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ABSTRACT

Nonlinear Black-Scholes equations have been increasingly attracting
interest over the last twenty vears. This is because they provide more
accurate values by taking into account more realistic assumptions, such
as transaction costs, illiquid markets, risks from an unprotected portfolio
or large investor's preferences, which may have an impact on the stock
price, the volatility, the drift and the option price itself. Recent models
have been developed to take into account the feedback effect of a fund
hedging strategy or of the transaction costs of large traders. Most of these
models are represented by nonlinear variations of the well known Black-
Scholes Equation.On the other hand, asset security prices may naturally
not shoot up indefinitely (exponentially) leading to the use of Verhlust’s
Logistic equation. The objective of this study was to derive a Logistic
Nounlineat Black Scholes Merton Partial Differential equation by consid-
ering transaction costs (which were overlooked in the derivation of the
classical Black Scholes model) and incorporating the Logistic geometric
Brownian motion.The methodology involved, analysis of the geometric
Brownian motion, review of logistic models, [to’s process and lemma,
stochastic volatility models and the derivation of the linear and nonlinear
Black-Scholes-Merton partial differential equation .Illiquid markets have
also been analyzed alongside stochastic differential equations. The result
of this study may enhance reliable decision making based on a rational
prediction of the future asset prices given that in reality the stock market

may depict a non linear pattern.
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INTRODUCTION

1.1 Background information

Stochastic differential equations are fundamental in describing and un-
derstanding random phenomena in different areas in physics, engineering,
finance, economics and other areas. [n particular, they serve as a model
for asset price fluctuation in finance and is the driving force behind the
famous Black-Scholes-Merton option pricing partial differential equation
used for deriving the Black-Scholes-Merton model in the year 1973

Whereas ordinary differential equations are usually interpreted as describ-
ing evolution in time and hence determining dynamic systems, the future
becomes quite predictable from the knowledge of the present state. There
are however systems which are known to exhibit randomness and hence
are non-deterministic, like the predator-prey ecosystem and the markets.
This leads to partial differential equations(which involve more than one

independent variable and their corresponding derivatives).

[n the derivation of the Logistic Nonlinear Black-Scholes-Merton partial

differential equation, three processes shall be considered namely:
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(1)The arithmetic Brownian motion(Bachelier process)

dS = pdt + odZ (1.1)

(2)The [to process

dS(t) = f(S,t)dt + f(S,¢t)dZ (1.2)

(3)The geometric Brownian motion(Wiener process), which is a special

type of the Ito process in which f(S,t) =5

dS = pSdt + oS5dZ (1.3)

where S is the stock price, i is the expected rate of return per unit time
and o s the volatility of the stock price, whereas dZ is the addition of

noise.
Of necessity, we note that in stock price modeling the price of an asset is
assumed to respond to the excess demand which is the difference between
the quantity of an asset demanded and the quantity of the same asset
supplied, That is,

EDS(t) = QpS(t) — Qss(t) (1.4)
where:

EDS(t) is the excess demand,QpS(t) and QsS(t) are the quantities

demanded and supplied respectively at a given time,t and price, S(t)

Just like in the predator-prey ecosystem where there is “give and take”,
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the market structure with forces of supply and demand exhibit two forces
in the market which aftect each other striving to strike a balance called
the market equilibrium.

This comparative phenomenon has made it possible to apply the idea of
logistic equation, first used by Verhlust,and Reed.([36],[37],[38])

[n Verhlust's model for studying dynamics of human population growth
in the United states, he took p* to represent the environmental carrying
capacity in which a population lives, which favorably compares to s* in the
Walrasian equilibrium market price, a point where the quantity supplied
and demanded in the market are equal.

[n this study we intend to formulate the Logistic Nonlinear Black-Scholes-

Merton partial differential equation.

1.2 Statement of the problem

o

Although much work has been done to model the nonlinear Black-Scholes-
Merton partial differential equation, The Logistic Nonlinear Black-Scholes-
Merton partial differential equation has not been derived. [n this study we
counsider the Logistic Geometric Brownian motion alongside more realis-
tic assumptions such as transaction costs, risk from unprotected portfolio,
large investor’s preferences or illiquid markets, which may have an impact

on the stock price, the volatility, the drift and the stock price itself.
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1.3 Objective of the study

The objective of this study was to derive a Logistic Nonlinear Black
Scholes Merton Partial Differential equation by considering transaction
costs (which were overlooked in the derivation of the classical Black Sc-
holes model) and incorporating the Logistic Geometric Brownian motion

which was not used in the derivation of the recent linear models.

1.4 Significance of the study

The Solution to the Partial Differential Equation derived in this study
may enhance reliable decision making based on a rational prediction ot
the future asset prices given that in reality the stock market may depict

a non linear pattern.

1.5 Research Methodology

The methodology involved, analysis of the geometric Brownian motion,
review of logistic models, [to’s process and lemma and stochastic volatil-
ity models. [lliquid markets have also been analyzed. An analysis of

stochastic differential equations has also been done extensively.
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LITERATURE REVIEW

2.1 Linear models

Brown in the year 1827. first observed the continuous movement of pollen
particles suspended in a liquid. In 1905 Eiustein derived the mathematics
of random walk from the conservation equation with an empirical law of
physics and eventually obtained the diffusion coefficient in physics known
as diffusivity, which later came to be referred to in price dynamics as
volatility. Louis Bachalier a contemporary of Einstein applied this ran-
dom phenomenon(stochastic process) in his PhD thesis titled Théorie de
la speculation(The theory of speculation) ([2]).

Wiener introduced rigorous mathematical and probabilistic concepts and
proof that resulted into the theory of stochastic process(also known as
Weiner process). Later [to gave a rigorous treatment to stochastic pro-
cess and stochastic differential equations and ended up with the laws that
govern stochastic integration and solutions to stochastic differential equa-
tions, hence the norm of [to processes and [td's lemma, also [to’s laws.

However it was not until 1960s and 1970s when applications of stochastic

. SITY
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processes started finding inroads into the financial markets. Samuelson in
the year 1965 developed a geometric Brownian Motion (also known as the
economic or exponential model) that became an alternative to Bachalier’s
stochastic model. The disadvantage of Bachalier’s stochastic model was
that it allowed negative asset prices([18],[43]).

Black and Scholes together with Merton in 1973 made a major break-
through in pricing stock options in the celebrated Black-Scholes-Merton
option pricing model(BSMOPM). They used geometric Brownian motion
to derive the formula, which has become a benchmark in option pricing
and has been researched by both practitioners and in academia ([7],[33]).
Many researchers have modified and relaxed assumptions due to the
Black-Scholes-Merton model thus several models have been developed,

amongst others:

Hull and White[1987]([16]) developed a stochastic volatility model due to
the fact that in real sense volatility may not always be constant. [n the
year 2003, Onyango ([37]) using Walrasian excess demand principle devel-
oped a logistic equation for asset security prices considering the fact that
naturally asset prices would not usually shoot indefinitely(exponentially)
due to a regulating factor that may limit the asset prices. Recent work

has focussed on steady market conditions defined by the [to process.

dS = uSdt + oS5dZ, (2.1)

where the drift coefficient p reflects price trading driven by constant
investors’ expectation of gain, while the diffusive Wiener process odZ

reflects the response of trading random fluctuations of supply and de-
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mand. This leads to the [to process of the form

aC oc  19*C ., ocC
4G = (5§u$’ + =+ 335 U‘S")dé + —5§US([Z, (2.2)
Hence the corresponding Black-Scholes-Merton partial differential equa-
tion to (2.1)is given by

acC oC ,O0°C

, L e
797+755§+§US 95°

—rC =0, (2.3)

where r is a risk free interest rate , C' is the price of the call option while
S is the spot price of an asset at time zero.
Other developments that have come up are by Cox and Ross in 1976 on

stochastic volatility model, and borrowing the mean reversion model by

Orastein and Uhlensbeck in 1930 from physics ([9],[39]).

Given that historical volatility estimates in a moving window may be het-
eroskedastic (stock volatility varies over time with periods of high volatil-
ities and periods of calm) and not always homeskedastic (constant volatil-
ity). Onvango considering excess demand developed an [to process of the
form '

dS = uS(S* — S)dt +0S(S* - S)dZ (2.4)

where S* is the equilibrium market price of an asset, S is the market
price of the asset and g is the speed of market adjustient, ¢ is constant

volatility and dZ is the Wiener process ([37]).
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2.2 Nonlinear models

The nonlinear dynamic process was first noticed by Mandelbrot in the
vear 1963. he established that speculative market prices followed a frac-
tional distribution leading to the fractional Brownian motion (FBM).
Years later in 1999 Lo and Mackinlay came to the same conclusion as
a followup to Muller’s detection (in 1990) of non linear market dynamics.
These findings were later confirmed by Karuppiah and Los in the year
2005 ([30],[27],134].[22]).

Noulinear dynamic systems became of interest since it offered a new ap-
proach to financial predictability as observed by Franses and Van Dijk in
the year 2000. The models therefore became useful in predicting asset
prices in the long run while linear models only proved useful in the short
run as observed by Savit( in the year 1983). This is because Linear mod-
els are modeled undgr a number of assumptions which in most cases may
not reflect the reality in the market ([52].[47]).

Works by Jarrow in 1994,Platen and Schweizerin 1998 Frey in 1998 , Frey
and Streme in 2000, Sicar and Papanicolaou in 1993, Wilmott in the vear
2000 and Baum in the year 2001 among others have contributed richly
to Nonlinear models of finance. [n all the cases however, the geometric
Brownian motion was used ([19],[41],[12],[14],[51],[38].[3])-

[n Muhannad’'s analysis on stock prices for the European option in the
year 2000 for the Log-normal Model and the Log-logistic models, he
proved that option prices were overpriced by the Log-Normal model as

opposed to the Log-logistic model . This gives room for us to analyze the

effect of using the logistic Geometric Brownian motion ([33]).
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BASIC CONCEPTS

3.1 Stock Market

A stock market is a designated place where stock traders transact shares
and securities. I[n a stock market, stocks are floated for purchase and
sale. The following definitions are therefore necessary in our study as far

as stock markets are concerned. )

3.1.1 Stock prices and strike prices

The stock price is the price of an asset at a given time t, while the strike
price (exercise price) is the specified asset buying or selliug‘price in future.
3.1.2 Options

An option gives its owner the right but not the obligation to buy (in case
of call option) or sell (in case of put options) a certain quantity of an asset

by a certain future date at an agreed price.
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3.1.3 Types of options

There are two main types of options which we define as:

Call option-This type of option gives the holder the right to buy an
underlying asset by a certain date at a certain price.[t therefore gives one
the option of calling for stock at a specified price(strike price).

Put option -This type of option gives the holder the right to sell the

underlying asset by a certain date for a certain price

The buyer or seller in both cases is not under compulsion to exercise the
option but may chose to exercise the option or fail to do so depending on

market prospects .

3.1.4 Styles of Option Contracts

The two most popular styles of options are:
i)European style option- This kind of contract can only be exercised
at maturity date(on the date of maturity).
ii)American style option-This type of contract can be exercised any

time prior to the maturity date.

[n this study we shall concentrate on the European style option.

3.1.5 Portfolio

This 1s a list of security holdings by an individual, a bank or an invest-
ment company or any given investor. Since in every investment profit is

expected, The choice of a portfolio is crucial to the portfolio holder in a
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stock market.

3.1.6 Derivatives

These are financial instruments in the stock market whose prices depend
on, or is derived from the price of other underlings assets or primary finan-
cial quantities such as stocks interest rates, currencies and commodities

7.

3.1.7 Hedgers

Hedging involves all activities that are aimed at reducing the unpre-
dictability of certain unknown future prices. Hedgers are therefore in-
terested in reducing the risk they already have by making sure that they
use the market to take cover against unpleasant asset price movements.

o

3.1.8 Delta Hedging

This is the perfect elimination of risks by employing correlation between

two instruments (in this case an option and its underlying)([56],[57],[58])

3.1.9 Arbitrageurs

These are people or portfolio holders whose main interest is to enter into

two or more markets simultaneously in order to make risk free profit. A
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non-arbitrage principle is therefore in place suggesting that it is unnatural

to make profit with zero wvestment and without risk bearing.

3.2 Stochastic Processes

3.2.1 Definition of stochastic processes

A variable whose value changes randowmly (in an uncertain way )is said to
follow a stochastic process. It could also be defined as a sequence of events
governed by chance (probabilistic laws). This is a process that can occupy
one among a number of states at any given time and which with certain
probability, makes transition from one state to another as time progresses.

The set of possible states may be finite or infinite ([17],[37],[57]).

o>

3.2.2 The Markov process °

[n this type of stochastic process only the current value of a variable is
relevant for predicting the future. The past history or the way the present
has emerged is not important (the past is irrelevant) since it is believed
that the current price already contain what is relevant from the past.
Stock prices are assumed to follow the Markov process.

By this Markov property it is implied that the probability distribution of
the price at any particular future time is not dependant on a particular
path followed in the past. Thus the past does not determine the future.
[n a Markov process the variance of change in successive time is additive

while the standard deviation is not. ([17],[37]),
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3.2.3 Wiener process/Brownian motion

This is a type of a markov process with a mean change of zero and a
variance of 1 in a given period of time. [f X(¢) follows a stochastic process
where g 1s the mean and o is the standard deviation,

that is X(t) ~ N(u,0) then for a standard Wiener process, X(t) ~
N(0, 1), that is X(¢) is a normal distribution whith 4 =0and o = 1.
Expressed formally, a variable Z follows a Wiener process if it has two

properties:-

3.2.3.1 The change in Z, 0Z during a small period of time ot is

07 = eVot, (3.1)

where € is a random drawing from a standardized normal distribu-

>

tion , that is e ~ N (0, 1)
3.2.3.2 The value of 0Z for any two different short intervals of time 0¢

are independent. That is var(0Z,,02,) =0,t # )

[t follows from property (3.2.3.1) that 07 itself has a distribution with

mean of 07 =0
standard deviation 0Z = Vot
Variance of 07 = ot.

that is,

6Z ~ N(0, Vét)
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Property (3.2.3.2) implies that ¢ follows a Markov process. Consider the
increase in the value of Z during a relatively long period of time T, this
can be denoted by Z(T') — Z(0). [t can be regarded as the sum of increase

in Z in n small intervals where n = Ozt thus
Z(T) - Z(0) = ) e Vot (3.2)
i

where the ¢,(1 = 1,2,3...n) are random drawings from N(0,1). From
property (3.2.3.2) of the Wiener process, the €;s are independent and
identically distributed. It follows from equation (3.2) that Z(T") — Z(0)

1s normally distributed with

mean = E(Z(T) — Z(O)) =
variance of (Z(T) — Z(O)) =not =T, and,
standard deviation of <Z(T) - Z(O)> is VT,

hence,

Z(T) - Z(0) ~ N(0,VT)

([17],[37).

3.2.4 The Generalized Wiener process

So far the standard Wiener process dZ, has a drift rate of zero and vari-
ance of 1. This implies that the expected value of Z at any future time
is equal to its current value whereas the variance rate 1, means that the

variance of change in Z in time interval of length T equals T
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A generalized Wiener process for a variable X cap be defined in terms of
dZ as follows

dX = qdt + bdZ. (3.3)

for

X(0) = Xg ¢ >0,

where a and b are constants, adt is the expectation of d.X and b 1s the
addition of noise or variability to the path followed by X while b is the
diffusivity. In a small interval §¢, the change in the value of X, 0X is
ot the form s\ — adt + be /ot where as already defined, ¢ is a random
variable drawing from a standardized normal distribution thus §.x has a

normal distribution with

mean =E(0X) = g6t
variance of (9.X) = b’0t, and,

5 standard deviation of 0X = b\/ﬁ,

hence

0.X ~ N(adt, bv/5t)

Similar arguments to this show that for a Wiener process, the changes in

the value X in a time interval 7" s normally distributed with,

mean change in X = o7
standard deviation of change in X' = p/T

variance of change in \ — b’T.,

that is,

dX ~ N(aT, ov/T)

MASENO UNIVERSITY
S.G. S. LIBRARY




CHAPTER 3. BASIC CONCEPTS 16

([17).136).137).[38].[57).[58

)

3.2.5 1to Process

This is a generalized Wiener process where the parameter a and b are
functions of the value of the underlying variables X and time ¢ .

Algebraically the [to process can be written as
dX = a( X, t)dt +b(X, t)dZ (3.4)

(17).37))

This implies that both the expected drift rate and variance of an [to pro-
cess can undergo change.

[n a small time interval between ¢t and ¢ + d¢ the variable changes from X
to } + 90X where:

g

5X = a(X, )5t + b(X, t)eV/at. (3.5)

([171,37)

This relationship involves a small approximation which assumes that
the drift and variance rate of X remains constant; equal to a(X,t) and
b*( X, t)? respectively during the interval between ¢ and ¢ + ot

that s,

dX ~ N <a(x, £), b( X, t)\/ﬁ)
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3.2.6 Geometric Brownian Motion

A specific type of [to process is the geometric Brownian motion of the

form

dX =aXdt +bNdZ where a( X, t) =aX and b( X, t) = bX (3.6)

The geowetric Brownian motion has been applied in stock pricing and is

given as equation (1.3) which can also be written as
ds pig 7y
5 pdt +odz (3.7)

This model (3.7) is the most widely used model of stock price behavior.
A review of this model gives a discrete time model
0S ) —
< = nit+ oeVit, (3.8)
where 05 is the change in stock price S in a small interval of time ot
and € is a random variable drawn from a standardized normal distribu-
tion N(0,1). Hence in a short time ot, the expected value of return is
ot and the stochastic component of the return is oevot. The variance
of the fractional rate of return is o*0t and oot is the standard devia-
S

tion. Therefore % is normally distributed with mean pot and standard

deviation, oV/ot, that is

‘? ~ N(udt,o\V/6t)
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3.2.7 Volatility

Volatility is the measure of how uncertain we are about future stock price
movement. The volatility of a stock price o is defined so that o/t is the
standard deviation of the return on stock in a short period of time 0f. As
volatility increases therefore ,the chance that a stock will do very well or
very poorly increases. This results in both the call and put options rising

or falling respectively.

3.2.8 Stochastic Volatility

One assumption in the Black-Scholes-Merton model is that volatility is
always constant. However Hull and White [1987] among others consid-
ered stochastic volatility models. They cousidered the fact that in a real

market situation volatility may follow a stochastic process of the form
do = pyodt + voodZ (3.9)

or

do = py (b — o)dt + v,0dZ, (3.10)

where 1, b and v are constants and dZ refers to the Wiener process, o
is the asset volatility while p, and v, the mean and variance of asset
volatility respectively. In equation (3.10) the variance rate has a drift

that pulls it back to a level b at a rate z,.
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3.3 Ito’s lemma and its derivation

[to, achieved a rigorous treatment for integrating a wide range of Wiener-
like differential processes into a strict mathematical framework. [to’s
lemma is therefore used to solve stochastic differential equations which is
analogous to the chain rule in Newtonian calculus.[16],[17]

Suppose that the value of S follows an [to process
dS = u(S, t)dt +o(S, t)dZ

where dZ is the Wiener process and y and o are functions of § and ¢ and
the variable S has a drift rate of (S, t) and variance rate of o(S5,t). [to’s
lemma states that a continuous function G(S,t) = G, that is twice differ-
entiable in S and once in ¢, follows an Ité process given by ([17],[56],[57])
oG

0252>dt + —0oSdZ (3.11)

~—S =t = 55

o (96 oG 190G
" \as ot ' 298>

Consider a continuous function G(X) that is twice differentiable in X. If

5X is a small change in X and 0G the corresponding change in G then

56 =~ —gK (3.12)

5G being approximately equal to the product of the rate of change with

respect to X and 6 X. For more accuracy , the Taylor series of 0G is given

as,
) dG 1826 ., 1486 ...
LS LI Il b c
06 = et & el & gt
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in which the terms in 6.X* and above are considered to be too small in
equation (2.3). For G coutinuous and differentiable in two variables X
and Y, the result analogous to equation (3.12) would be

oG oG

G = oy 0X + 0T oY (3.13)

whose second order Taylor series expansion is

66 = 295x 19 sy L0C 532, OC sisvy éd

ax " oyt T20x? INOY 0¥ . (3.14)

5

Taking limits as 0 X and 0Y tend to zero, equation (3.14) becomes

OC OG oo

Suppose the variable X follows an [to’s process (equation 3.4) and that
G is a function of X and of time ¢ then we can from equation (3.14)
extend equation (3.15) to cover functions that follow [to processes hence

by analogy, equation (3.14) becomes

} oG e G | oy DG 18*G
= — = 2. (31
oG 0\0\ atOH?'X‘ZM d\dtMOH d,or (3.16)

9

Equation (3.4) can be discretized to form equation (3.3) which can also
be written as

0X = adt + be Vit (3.17)

We observe here that there is a significant difference between equation
(3.16) and equation (3.14), because although all the terms in 0X? are

dropped in equation (3.15) (since they are too small), equation (3.17)
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however indicates clearly that
0X? = b5t + terms of higher order in dt. (3.18)

hence terms in 6.\'7 cannot be ignored since it contains 0t as a component.
From equation (3.18) therefore conclude that 0 X* becomes nonstochastic
(deterministic) and is equal to b>dt as ot tends to zero as can be seen from

the multiplication table below,

X | dZ | dt
dZ | dt |0
dt |0 0

Taking limits as 0. X" and dt tends to zero in equation (3.16) and ignoring

the terms in 0N and ot* and higher terms we obtain

G oG 19°G , > _
dG = axdx+ﬁdt+3dX,b 2t (3.19)

which is the [to’s lemma. Substituting for dX from equation (3.3) we

obtain

dG = Q—G—(a.dt +0dZ) + (Edt -+ —0 G

bt
X ot 29X "

Collecting the terms in dt we obtain

oG @G 1 &P oG
dG = | =— - — b= | dt + —bdZ (3.20
& (a T T aaxe > X 20y
in this case the drift rate is ﬁa—k a—G -+ ;g Gb and the variance is (g%)bz
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Multidimensional Ito’s Lemma

Occasionally functions may have more than one random variable. In
this case we refer to equation (1.3) from which we can get a family of

differential equations using models for different underlying assets as

dX; = 1, Xdt + o0, NydZ;, (3.21)

th

where X, is the Stock price of the *" asset. = 1,...... NV, and pu; and

th

o; the drift and volatility of the " asset respectively, while dZ, is the

" asset. We have dZ, is equal to

increase of the Wiener process of the ¢
e;Vdt where ¢; 1s a random number drawn from the normal distribution

table. Thus dZ, has a mean of zero and a standard deviation of V/df hence

E(dZ) =0 and E(dZ}) = dt

[f Z, and Z; are correlated, the Wiener processes dZ; and dZ;, where
Var(dZ;,dZ;) = E(dZ,dZ; :‘p,;jdt), in this case p,; is correlation coeffi-
cient between the ;** and j Wiener processes.

To be able to manipulate functions of many stochastic variables we need
the multidimensional [to's lemma.

[n general we can consider a function G(.X, Xy, ..... Xy, t) of stochastic

variables X, Xy, ... .. X~ and ¢,

‘then by [to’s lemuma we have

dGz(

3L T ttagag 4L o

=l =1 i=1
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where dZ} = dt, dZ} = dt and dZ,dZ; = py;dt, [17].[37),[56][57].

By [to’s multiplication table we have:-

* dz; | dt

CZZ] /)ijdt 0
dt 10 0

[n a case of two random variables X, and X, and a deterministic variable

t, that is,

d"\,l = Inl(/\l’l, /‘(-z, t)dt + ll[(.f\l, .XQ, t)le

and

C[.-\‘g = 771-3(.5([, ,X»z, t)dt =+ Ilg(_"\"l, _f\rg, t)de

in which dZ, and dZ, are Brownian increments, both normally distributed
with variance dt ( since dZ} = dZ? = dt ) and correlation coefficient p.

—1 < p < 1, therefore from equation (3.22), we have[17],[37],[56][57][38],

G 1 ,0*C 1
dG‘(dc ”ax’i

g0 G 0°G )dtT oG . 0G

| - D
B ) By Y D
(.

3.3.1 Black Scholes Merton Partial Differential Equa-

tion

The following assumptions were made in deriving the Black-Scholes-Merton

option price model [17].
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L. The stock price follows a geometric Brownian motion with g(drift

rate) and o(volatility) as constant
2. Short selling of assets with full use of proceeds is allowed.
3. There are no transaction costs or taxes.
4. The asset is pertectly divisible.

5. There are no dividends during the life of a derivative

(5]

. There are no riskless arbitrage opportunities.

=

Asset trading is continuous.

oo

. The risk-free rate of interest, 7, is constant throughout the trading

trme.

° Suppose C'is the price of a call option or other derivatives and is a function
of S and ¢, twice differentiable in S and ¢, where S is the spot price of
the asset at any time ¢ . From assumption (1), the stock price follows the

geometric Brownian motion given in equation (3.14), we have,

oC ,acS: C_ g

L s
WT’-Sa——-‘{-gU 5 BRE

which is the Black Scholes Merton Partial Pifferential Equation.
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3.4 The Nonlinear Black Scholes Merton

Partial Differential Equation

3.4.1 Feedback effect of hedging in illiquid markets

[n the traditional derivation of the the Black Scholes Merton Partial Dit-
ferential Equation there is always an assumption that the replication trad-
ing strategy has no influence on the price of the underlying asset itself,
that the asset price moves randomly. This could be justified by random
flow of tnformation concerning the asset and the economy specifically ap-
plicable to large investors. [t is therefore necessary to asses the influence
of these trading strategies on the price of the underlying and thus in the
teedback loop.

The following strategies are used by Portfolio maunagers of large invest-
nents which may cause )replication. This strategy known as portfolio

-

isurance is popular in the European Put option. Any simple options hav-
ing values C'(S,t) can be replicated by holding o(S,t) = “;;%(S‘ t) shares at
a time if the share price is S We can now consider A(S,t) to be a corre-
sponding trading strategy. Put replication is one of the trading strategies
that cotrespond to one example of portfolio insurance which we ought to
analyze. Let us assume that the excess demand takes the form (S, ¢, x)
being a function of price S, time ¢t and a random influence x. The random
influence ensures that our model does not stray too far. We regard such

influence as the effect of new information that is arriving at random on

the value of the underlying new asset or the action of noise traders.

Generally 9% is negative, rising price leads to falling demand. At any given
REETS o ; gp s} Y 5
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S.G. S. LIBRARY




CHAPTER 3. BASIC CONCEPTS 26

time the equilibrium price S° is the price for which demand equals to
the supply or generally the excess demand equals to zero (y(S*, ¢, ©) = 0)
Any typical market would therefore return to equilibrium after undergo-
ing disturbance due to the forces of supply and demand.([3].[12],[13],[57])
There exists a possibility of disequilibrium but speed of information flow
and sufficient numbers of professionals on the stock markets guarantee
full equilibrium in stocks, hence flows in Modern markets is a good ap-
proximation. [n the nonlinear Black scholes model therefore both demand

and supply can change because of the stochastic nature of the parameter.

We therefore add extra demand resulting from hedging the put option
to the original demand. With this additional demand the equilibrium

becomes

S +A(S ) =0 (3.24)

Apart from demand arising from noise we shall also have a Jcompletely
deterministic demand due to the trading strategy A. With an addi-
tional demand of the form A(St) the equilibrium condition equation
X(S*,t,2) = 0 becomes y(S.t, x) 'T»A(S',t) = 0 which must also hold for

the change in y and A given as
dy =dA =0

For simplicity we could consider an arbitrary excess demand function y
assuming now that x(S,¢,r) = t(x —S) where z is a positive real number

and x follows a stochastic process in equation

dr = u (S, t)dt + 0,.(S,t)dZ,
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(8]
=J

where p,. and o, can be functions of x and ¢, hence x is an intrinsic
value. The parameter = shows how strong the excess demand function
reacts to change in price. If the price changes by dS the excess demand
changes by —dﬁ For liquid markets = is small while for illiquid markets
it is large.[3].[12],[13],[57]

With the appropriate choice of scaling under undisturbed equilibrium, = !
15 also equal to the price elasticity of demand and applying [to’s lemma

to S + =A(S,t) = 0 the stochastic process followed by S is
dS = ps(S,t)dt + o5(5,t)dX

with ps and os given by

s, :<0_A+£ eazﬁ)
HE = G iie ¥ ot 205 052

and

3.4.2 The Nonlinear Model on illiquid markets

We could examine the drift ;; and the variance os of the modified price

process.” Both will have a term of the form 1 — 53—:} in the denominator

which the negative of the total demand function. When this becomes zero

the demand function has a zero slope.

However when f% < &7 a positive %% will increase both ps and the

absolute value of os hence the market becomes volatile. Conversely if ‘g—g
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is negative it will decrease the volatility of the market.

[t A is regarded as the traders strategy to replicate a derivative security

C', the relation A = % will yield a replication of the derivative security
C' with positive [ = gsc, which destabilizes the market of the underlying

hence long positions in put and call options have positive gamma.The
Nonlinear Black Scholes Merton Partial Differential Equation will there-

fore become

aC 1, ..,

SARRCI ULl A L e 3.25
5 +2a( )-S5 5 rSaS rC (3.25)
and o([') = [o"ift [ < 0] and o([) = [t [ > 0]. Assuming the

iterest rate is equal to zero we have

oc

1 > S0 G oC
ot 2 (

. el 3.26
)25 = S =0 (3.26)

~cgd’C
| — B2 E

which is the Nounlinear Black Scholes Merton Partial Differential Equation.

3.4.3 Models with transaction costs
Effect of transaction costs

Transaction costs are incurred in the buying and selling of the underly-
ing. The assumption held in deriving the classical Black Scholes formular
that there are no transaction costs is therefore incorrect since in practice
the costs do exist. Depending on the market the costs may or may not
be important. However in a market with high transaction costs rehedg-

ing becomes too costly. In most liquid markets the costs are low hence
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it 1s possible to hedge quite often. The Black-Scholes model requires a
continuous portfolio adjustment in order to hedge the position without
any risks. The presence of transaction costs in the nfinite number of
transactions makes the process expensive. The hedger therefore needs to
find a balance between the transaction costs that are required to rebal-
ance the portfolio and the implied costs ot hedging errors. This leads to
“imperfect” hedging which culminates into the option being overpriced or
underpriced to an extent where riskless profit obtained by the arbitrageur
is offset by the transaction costs, so that there is no single equilibrium
price but a range of feasible prices nstead.

[n markets with transaction costs there is no replicating portfolio for the
European Call option and the portfolio is required to dominate rather
than replicate the value of the option. This necessitates an alternate re-
laxation of the hedging condition to better replicate the pay-oft of deriva-

tive securities >

The model of Leland

The modeling of transaction costs was initiated by Hayne Leland n 1985.
This model is the first such model in finance and will therefore form a
strong basis in this study. In using the Leland’s method one hedges an
option with a delta calculated in the same way as in the Black-Scholes
delta, but with a modified (adjusted) volatility. This adjustment depends
on the sign of the second derivative of the option price with respect to the
price of the underlying. The Leland’s approach minimizes the risk of the
local risk of the hedging strategy. Leland’s hedging with a modified hedg-

ing volatility ~ equalizes” the replication error across different stock paths



CHAPTER 3. BASIC CONCEPTS 30

which also reduces the total risk of a hedging strategy. The model can be
extended to cover the cases of pricing and hedging an option portfolio on
a commodity future contract, a portfolio of strong path-dependent option
on a stock, and options on several assets. The Leland’s approach yields
a parabolic partial differential equation.

[n markets assumed to have no transaction costs the option price is always
equal to the cost of setting up the replicating porttolio. This follows from
the absence of the arbitrage argument. Leland’s idea was to include the
expected transaction costs in the cost of a replicating portfolio, meaning
that the price of an option must be equal to the expected cost of replicat-
ing portfolio including the transaction costs. This results into a situation
where a market maker who writes a European call option for example and
constructs a replicating portfolio, should sell it with a premium which oft-
sets the expected transaction costs. On the contrast a market maker who
buys a European call option and constructs a replicating portfolio, should
buy the option with a discount to offset transaction costs. Leland fur-
ther asswned that the revision of replicating portfolio must occur at fixed
regular intervals of length ot we therefore present the Leland’s model us-
ing the interpretation of Hoggard, Whalley and Wilmott. We consider
a continuous time economy with a risky security, for example, a stock
and a risk-free money market account which provides a constant rate of
interest r. The price of the stock S, envelopes according to the stochastic

differential equation (1.3)

dS = uSdt + oS5dz
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hence over a sufficiently small time interval ot the change in stock price
Is given by

S = St + o Se Vot + o(0t3), (3.27)

where € is a random drawing from a normal distribution table.

We set up a hedged portfolio IT as
=05 1) — A8 (3.28)

where A = %(S, t). Henceforth we suppress dependance of [1, ¢, A on

t over ot. After a given time dt therefore the portfolio becomes
[[+0oll =C(S+6S,t+0t) — A(S +0S) (3.29)
from which it follows that
Ol =C(S +0S,t+dt) — A(S +6S) = C(S,t) + AS (3.30)
Expanding this in Taylor’s series we obtain

oll =~ g€5t+ —05 +

; : ‘ 1, 2 ~)'.1
\/()TtaSe(%—g— - A) +(5t(c—?€ +;LS<a—C— - A> + SU“S'E'_O C) + .

&£

ot oS

which has not accounted for the inevitable transaction costs that will be

incurred on rehedging. The costs are

kS|C).
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(V)
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The quantity C' of the underlying asset that are bought is given by the

change in the delta from a given time step to the next:

. 9C 7. oo ac
= —S(S T()S,tT()t) —%(S,t)
which by Taylor’s theorem is given by
acC  9*C . J*C ac  o9*C . 9°C
R us - S + = — = —0tf
C=35 T3S Y agat 55 = 552%5 * Bger

where all derivatives are now evaluated at(S, t). After two terms canceling

we get the approximation

0°C,. _&C
05277 7 95

¢ =

Subtracting the cost from the change in portfolio value gives a total change

of
o oC oC aC
— y . = /5 ) = )
dll = oI kS|C| OtchE(aS A) +()t< En +LL5<dS /_\>
1 oy 20°C =|6°C
+ 50 S’ 352 > ot 052’ £

The mean of this is

oC acC 1 /20t
[dﬂ]~0é<5 +uS<f—A> i 05’ — ko S? '@57

)+
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because Ele] = 0. £[e?] = 1 and EJf¢]| = Y 2

We also find that

ey = ouos( 95 - a) ks’

since

Elele]| = 0.

The variance of the portfolio change is therefore

var[dll] = E[(dI1)?] — (E[dIT])?

, . o‘t<025'1<gg/_\>2+<1—

A

)A;EUIZS%Z;;);’)

to leading order. For finite hedging period 0t and finite cost & this can-

o

not generally be made to vanish. However the variance, or risk, can be

minimized by choosing
A aC
a5
with this choice,

0C 1 ,,0°C . [20t]0%C
T AT SV ox|os?

)+

to leading order. This quantity is an expectation allowing for the ex-

pected amount of transaction costs. We now set this quantity equal to
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the amount that would have been earned by a risk tree account:

L(OC 1 ,,@C ., [2t0°C
Ot<a T 50’ S 05,2 - AO’S - 092 l)
~ ac"\ .
=) H == g~ T Qi Ot
werfo-s5)

On dividing by ot and rearranging we obtain the Hoggard-whalley-Wilmott

representation of the Leland’s model given by
‘ 1 5, ,0°%C s | 2

+ -0°S5° — koS —

t 2 05> ot

3.5  Logistic models

+ ;»Sg—g —rC =0 (3.31)

FEE

3.5.1 Nature

o

Logistic differential equations have been tound to give more accurate re,
sults than non logistic ones. ‘Applied to population, Logistic models are
based on the exponential growth and decay model, but they include an
overcrowding term, or a nonconstant growth rate, that reflects the lini-
tations on growth due to the scarcity of resources and living space.

[n finance, a logistic equation for asset prices can be obtained by consider-
ing random responses in the forces of supply and demand during trading.
This becomes possible when we introduce the excess demand function and
apply it in the framework of the Walrasian (Walrasian-Samuelson ) price

adjustment mechanism|37].
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3.5.2 The Law of Demand

The law of demand states that the quantity of a good or service is nega-
tively related to its price,ceteris paribus. That is, consumers will purchase
more of a good or service at a lower price than at a higher price. As price
rises, ceteris partbus, a consumer will demand a smaller quantity of a good

or service.

3.5.3 The Law Of Supply

This law states that a quantity supplied of a good or service i1s usually
a positive function of price, ceteris paribus. That is suppliers will supply

less of a good or a service at a lower price and as price rises the quantity

supplied will increase.

3.5.4 Walrasian Equilibrium(Equilibrium Price)

This is a state of stability or balance where the quantity ot a good or
service supplied is equal to the quantity of the same good or service

demanded.

3.5.5 Excess Demand

Of necessity, we note that in stock price modeling the price of an asset is
assumed to respond to the excess demand which is the difference between

the quantity of an asset demanded and the quantity of the same asset
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supplied as given by equation (1.4), That is,

EDS(t) = QpS(t) — Qss(t)

where:
EDS(t) is the excess demand,QpS(t)and QsS(t) are the quantities de-

manded and supplied respectively at a given time,t and price, S(t).

Just like in the predator-prey ecosystem where there is “give and take”,
the market structure with forces of supply and demand exhibit two forces
in the market which affect each other striving to strike a balance called
the market equilibrium.

This comparative phenomenon has made it possible to apply the idea
of logistic equation, first used by verhlust(1838), and Reed(1920). In
Verhlust’s model for studying dynamics of human population growth in
the United states, he took p* to represent the environmental carrying
capactty 1in which a population lives, which favorably compares to s*the
Walrasian equilibrium markét price, a point where the quantity supplied
and demanded in the market are equal.

This has led to the Verhlust logistic Black-Scholes-Merton partial dif-
ferential equation with constant volatility. In this study we intend to
formulate the Logistic Black-Scholes-Merton partial differential equation

with stochastic volatility.
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3.5.6 Logistic Geometric Brownian Motion Model

Using the Walrasian law and the excess demand function(1.4), the logistic

geowetric Brownian motion according to Onyango ([37],[38]) is of the form

dS = @S(5* — S)dt +aS(5* —5)dZ (3.32)
or
1 aS \
S = N it oD 3.33
S5 =9 L od ( )

where 5 is the Walrasian market equilibrium price, S is the stock price
at any given time ¢, g is the drift rate and o is the volatility of the stock

price at any given time ¢ ln this model volatility is constant.



Chapter 4

THE LOGISTIC LINEAR
BLACK-SCHOLES-
MERTON PARTIAL

DIFFERENTIAL
EQUATION

4.1 Introduction

[n this chapter we use [to's lemma given by equation (3.22) |, the Logistic
geometric Brownian motion, equation (3.32) and a stochastic volatility
model, equation (3.9), to derive the Logistic Black-Scholes-Merton partial

differential equation.

33
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4.2 The Logistic Differential Equation

Suppose the price of an asset follows a Logistic Geometric Brownian Mo-

tion equation (3.32) then we have.
dS = uS(S* — S)dt + 0S(S* — S)dZ, (4.1)

in which as already defined in section 3.5, 5 is the Walrasian equilibrium
price while S is the asset price at a given tuune ¢, and the stochastic

volatility model given as,
do = pyodt + voodZ, (4.2)

where o is the asset price volatility. ji, and v, are the mean and variance of
asset volatility respectively, whereas dZ, and dZ, are the Wiener processes
associated with the two differential equations (4.1) and (4.2) respectively.
We can also let the Wiener processes have a correlation p. Considering
equations (4.1) and equation (4.2), the value of an option is therefore
a function of three variables, C'(S,0,t), where C is the price of the call
option and S is the asset price. Since volatility is not a traded asset, its
randomness cannot be easily traded away. Having two other sources of
randomness therefore, we need to hedge our options against two other
contracts, one being the underlying asset as usual but the other to hedge

the volatility risk.We therefore set up a portfolio as,

I=C -85 -6,C (4.3)
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The change in the portfolio dIT will be given by,

dll = dC —0dS — 6,dC, (4.4)

Using [to’s lemma on S, o and ¢ as defined in section (3.3) by equation
(3.22), we can use the application in equation (3.23) on equations (4.1)

and equation (4.2) to obtain the change in portfolio in a time dt as,

g L 5.5 G J°C I 5870
q = F -0 S°(S" - - + -vio” il
dll <0£ 205(5 S)? 552 +pa*S(S* = S)u, 5505 T 3% 60'3)([
ocC oC
+ —dS + —do —
35 dS e do — 0dS
_[oC, 1 > O 5 . 55 # I OQC\>
- | =—+-0 — + poS(S* - Svg—— + =v {
“( ot T30 S8 =8 g + 0088 = S gen + o0t 5y |
oC, dCl
- 0= 35 —dS — '3, ——do
(4.3)
Collecting the terms in dS and do in equation (4.5) we obtain
oc 1 ,0*C % g rie 2k 1 4 50°CY
dll = <0t +; (S "S) 952 + po S(S —S)L}UM+§LUU ao—,Z)([t
. {0C, I 2 D) s ,.20‘201 PPy O'JCL 1 5 .ZC)QCl‘
-~ 01<§+505(5 - 5) 55 + po-S(S S)Lgasao_+2LUU 00'3>dt
oc . oC, aC aC, o
v S (4.0
<05 Noe > Gt <aa Wgs ) o (46)
[n order to eliminate all randomness we choose & = o]dc} + 0 and

aa = 51‘9C‘ making terms involving dS and do to be equal to zero. After

eliminating dS and do which contain the Wiener processes dZ, and dZ,
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respectively, equation (4.6) becomes a non stochastic differential equation,

act Lo, o, ,0°C e 0*°C L, ,0°C
Il = | — + -5 (5" - 95)° + po=S(5° = S, + U g =
‘ <0f g 5 & = S pes taF o 5585 T 3v0 aw)dt
[oC 1, ,02Cy Py *C, 1, ,8°C
— | = + =0 5°(S5 - §5)° + poS(S™ = SWyoaz—+ -V 0" —— |dt
”< T Vg oSl o 550 T 277 B2 >‘
(+7)
We can use no arbitrage argument to set the return of the portfolio to be
equal to the risk free interest rate r as
all = wlldt (4.8)
Substituting equations (4.3) and (4.7) into equation (4.8) we obtain,
5 LN NP € S 0*C 1 5 50°C
=t =G ok —5] b pa SIS — 80, v o —— lat
(06 37 9 Vgg T re ol Ve 5580 T 3Y° a(ﬂ)(
FOCT 1 a5, il o % ’C, 1, ,0°C,
- | =—+ g 5(S"=-5)° + po*S(5" = Sy =5 + =V, 0" = |dt
l( g T30 S8 TS g HeoSl Vo 5580 T 277 B0
= {0 —35 — 50 )it (4.9)

We now have a situation where we have one equation with two unknowns

C and C. Given that § = g—% and 0, = aac; and that both are affected by

a hedge ratio %% and (% respectively (which are also the sensitivity of
option price to volatility) respectively, we can collect terms in C' on one

side and those in C'| to be on the other to obtain,
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%L 4 102525 = 5)P 98 + po?S(ST = S)u, L& + Lvie?es + 1S — i C

Jt ! 9S? JSdo Jda
do
s [ aC L 22 Cx n29°Cy 20(C- N, G2CL 4 1,2 3FC :
()1 (A()—fL 5070 (5 == S) 85_,l - PO S(S == S)U”(JSC):T & El'g()' Bn?l = 76[)
B acy
do

Since the two different options will have different payofts, this possibility
can only be obtained if the left hand side and the right hand side are inde-
pendent of the contract type. Both sides therefore can only be functions

of the independent variables, S, ¢ and ¢ and thus we have

aC [ S . O P . e l 5 0PC
S0 575 = 5)° +po°S(S™ — SWozgm— + 5V,0 5=
T +2U S°(S S) 352 po=S(S SHt 5590 zcga 557
LoC! o ac
T’Ibgg —7C = "(/Lg */\Ug)a—a_
(4.10)

for some function A(S, o, t) which is the market price of volatility risk and
Ly — AUy s the risk neutral drift rate of volatility. Rewriting this equation

(4.10) we obtain

IC 1y on®C L PC 1, ,0C
‘_Cﬁ E _EU ™) (b 5) ()52 - PO S(b S)L'gasaa + 2LUU 80'2
Loc oC
+r85— + — A, )— —1C =
Ibas (1o La)(’)o FE
(4.11)

Equation (4.11) gives us the equivalent of the Logistic Black-Scholes-
Merton partial differential equation with stochastic volatility.

[f Z, and Z, are of the same distribution then dZ, = dZ> which implies
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that p = 1 since dZ} = dt hence equation (4.11) becomes

OC’ 1 2 "2 ¥ Cf 2 dl C | 2 Ok Cr N al Cv = 1 ,‘2 1 dz C'
e T30 5T S gt oSS = Sl ggas T 54 G
aoC oC
+ro == a_/’a._—_": (4.12
1505 + (e A\t )00 e =4 (4.12)

Equation (4.11) is therefore the Logistic Black-Scholes-Merton partial dif-

ferential equation with stochastic volatility.

4.3 Deterministic Price Adjustment Model.

To make the price adjustment more computational, we begin by taking
supply and demand functions to be fixed functions of instantaneous price
S(t). Then at equilibrium asset price point, P*, demand Qp(S*)’is equal
to supply, @s(S57). On the assumption of fixed supply and demand curves,
S* is constant. Away from equilibrium, excess demand for the security
will raise its price, S, and an excess supply will lower its price. Thus the
sign of the rate of change of price, S, with respect to time, ¢, will depend
on the sign of the excess demand. [f we linearise Qp(S(t)) and Qs(5(¢t))
about the constant equilibrium price S*, the deterministic model of price

adjustment becomes

- = k(a + 3)(S* - S(t)) (+.13)

where Qp(S(t)) = a(S*=S(t)), Qs(S(t)) = —3(S*—S5(t)), and constants

a and 3 are demand and supply sensitivities respectively. Putting r =
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A(a + J)in equation (4.13). we get the deterministic logistic equation

= rS(t)(S* = S(1)) (4.14)

see [29],[37),[38].

This is a deterministic logistic (first- order) ordinary differential equation
in S(t). Thus the fractional growth of S(¢) is linear in S(t). This con-
trasts with exponential growth, where the fractional growth is constant
(independent of S(t)).

The logistic equation was first investigated by Pierre-Francois Verhulst in
[33], as an improvement on the Malthusian model of population dynam-
ics, hence it is also known as Verhulst-logistic differential equation. Since

then it has been applied in several areas.

The solution set of equation (4.14) is given by

i 5°5(0)

SO = s T - s (L5)

where S(0) is a parameter interpreted as the initial price an asset. From

equation (4.15) we observe that as t — oo, the term S(t) — %)@ o

The asset price thus settles into a constant level, called a steady state or

equilibrium, at which no further change will occur.
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4.4 Logistic price adjusment model

[ this section we model random fluctuations in supply and demand by
changes da, 04 in the respective sensitivities. Consider that, @p(S(¢))
and Q(S(t)) to represent averaged effects of supply and demand respec-
tively, and suppose that both curves steepen or level off in response to
random observed trades: cumulatively they execute a random walk or
Wiener diffusion process. From equation (4.13) we have

ds(r)
S(t)dt

= k(e + 3)(S" = S(t)) + k(da + 63)(S* — S(t))

or
dS(t)

ROICNE0] = k(o + F)dt + k(oo + 53)dt (4.16)

From equation (4.16), we may put g = A(a + J) (logistic growth param-

eter) and 0dZ = k(0a + o0)dt(noise process) to obtain

dS(t)

SIS - 50)) = udt + odZ (4.17)

Equation (4.16) defines an [t6 process evolving according to the stochastic

differential equation (3.32) of the form
dS(t) = uS(t)(S* — S(E))dt + o S()(S* — S(¢))dZ (4.18)

We refer to equation (4.17) as Logistic Price Adjustment Model (LPAM
model), or Verhulst-Price adjustment model (VPAM),see [37]. In the

risk-less case (0 = 0), equation (4.17) reduces to the logistic equation

MASENO U IVERSITY
S.G. S. LiBRARY
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(4.14) with equation (4.16). Using [to's lemuma. the solution of (4.17) is

expressed as

S(t) B S(0) Ty v
Z/l(————wk —S(t)\> = M<——-——{S" 5'(0)]> FuST(t—ty) +aSTZ(t) (4.19)

Re-arranging and simplifying equation (4.19), we get

S*S(0)

St = ] -
A S(0) + (S* — 5(0))e(wd(t-to)+oS-2(t)

(4.20)

This price dynamics is referred to as logistic Brownian motion of asset
price, S(¢t). When o = 0, then we get the deterministic logistic equation

(4.15)

4.5 Partial differential equation for logistic

Price Adjustment Model.

[u this section we derive the partial differential equation for logistic price
adjustment model in a case where volatility is constant. Let C(S,t) be
the option value depending on asset price, S and time t, then by [to’s
lemma (3.22)we have

_0C(5.0) , , 0C(S.1)

dS? (4.21
ot ES 2 (L)

as

1. 92CLS, 1)
+;—Cu

dC(s(e),t) —=

For logistic Brownian motion we have
dS = puS(S* = S)dt + ¢S(S* — S)dZ
and

45° = g* S35 — S5t
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Substituting in equation (4.21) and siplifving we get

aC(
X

dC(S(L).t) = (uS(S" -5) ot 2" : 05?

By using the no-arbitrage argument(4.8), which implies that the percent-
age return of the portfolio over the time interval dé should equal the

risk-free interest rate, . That is
d’_‘_(t)m.sk—frca = rﬂ'(wrisk—frcc (42’3)

Thus we get

oC(S.t)  a* ., .. i C(S t) - , C?C St >
_L

Further simplification of (4.24) vields a partial difterential equation given

by >

DC(S ¢t 2 ,O*C(S,¢t OC(S,t
aCc(s, )+U—S-(S"—S)-d€(‘> )+I'5 C(S,t)

—rC(S,t) = 0 (4.25
ot 3 RIE a5 "C(5) =0 {42)

This modified Black-Scholes-Merton partial differential equation is a lo-

“gistic partial differential equation.

_ AC(S. . S OFC(S.H
f;” L OO | L oagege . g0 Li0hE) )>(u 45 5(8" =

aCc(s.
aS

t)



Chapter 5

THE LOGISTIC
NONLINEAR BLACK-
SCHOLES-MERTON
PARTIAL DIFFERENTIAL
EQUATION

5.1 Introduction

In this chapter we use the Geometric Brownian motion equation (2.4) and

the random walk in discrete time given by
S s v = e D -
6S = uSot + oSeVot + o(6t?) (5.1)

with the assumption that the portfolio is revised every ot, where 0t is a

finite and a fixed time step and that the hedged portfolio has an expected

18
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return equal to that from a risk free bank deposit, which is the same as

the valuation policy in discrete hedging with no transaction costs.

5.2  Logistic nonlinear Black Scholes Mer-

ton partial differential equation

Suppose the price of an asset follows a Logistic Geometric Brownian mo-

tion given by equation (3.32) given as
dS = puS(S™ = S)dt + oS(5* — S)dZ,

then over a sufficiently small time interval ot the change in stock price is

given by

05 = uS(S* = S)dt + 0S(S* — S)eVat + o(ot?) (5.

n
o
~

where € is a random drawing from a normal distribution table.

We set up a hedged portfolio [T as

I1=C(S ¢t) — AS (5.3)

where A = (b t). Henceforth we suppress dependance of [, C', A on

(f,)|(\

t over ot. After a given time d¢ therefore the portfolio becomes

[+ 001 = C(S + 65, ¢ +5t) — A(S + 05) (5.4)
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from which it follows that

Ut
Ut
=

5[ =C(S +3S.t +6t) —A(S+385) —C(S,6) + AS (5.

Expanding this in Taylor’s series we obtain

. aoC' . aC . L& .
Ol = —0t+ —05 + - ) 4+ ... =AYS
ato +(_)S<>5 _20@_1((5) 5

which has not accounted for the inevitable transaction costs that will be

imcurred on rehedging. The costs are

1S|C].

The quantity C of the underlying asset that are bought is given by the

change in the delta from a given time step to the next:

G 2 ) oC,
) 88—l Tl L) Jt
C OS<5 05, t + dt) aS(S )
which can be approximated by
G = OwC_ + @QC&S | e Bl gy = d£
C T aS T asr T T asoe T 08

where all derivatives are now evaluated at(S, ¢). After two terms canceling

we get the approximation

PG PC -
g~ 1.5 &Y ot
G 05205 55 Seo v
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Subtracting the cost from the change in porttolio value gives a total change

of oIl = dIl — kS|e| which is

. L . foc "ac oc 'y , D°C
_ [r Qo el S 4l B perge e T 16270~ _ gy2.20 ¥
oIl VtaS(S DL(OS’ _l> ‘ Ot( 5 1S(S S)<0S _\> i 5= S) 053>

B o, |
2 !;,
|

o 10°C
— Ko ST{E|VOt] ==
)

The mean of this is

0C o o o [0OC 1 5.08C [25t|9°C
Eloll) = ()[< T +uS(S ~b)<a—574A.~2 ()5’2> ko S? ‘05

: o
Because Ele] =0, Ele] =1 and Ele]] = V=

We also find that

)+

E[(5ID)?] = Mﬂ{a S5 - §)% <%% g) =3k B G = 5P d)C 55 ~S)<(£ —A);I |

+ K54S -S)‘@é) = = ’

_ M(g S 5)’(3? 3 A)l PGS = 9)4<55C2)‘> L
since

Elele]] = 0.
The variance of the porttolio change is therefore
var[oll] = E[(6I1)7] — (E[or])?
A e ana O 2 &L
- Ot<05 (5~ 8) <5§~A> T<1~;) SUE® = 5) (%—) )
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(S

to leading order. For finite hedging period 6t and finite cost & this can-
not generally be made to vanish. However the variance. or risk, can be

minimized by choosing

ocC
A= —
Y
with this choice,
oC 1 C ¢W PC
Elol] = Ot(dt ~r§ 0?5? (5% ighn EIE S°(ST = 9) — W’)

to leading order. This quantity is an expectation allowing for the ex-
pected amount of transaction costs. \We now set this quantity equal to
the amount that would have been earned by a risk free account:

_)_ ; ,)
Ot(ac £a'f.s"—‘(.s*~5')‘36—C) ko S?( / S

ot 2 a95?

i oC
= rllot =1 <C 505>

On dividing by ¢t and rearranging we obtain the Logistic nonlinear Black

Scholes Merton partial differential equation given by

oCc 1 ,0?C

0C
RN S T

ot | 9S>

SQE—IC =0

==
(5.6)

— koS¥(S* - 5)?

5.3 Conclusion and recommendation

[n this thesis we have managed to derive a Logistic nonlinear Black Scholes

Merton Partial differential equation based on the model with transaction
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costs which is appearing in this thesis for the first time in literature. This
coutes as a breakthirough in the study of the nonlinear Black Scholes Mer-
ton Partial differential equation and in its application in the prediction of
future asset prices where transaction costs are considered together with
the logistic geometric Brownian motion unlike in previous studies where

the Brownian motion has been used.

We recommend that interested scholars solve the differential equation in

order to enhance prediction of future asset prices.
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