-

sponding trading strategy Put replication is one of the trading strategies

that correspond to one example of portfolio insurance which we ought to

analyze. Let us assume that the excess demand takes the form X(8, t, z )

being a function of price 8, time t and a random influence :r. The random

influence ensures that our model does not stray too far. We regard such

influence as the effect of new information that is arriving at random on

the value of the underlying new asset or the action of noise traders.

Generally ~ is negative, rising price leads to falling demand. At any given

MASENO UNIVERSITY
S..G. S. LiBRARY

o
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time the equilibrium price 5' is the price for which demand equals to

the supply or generally the excess demand equals to zero (X(5', t,:c) = 0)

Any typical market would therefore return to equilibrium after undergo-

ing disturbance due to the forces of supply and demand.([3),[12I,[t:3I,[571)

There exists a possibility of disequilibrium but speed of information flow

and sufficient numbers of professionals on the stock markets guarantee

full equilibrium in stocks, hence flows in Modern markets is a good ap-

proximation. In the nonlinear Black scholes model therefore both demand

and supply can change because of the stochastic nature of the parameter

We therefore add extra demand resulting from hedging the put option

to the original demand. \Yith this additional demand the equilibrium

becomes

5' + 6(S,t) = 0 (:3.24)

Apart from demand arising from noise we shall also have a completely
-'

deterministic demand due to the trading strategy 6. With an addi-
o

tiona! demand of the form 6(S, t), the equilibrium condition equation

X(S',t,:c) = 0 becomes X(S.t,T) + 6(S,t) = 0 which must also hold for

the change in X and 6 given as

dX = cl6 = 0

For simplicity we could consider an arbitrary excess demand function X

assuming now that X(S, t,.1:) = ~(x - S) where ~ is a positive real number

and x follows a stochastic process in equation

o
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where ~L.c and ac can be functions of .1: and t . hence .r is all intrinsic

value. The parameter =- shows how strong the excess demand Iunct.iou

reacts to change in price. If the price changes by d.S the e~cess demand

changes by - = For liquid markets z is small while for illiquid markets

it is large.[:3I.[l21,[13I,[571

With the appropriate choice of scaling under undisturbed equilibrium, ::-1

is also equal to the price elasticity of demand and applying [to's lemma

to S' + =- c,( S', t) = 0 the stochas tic process followed by S' is

d.S = ps(S', t)cit + as(S', t)dX

with JLS and as given by

and

[:31,[121, [131, [5 71

3.4.2 The Nonlinear l\!Iodel on illiquid mar ket s

'vVe could examine the drift ~Ls and the variance as of the modified price

process Both will have a term of the form 1 - =-~~in the denominator

which the negative of the total demand function. When this becomes zero

the demand function has a zero slope.

However when ~~ < c-l, a positive ~~ will increase both ~LS and the

absolute value of Os hence the market becomes volatile Conversely if ~~

"
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is negative ir wil! decrease the volat ility of the market

If .6. is regarded as the traders strategy to replicate a derivative security

C, the relation .6. = ~~will yield a replication of the derivative security

C with positive r = ~~S·which destabilizes the market of the underlying

hence long positions in put and call options have positive gamma.The

Nonlinear Black Scholes ~[elton Partial Differential Equation will there-

fore become

oc 1 (f):!~,"f):!C I 'S,f)C 'C'-O- + +O ,,::> -- T r - - r -
f)t 2 es: es (:3.2.5 )

and u(f) = [O'+it r < OJ and a(f) Assuming the

interest rate is equal to zero we have

oc 1 0'2) f)2C oc
T + -:-2S- ;:)S'2 + r S ;:)S = 0,
ot 2 ( _ {PC) u u1 - :.S 8S~

(:3 26)

o

which is the Nonlinear Black Scholes Merton Partial Differential Equation.

3.4.3 Mo dels with transaction costs

Effect of transaction costs

Transaction costs are incurred in the buying and selling of the underly-

ing. The assumption held in deriving the classical Black Scholes for mular

that there are no transaction costs is therefore incorrect since in practice

the costs do exist. Depending on the market the costs mayor may not

be important. However in a market with high transaction costs rehedg-

ing becomes too costly. In most liquid markets the costs are low hence

o
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it is possible to hedge quite often. The Black-Scholes model requires a

continuous portfolio adjustment in order to hedge the position without

any risks. The presence of transaction costs in the iufinitc number of

transactions makes the process expensive The hedger therefore needs to

find a balance between the transaction costs that are required to rebal-

ance the portfolio and the implied costs of hedging errors This leads to

'uuperfect" hedging which culminates into the option being overpriced or

underpriced to an extent where riskless profit obtained by- the arbitrageur

is offset by the transaction costs, so that there is no single equilibrium

price but a range of feasible prices instead.

In markets with transaction costs there is no replicating portfolio for the

European Call option and the portfolio is required to dominate rather

than replicate the value of the option This necessitates an alternate re-

laxation of the hedging condition to better replicate the pay-of of deriva-

tive securities

o

The model of Leland

The modeling of transaction costs was initiated by Hayne Leland ill 1985

This model is the first such model In finance and will therefore form a

strong basis in this study In using the Leland's method one hedges an

option with a delta calculated in the same way as in the Black-Scholes

delta, but with a modified (adjusted) volatility. This adjustment depends

on the sign of the second derivative of the option price with respect to the

price of the underlying The Leland's approach minimizes the risk of the

local risk of the hedging strategy. Leland's hedging with a modified hedg-

ing volatility .: equalizes" the replication error across different stock paths

o
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which also reduces the total risk of a hedging strategy. The model call be

extended to cover tile cases of pricing and hedging an option portfolio on

a commodity luture contract, a portfolio of strong path-dependent option

on a stock, and options on several assets The Leland's approach yields

a parabolic partial differential equation.

III markets assumed to have no transaction costs the option price is always

equal to the cost of setting up the replicating portfolio. This follows from

the absence of the arbitrage argument. Leland's idea was to include the

expected transaction costs in the cost of a replicating portfolio, meaning

that the price of all option must be equal to the expected cost of replicat-

ing portfolio including the transaction costs. This results into a situation

where a market maker who writes a European call option for example and

constructs a replicating portfolio, should sell it with a premium which off-

sets the expected transaction costs. On the contrast a market maker who

buys Cl European call option and constructs a replicating portfolio, should

buy the option with a discount to offset transaction costs. Leland fur- o

ther assumed that the revision of replicating portfolio must occur at fixed

regular intervals of length 6t we therefore present the Leland's model us-

ing the interpretation of Hoggard, Whalley and Wilmott. \'Ne consider

a continuous time economy with a risky security, for example, a stock

and a risk-free money market account which provides a constant rate of

interest r. The price of the stock S, envelopes according to the stochastic

differential equation (L.3)

d.S = {lSclt + (J SdZ
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hence over a sufficiently small time interval (5t the change in stock price

rS5 = p5r5t + a5Effl + o(rSd), (:3.27)

where E is a random drawing from a normal distribution table

We set up a hedged portfolio 0 as

Il = C(5, t) - 65 (:3.28)

where 6 = ~~(5, t) Henceforth we suppress dependance of Il, C. 6 on

t over 6t After a given time cSt therefore the portfolio becomes

Il + 6rI = C(5 + 65, t + cSt) - 6(5 + 65) (329)

from which it follows that

60 = C(5 + 65, t + 6t) - 6(5 + 65) - C(5, t) + 65 (:3.30)

Expanding this in Taylor's series we obtain

which has not accounted for the inevitable transaction costs that will be

incurred on rehedging The costs are

k51C1·

o
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Tile quantity C of tile underlying' asset chat are bought is given by the

change in the delta from a given time step to the next:

ac _ _ aeC= as(S+()S,t+M) - as(S,t)

which by Taylor's theorem is given by

ae 8"C _ a"C _ ac rYc _ rYc _c - I oS I ot + .._- - = -oS + --at' - as T as" T asat as as" asat

where all derivatives are now evaluated at(S, t) After two terms canceling

we get the approximation

Subtracting the cost trorn the change in portfolio value gives a total change

of

o

_. (ac ) (ac (ae )HI - !.:SICI = Jr5taSE - - 6 + r5t -. + I-lS - - 6as at as
1))) 8)e) ,) - a)c I+ 2a-S-Cas2 -!.:as-IElvOt aS2 +.

The mean of this is

( ec (aC ) 1» ec .)f{!2r5t1 a"e I)£[clITJ = r5t - + I-IS - - 6 + -a-S-- - h;aS- - - +at as 2 as" rr as"
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because E[e] = 0, E[E]] = 1 and E[lcl] = II
We also find that

r5t(u282(OC _ 6)2 + k2U28~(02C)2) -i .
08 082 I

since

E[elel] = 0

The varrauce of the portfolio change is therefore

vall cl [1] E[(lm)2] - (E[cLllJ)"

r5t(U2S'"(~~ - ~f+ (1 - ~)k2U28'(~~~f)

to leading order For finite hedging period cSt and finite cost k: this can-

not generally be made to vanish. However the variance, or risk, can be

minimized by choosing
oC

6=-08
with this choice,

E[dll] = 6t(0.C .i. ~u28202C _ ku8J. f26t102CI)
ot I '2 082 V -;:- 082

I
T ...

to leading order. This quantity is an expectation allowing for the ex-

pected amount of transaction costs. 'vVe now set this quantity equal to
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the amount that would have been earned by a risk free account:

_ ( 8C)_= T nM =, C - S - M
8S

On dividing by' r5t and rearranging we obta-in the Hoggard-whalley- Vvihuott

representation of the Leland's model given by

8C 1) ,)02C ,){£2IcPCI ,fJC-+-0--5----/,;0-5- -_ - +,5--,.C=0
fJt '2 fJS~ TiM fJS~ fJS

(:3:31)

3.5 Logistic mod els

3,5.1 Nature

Logistic differential equations have been found to give more accurate reo

suits than non logistic ones, Applied to population, Logistic models are

based on the exponential growth and decay model, but they include an

overcrowding term, or a nonconstant growth rate, that reflects the limi-

tations on growth due to the scarcity of resources and living space

In finance, a logistic equation for asset prices can be obtained by consider-

ing random responses in the forces of supply and demand during trading

This becomes possible when we introduce the excess demand function and

apply it in the framework of the Walrasian (\Valrasian-Samuelson ) prrce

adjustment mechanisrnj.I"].

o
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3.5.2 The Law of Demand

The law of demand states that the quantity of a good or service is nega-

tively related to its price,cctens paribus That is, consumers \\'i11purchase

more of a good or service at a lower price than at a higher price As price

rises, ceteris paribus. a consumer will demand a smaller quantity of a good

or service.

3.5.3 The Law Of Supply

This law states that a quantity supplied of a good or service is usually

a positive function of price, ceieris paribus That is suppliers will supply

less of a good or a service at a lower price and as price rises the quaut.ity

supplied will increase

3.5.4 Walrasian Equil ibr iumf Equ ilibrium Price)

This is a state of stability or balance where the quantity of a good or

service supplied is equal to the quantity of the same good Ol selVlce

demanded

3.5.5 Excess Demand

Of necessity, we note that in stock price modeling the price of an asset is

assumed to respond to the excess demand which is the difference between

the quantity of an asset demanded and the quantity of the same asset
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supplied as given by equation (14), That is,

EDS(t) = Q oS(t) - Qss(t)

where:

EDS(t) is the excess demand,QoS(t)and QsS(t) Me the quantities de-

manded and supplied respectively at a given tirne.t and price, S(t)

.J ust like in the predator-prey ecosystem where there is "give and take" ,

the market structure with forces of supply and demand exhibit two forces

in the market which affect each other striving to strike a balance called

the market equilibrium

This comparative phenomenon has made it possible to apply' the idea

of logistic equation, first used by velhlust(1838), and Reed(1920) In

Verhlusts model for studying dynamics of human population growth in

the (J nited states, he took p' to represent the environmental carrying

o capacity in which a population lives, which favorably compares to .st.he

Walraslan equilibrium market price, a point where the quantity supplied

and demanded in the market Me equal.

This has led to the Verhlust logistic Black-Scholes-Merton partial dif-

Ierential equation with constant volatility, In this study we intend to

formulate the Logistic Black-Scholes-Merton partial differential equation

wit h stochastic volatility.
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3.5.6 Logistic Geometric Brownian Motion Mo de l

Using the \Valrasian law and the e\:cess demand function( 1A), the logistic

geometric Brownian motion according to Onyango ([371,[:381) is of the form

ci8 = Il8(8' - 8)cit + a 8(8' - 8)clZ (332)

or
1 ss~~~ = udt + aeLZ
8(8*-8) t-

(3.33)

where 8* is the \Valcasian market equilibrium price, 8 is the stock price

at any given time t , Ii is the drift rate and a is the volatility of the stock

price at any given time t ill this model volatility is constant.
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THE LOGISTIC LINEAR

BLACK-SCHOLES-

MERTON PARTIAL

DIFFERENTIAL

EQU~TION
o

4.1 Introduction

In this chapter we use Ita's lemma given by equation (3.22) , the Logistic

geometric Brownian motion, equation (:3J2) and a stochastic volatility

model, equation (:3.9), to derive the Logistic Black-Scholes-Merton partial

diflerenr.ial equation

38

o
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4.2 The Logistic Differential Equation

Suppose the price of an asset follows <l Logistic Ceometric BLOII'nian t--lo-

tion equation (3.32) then lIe hale.

eLS = 11S(S' - S)clt + uS(S' - S)dZI ( 4. l)

in which as already defined in section :3.5. S' is the Walraslcw equilibrium

price while 5 is the asset price at a given tune i , and the stochastic

volatility model given as,

where a is the asset price volat ilitv. 11a and ('a are the mean and variance of

asset volatility respectively, whereas eLZt and eLZ] are the \Viener processes

associated with the two differential equations (,lol) and (-1.~) respectively.

We can also let the Wiener processes have a correlation p, Considering

equations (4.1) and equation (-1.'2), the value of an option is therefore

a function of three variables, C(S, o, t), where C is the price of the call

option and 5 is the asset price Since volatility is not a traded asset, its

randomness cannot be easily traded away. Having two other sources of

randomness therefore, we need to hedge our options against two other

contracts, one being the underlying asset as usual but the other to hedge

the volatility risk. We therefore set up a portfolio as,

(-13 )

o
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TIle change in the portfolio elf( will be given b)',

( -(4)

using [to's lemma on S, C! and t as defined in section (33) by equation

(:3,22), \\'e can use the application in equation (3,2:3) on equations C,U)

and equation (cL2) to obtain the change in portfolio ill a time dt as,

elf(

( -I 5 )

Collecting the terms in elS and do in equation (4,5) we obtain

elf(

+ (
DC - oc, -) 5 (DC - OCl)el--Ol--O el'+ --Ol- C!os os DC! DC!

( -106)

In Older to eliminate all randomness we choose ~~ = 6l ~ + 6 and

~~= Ol f)f)~l making terms involving d.S and do to be equal to zero, After

eliminating ciS and do which contain the Wiener processes clZl and ciZ2
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respectl velv, equat iou (46) becomes a uou stochastic differential equation,

del (
:--'C' l ;::)"C' :--")C l ;::)')C')
U / I -] ,-] '';'; , .~ U . I .~,,. -,;.: , U· I "2"] u '--. ,-05 (5 -5) - ,po 515 -5)u --, -L' 0 -- ellDt 2 DS!. \ a 8SDo 2 a 8o!.

(
;::)C' 1 :-"'C' :--')C' 1 ;::)"C ), U l. ., ,J', .. ) u~ l. ')',.. , u~, l .) 'J U" l

- ()l --. T -0~5~(S - 5)~--T po~!:J(5 - 5)u -- + -('~o~--' dt
DI 2 DS!. a 8Soo 2 a Do!'

(4.7)

\Ve can use no arbitrage argument to set the return of the portfolio to be

equal to the risk free interest rate" as

em = d1dt ( 4,8)

Substituting equations (~U) and (47) into equation (48) we obtain,

( 49)

\Ve now have a situation where we have one equation with two unknowns

C and C\ Given that 0 = ~~and Ol = cJOC;l and that both are affected by

a hedge ratio ~~ and cJcJ~l respectively (which are also the sensitivity of

option price to volatility) respectively', we can collect terms in C on one

side and those III C\ to be Oll the other to obtain,

"
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.c (OC' l "S"~(S" S')2o'e" '~S'(5" S') iJ"C, l ..~~ oc, 'C )u l 7ft +~a - ~ T pa . - Lla i'fSc);; +"2 L'aa 7);;'! - I l

oCt
aa

Since the two different options will have different payoffs, this possibility'

can only he obtained if the left hand side and the right hand side are inde-

pendent of the contract type. Both sides therefore can only be functions

of the independent variables, 8, a and t and thus we have

( cliO)

o

for some function /\(8, a, t) which is the market price of volatility risk and

,Lia - /\ua is the risk neutral drift rate of volatility Rewriting this equation

(~.1O) \\'e obtain

8C I) ,J, , )8~C ) < , 8~C I) )82C
- ...L -a-S-(S' - S)-- + po:8(8 - S)u -- + -u-a--
8t ' 2 882 a888a 2 a 8a2

8C 8C+,.8- + (1-0 - /\v ) - - I'C = 088 U U 8a
(4.11)

Equation (cl.ll) gives us the equivalent of the Logistic Black-Scholes-

Merton partial differential equation with stochastic volatility.

If Zl and Z~ are of the same distribution then dZl = dZ~ which implies
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that p = L since «z; = dt hence equation (-L 1 L) becomes

oC 1) ,)" , .)02C) ,'~« , IYC l,,02C
75t + ::2o--S-(S - S)- OS2 + o--Sl.Y - S)u" 8Suo- + ::2L';0-- u0-2

8C UC
+rS oS + (Pa - /\ua) 00- - IC = 0 (.U2)

Equation (-Ul) is therefore the Logistic Black-Scholes-Merton partial dif-

fereutial equation with stochastic volatility

4.3 Deterministic Price Adjust ment Mo del.

To make the price adjustment more computational, we begin by taking

supply and demand functions to be fixed functions of instantaneous price

S(t). Then at equilibrium asset price point, P', demand Qo(S')"is equal

to supply, Qs(S'). On the assumption of fixed supply and demand curves,

S· is constant. AII'ay from equilibrium. excess demand for the security

will raise its price, S, and an excess supply will lower Its price Thus the

sign of the rate of change of price, S, with respect to time, t, will depend

on the sign of the excess demand. [f we linearise Qo(S(t)) and Os(S(t))

about the constant equilibrium price S', the deterministic model of price

adj ustrnent becomes

1 elS(t) ( "~, S'(- -- = /,,;0' + :)H.j - t))
S(t) tit '

(.! L3)

where Qo(S(t)) = O'(S' -S(t)), Qs(S(t)) = -,3(S' -S(t)), and constants

0' and ,6 are demand and supply sensitivities respectively. Putting T =
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k(Cl + ))in equation (-L [:3). \\e get the deterministic logistic equation

dS(t) = rS(t)(S' - S(t))
eLt

(-U-I)

see [29],[:371,[381.

This is a deterministic logistic (first- order) ordinary differential equation

in 5(t) Thus the fractional growth of S(t) is linear 111 S(t). This con-

trasts with exponential growth, where the fractional growth is COllSUUlt

(independent of S(t))

The logistic equation was first investigated by Pierre-Francois Verhulst in

[531, as an improvement on the Malthusian model of population dynam-

ics, hence it is also known as Verhulst-logistic differential equation. Since

then it has been applied in several areas

The solution set of equation (4.14) is given by

'u = 5' 5(0)
S() 5(0) + (S' - 5(0))e-,S-t

(-L l5)

where 5(0) is a parameter interpreted as the initial price an asset. From

equation (4.15) we observe that as t -> 00, the term S(t) -> S~f~~) = 5'

The asset price thus settles into a constant level, called a steady state or

equilibrium, at which no further change will occur
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4.4 Logistic price adj usment rnodel

Iu this section we model random fluctuations in supply and demand by

changes 6G, 6,3 in the respective sensitivities Consider that, Qo(S(t))

and Q(S(t)) to represeut averaged effects of supply and demand respec-

tively, and suppose that both curves steepen or level off in response to

random observed trades cumulatively they execute a random walk or

Wiener diffusion process. From equation (413) we have

eLS(t) ( .- (- --" S'()) (- -O)(S· S())-5'(')' = l: Ct + J),) - t + l: 00: + o,u . - t
, t eLt

dS(t) (:J (- -O)L
S(t)(S' _ S(t)) = l: 0: + ,0)dt + l: 0Ll' + 0,0 ct (416)

From equation (,t 16), we may put p = /,;(0: + ,3) (logistic growth pararn-

eter) and adZ = h(OG + cr(3)dt(noise process) to obtain

eLS( t ).-,--------,---,----'---'----:-,--------= p clt + a clZ
S(t)(S' - S(t))

(417)

Equation (416) defines an Ita process evolving according to the stochastic

differential equation (:332) of the form

dS(t) = ~lS(t)(S' - S(t))dt + crS(t)(S' - S(t))dZ (4_18)

We [efel to equation (417) as Logistic Price Adjustment Model (LPAlvI

model), or Verhulst-Price adjustment model (VPAM),see [371 In the

risk-less case (cr = 0), equation (417) reduces to the logistic equation

MASENO U;-:iVERSITY
S·G SIt _:'1. RA'RY• . • ,-.10
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(-\.1-1) with equation (4 (6). Using [to's leuuua the solution of (c! (7) is

(
S(t) ) _ ( 8(0) ) I =c « I"

In. I 8' _ 8 ( t ) I - l n I 5" _ S (0) I T !l 5 (t - t (I) T as Z ( t ) (-1.19)

Re-arranging and simplifying equation (-I (9), lIe get

, 8'5'(0)
S(t) = 5'(0) + (S' _ 5'(O))e-(;,s·(t-to)+aS·Z(t))

(-120)

This price dynamics is referred to as logistic Brownian motion of asset

price. 5'(t). When a = 0, theu we get the deterministic logistic equation

(-U5)

4.5 Partial differential equation for logistic

Price Adjustment lVlodel.
o

In this section we derive the partial differential equation for logistic price

adjustment model in a case where volatility is constant. Let C(5'. t) be

the option value depencling on asset price, S and time t, then by [to's

lemma (:322)we have

dC(5() ) = oC(5,t)d oC(S,t) is' ~02C(5·t)clS2
t .t ot t + oS G T.~ 052 (~.2 L)

For logistic Brownian motion we have

ciS = J.iS(S' - 5')clt + (TS(S' - S)clZ

and

"
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Substituting in equation (-L21) and simplifying II'e get

dC(S(t).t) = CLS(S' _S)oc~~.t) + oC1~·t) + ~a1S2(S' _S)101~,~~.t))(Lt+as(s· _S)OC~~:l)di

(-1'22)

By using the no-arbitrage argument] -1.8), which implies that the percent-

age return of tile portfolio over the time interval dl should equal the

risk-free interest rate, I. That is

clTr(t)""k-frcc = nr(t)ri.5k-f"cc (,-U:3 )

Thus we get

(
OC(8, t) + a

2
82(8' _ 8)2 02C(8, t)) dt = I' (C(8 t) _ oC(8, t) 8) dt

ot 2 082 '08
l-l.24)

Further simplification of (-12-1) yields a partial differential equation given

by

o

oC(8, t) + a
2

8'2(8' _ S)202C(8, t) + ISOC(S, t) _ rC(S t) = 0 (4.25)
ot '2 082 oS '

This modified Black-Scholes-Merton partial differential equation is a 10-

gistic partial differential equation

o



Chapter 5

THE LOGISTIC

NONLINEAR BLACK-

SCHOLES-MERTON

PARTIAL DIFFERENTIAL

EQUATION

5.1 Introduction

In this chapter we use the Geometric Brownian motion equation ("2.-l)and

the random walk in discrete time given by'

05 = ~156t + a5EJ6i + o(od) (51 )

with the assumption that the portfolio is revised every ot, where ot is a.

finite and a fixed time step and that the hedged portfolio has an expected

48
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return equal to that from a risk free bank deposit, which is the same as

the valuation policy in discrete hedging wit h no transaction costs.

5.2 Logistic nonlinear Black Scholes Mer-

ton partial differential equation

Suppose the price of an asset follows a Logistic Geometric Brownian mo-

tion given by equation (332) given as

dS = ~lS(S' - S'vit + o Sl S' - S)dZ,

then over a sufficiently small time interval 6t the change in stock price is

given by

o r5S = ~lS(S" - S)rSt + o Sl S' - S)EIli + o(6d)

where E is a random drawing from a normal distribution table

'vVe set up a hedged portfolio n as

Il = C(S,t) - 65

where 6 = ~~(5, t), Henceforth we suppress dependance of Il , C, 6 on

t over r5t After a given time cSt therefore the portfolio becomes

Il + 6n = C(S + 65, t + 6t) - 6(5 + c5S) (5.4)
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Irom which it follows that

5[[ = C(S + 5S, t + 51) - 6(S + 5S) - C(S, t) + 6S (5.5)

Expanding this in Taylor's series \\,:e obtain

--:- .• ~,(8C ) _ (8C "~. (8C ) l) 0).' ~ •.) ')02C)JMrrS(S -.'l)E --6. .Lr)t -.L/!S(!:J -.'J) --6. .L-(rS-(S -.'J)-C- .L
- . 8S ' 8t' I- uS' 2 . 8S2 '

which has not accounted for the inevitable transaction costs that will be

incurred on rehcdging. The costs cue

I,;SICI

The quaut ity C of the underlying asset that are bought is given by the

change in the delta from a given time step to the next:

o

8C _ _ 8C
C~ 8S(S+()S,t+ot) - 8S(S,t)

which can be approximated by

8C 8"C 8"C
C = 8S + 8S1 5S + 8S8t 5t + .

8C
8S

where all derivatives ale now evaluated at(S, t) After two terms canceling

we get the approximation
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Subtracting the cost from the change III portfolio value gives a total change

of HI = em -- LSlcl which is

6[[ = J6tcrc,(s' - S'Je (OC _ 6) + 61 (OC ""-I'S(S" _ 5) (8C _ 6) .r, ~CT2 5'(S' _ SJ'c:' u'C)- , ,- oS ' at" oS ' '~ uS,

The mean of this is

(DC . (8C 1" 82C) 'f!j26tID2CI)E[611] = 6t -+11S(S"-S) __ 6+_a2S2~ -kaS2 - -- +at 'r- 85 I 2 8S2 71 DS2

Because E[E] = 0, £[e2
] = 1 and £[Iel] = If

We also find that

r (OC)" '18'CI (OC)£[(6[[)'1 = (ItE cr2S'(S' - S)!c:' as - 6 - 2kcrS'(S' - S)2 85' oSi S' - S) oS - 6 fli'l

+ k'if 5'(5 - 51' ( ~~~)'" I +
<>

since

The variance of the portfolio change is therefore

uar[611] £[(611)2]- (£[671])2

r5t(a2S2(S< - sr(~~- 6f + (1- ~)1;;2a2S4(S< - S)4(~~~'f)
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to leading order. For finite hedging period JI and finite cost k t hi-, UUl-

minimized by choosing
8C

6=-
85

with this choice,

E[5fII = (St (8C I ~a2 52(5* _ 5)2 8
2
C _ ko 5](S" _ 5)2 /2i5t 182

C I)
8t T 2 882 V II 85l

to leading order This quantity is an expectation allowing to: the ex-

pected amount of transaction costs. We now set this quantity equal to

the amount that would have been earned by a risk free account

6t(CJC + ~a2S2(S' _ 5)28
2
C) _ kaS2(S" _ 5)'] /26t182CI

8t 2 852 V if 85]

- (C _8C)_= rOM =,. , - S- at
CJ5

On dividing by cSt and rearranging we obtain the Logistic nonlinear Black

Scholes f\·ferton partial differential equation given by

;:)C 1 ;:)"C (£) 1 ;:)"C' 1 ;:)C·U 'J ,.) ,< .) U .) "" .) ..... u· u ,-+-a-S-(S -5)---ka5-(5-5)-\ -, - +15-~-IC =0
8t 2 85] not. 852 8S

(5.6)

5.3 Conclusion and recornmcndat io n

In this thesis \Ve have managed to derive a Logistic nonlinear Black Scholes

Merton Partial differential equation based on the model with transaction

o
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costs wh icl, IS appearing ill this thesis for the first time in literature. This

conies i:lS a breakthrough in the study of the nonlinear Black Scholes [\(er-

tou Partial differential equation and in its application in the prediction of

future asset prices where transaction costs are considered together with

the logistic geometric Browuian ruotiou unlike ill previous studies where

t he Brownian motion has been used

We recommend that interested scholars solve the differential equation III

order to enhance prediction of future asset prices

o
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