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ABSTRACT

Of the three pillars in which the Kenya vision 2030 is anchored, agriculture is a key

sector. Over the past few years the challenges to sugar production i.e. the choice of

the variety to plant, soil nutrients variation and market competition amongst others have

greatly affected sugar production. This project has effectively and efficiently employed the

technique of experimental design to ascertain family selection by comparing augmented

block designs and Randomized complete block designs.The augmented block design is

widely used in breeding programs, particularly in screening and selection of large number

of germ-plasm lines with non- replicated test treatments and replicated control treat-

ments to estimate the experimental errors. The study establishes a relationship between

augmented block designs in screening and completely randomized block design in screen-

ing new strains of Sugarcane. The data used in this study were generated from IASRI

resource server. In the two designs analyzed, we consider 5 test treatments and 2 con-

trol treatments for augment design and the same number of treatments for Randomized

Complete Block Design. In the event of screening new sugarcane varieties, attempts were

made to find the effectiveness of augmented block designs (ABD) and completely random-

ized block designs (R.C.B.D) in test families vs. control checks where the results reveal

that Augmented Block Design is 11.86 times more efficient than a RCBD in standard

error cij=N(O,l)and drops through to 1.8lfor error term cij=N(O,25). In the conclusion

of this study in chapter five, we have shown that Augmented Block Design is better suited

when the plots are limited and Randomized Complete Block Design is better suited when

treatments are many.
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Chapter 1

Introduction

1.1 Background of the Study

Statistics is a science of extracting information from a complex and noisy data with un-

certainty, applied statistical methods helps in analyzing data to serve specific purpose

in application. This study has effectively analyzed new sugarcane varieties using Aug-

mented Block Design and Randomized Complete Block Design in test families verses

check controls by the strength of their effectiveness. Any research investigation involves

design of experiments to help make meaningful comparisonsllfi], In plant variety selection

programmes where comparisons is between newly introduced strains and the commercial

controls, the vital designs used are augmented block designs, completely randomized block

designs, reinforced balanced incomplete designs, Latin squares and Caeco Latin squares.

In this study we have used augmented block designs and randomized complete block de-

sign to screen new sugarcane strains by concentrating on their effectiveness and efficiencies

in tests verses control experiments as applied to plant breeding of the new cane varieties.

Farmers have several alternatives of varieties for field trials. The tested entries are related

to their pedigrees of yield for performance since families selection approach is preferred

due to its objectivity and useful traits of low hereditary as opposed mass selection. In

this study, analysis of different designs used in screening the newly introduced varieties of

sugarcane thus suitable for family selection with replications have their relative efficiencies
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discussed into details with particular emphasis laid to an augmented block designs and

randomized complete block design.

1.2 Statement of the Problem

In recent years a number of designs of experiments have been developed, many of these

designs have programmes involving use of family selection like picking of large numbers

of individuals from best performing families than from worst performing strains. Due to

the fact that large numbers of seedlings are involved, vast tracks of land are required to

evaluate seedlings even though soil nutrients homogeneity is to be a factor. We assumed

these factors to be constant in this study. During seedling stage of plant breeding, a large

population of genotypes of which only a few would eventually be released for commercial

cultivation are considered and thus subjected to test against the controls. Construction

of experimental design for such scenarios is possible by use of augmented block designs

and completely randomized block designs in screening sugar cane varieties to reveal their

efficiencies in test treatment vs. control experiment. This study analyzes different designs

seeking to give a statistical approach to farmers "choice of varieties by screening the

newly introduced varieties of sugarcane to eliminate poor selection of varieties through

augmented block design and randomized complete block design" .

1.3 Purpose of the Study

The specific objectives of this study are:

1. To examine efficiency of Randomized Complete Block Design in test family vs.

control experiment.

2. To measure the efficiency of augmented block designs.
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3. To compare the efficiencies of Augmented Block Design and Randomized Complete

Block Design in screening of new strains of sugarcane.

1.4 Research Hypothesis

Let /-Li be the treatment mean of the ith treatment

/-LAi be the mean for the ith treatment in augmented block design

/-Lei be the mean for ith treatment with replications in RC B D.

The hypothesis for this study is

Ho:/-LAi = /-Lei against

u; /-LA; f. tic.

1.5 Significance of the Study

The study has analyzed two designs that are useful to farmers in making sound deci-

sion and interpretation of the newly introduced cane varieties thus propel them to select

varieties in test families with high frequencies of superior clones. Since experimental de-

sign plays an important role on establishing an interface between statistical results and

statistical applications in several fields like Agriculture, industry and Biology, this study

provides a unique opportunity to facilitate farmers input and rapid screening on farm

cropping system research. The study also provides vital information for field experiment

researchers and breeders for further investigation of experimental and statistical problems

related with the application and uses of an augmented block design and randomized com-

plete block design in plant breeding. This study provides designs that can be extended to

all other sugar industries. The research is useful to the management of any sugar industry

in selection of varieties to be used by their farmers so as to maximize their yield output
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and remain a strong force in the globally competitive sugar industry. This study generally

aimed at enhancing the agricultural sector by building capacity of the cane farmers to

enable them effectively and efficiently screen new sugarcane varieties thus choose high

yield families of which the basis of economic pillar of Kenyas vision 2030 is anchored of

which the results indicate that both augmented block designs and randomized complete

block designs are effective in their own way and at times may be used interchangeably.

1.6 Definition of terms

1.6.1 Design

In this study, we take the view common among statisticians that a design is an allocation

8 of a set u treatments to a set of n plots. The design may be thought of as a function

[5] f from n to 8: plot w receives A treatments if f(w) = A is portioned into blocks then

f is called a block design. A block is proper if all its blocks have the same size k. if k = v

then we have a complete block design if k < u its an incomplete block design

1.6.2 Balanced incomplete block design

B.LB is an arrangement of v treatment in b blocks such that any block has k treatments,

any A treatment occurs in r blocks and any pair of treatments occurring in blocks. The

five parameters are not independent but satisfy these two relations

V1' = bk and A(V - 1) = 1'(k - 1).

A Balanced Incomplete Block Design is then written as (v, k, and) with

b - v(v-l)'\ I
- k(k-l) ane

T = '\(v-l)
k-l
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With respect to this study, we define a design in general as an allocation of a set 8

of v treatments to a set [2 of b blocks thus the design may be thought of as a function of

f from [2 on to 8. Plot w receives a treatment A if f(w) = A and [2 is partitioned into

blocks, then f is called a block design with the size k for blocks.

If k = v we have a balanced incomplete block design.

1.6.3 Randomization

This is a method of dealing with nuisance factor by balancing the nuisance factor across

the experiment .It's done using random device or pseudo-random device to choose which

factor combination is allocated to each experimental unit. Like blocking, randomization is

another technique of dealing with nuisance factors only that for randomization the factors

are unknown and uncontrollable. Majumda [17] in his handbook of statistics stated that

randomization balances out the impact of nuisance factors across the experiment.

1.7 Replication

This is a convenient way of increasing the size of the experiment and precision it implies

making more than one measurement at the same combination factor level. It is necessary

to let all sources of random variables operate independently on every occasion so that

replication can count as proper [15]. According Rao [20] in his book stated that replication

can be exploited to produce a pure error estimate of (J which is employed in this study.

1.7.1 Latin squares

We wish to explain the concept of mutually orthogonal Latin squares which will be used

in the construction of B.I.I3 designs A Latin square of order s is an arrangement of s

symbols in an s x s array such that each symbol occurs once in each row and once in each
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column of the array i.e. for a 4 x 4 Latin square in symbols ABCD would be

ABCD ABCD ABCD

BADC CDAB DCBA.

CDAB DCBA BADC

DCBA BADC CDAB

These 4 x 4 Latin squares are mutually orthogonal since they are pair wise orthogonal.

A complete set of S -l mutually orthogonal Latin squares exists for any S = pn where p

is a prime number[6]. This study uses Latin square method of constructing an augmented

block design with given parameters.

1.7.2 Unreduced B.I.B design

According to Mike Jacroux [21] these designs are obtained by taking all combinations of

the v treatments k at a time with parameters given by

(1.1 )

(1.2)

and

(1.3)

1.7.3 Reinforced incomplete block design

According to Das [2], if a number of control treatment p is added in every block of existing

incomplete block design with the resulting design having p +v treatment distributed in b
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blocks each of size k + p, such that newly introduced p treatments are replicated b times

and the original v treatments r times, this design is now called reinforced incomplete

block design.

1. 7.4 Augmented block design

An augmented experimental design is any standard experimental design in standard treat-

ments to which additional (new) treatments have been added. The additional treatments

requires enlargement of the complete blocks and incomplete block row column designs.

Augmented designs that eliminates heterogeneity in one directions are called augmented

block designs [8].

1.7.5 Randomized complete block design

This is the simplest type of layout where in this study treatments are allotted to the

experimental unit at random. This design essentially removes variability between blocks

from the experimental errors. This was shown by Rajender and Gupta [23] in their

abstract of augmented design and randomised complete block design with a two way

elimination of heterogeneity.

1.8 Overview of the Chapters

This project consist of five chapters,chapter one gives the background information of the

study with respect to statistical methods applied in solving specific problems in screening

of new varieties. Chapter two considers related literature on the area of design of experi-

ment.Chapter three describes the methodology used in the study and chapter four gives

the analysis with different error terms to com pare the efficiency of the two designs. Chapter

five gives a conclusion about the research findings which reveal that ABD is 11.86 times
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Chapter 2

Literature Review

The problem of comparing a set of more than one control to a set of tests of treatment

in block design set up has received very little attention. Federer in 1956 [12] introduced

designs to fill the needs arising in screening new strains of sugarcane in Hawaii Sugar-

cane planter association. Das in 1958 [5] introduced series of incomplete block designs

including any number of control treatment say p in every block of an existing incomplete

design. The resulting design will have v+p treatments distributed in b blocks, thus re-

inforced incomplete block designs. Since Federer [12] published his article Augmented

(Hoo nuiaku) design in 1956 a lot of research have been published most of which are de-

velopment of the founders work. Federer [12] illustrated arithmetically and algebraically

an augmented randomized complete block design and augmented balance lattice design,

where he considered analysis with and without recovery of inter- block information and

provided discussions on unequally sized incomplete block design. The results indicated

that this design is more efficient than the earlier indicated one. Federer and Raghavarao

fed1961b in 1975 gave a precise introduction to some augmented row column designs

and to the constructions and analysis of augmented lattice, square design on which Pin-

ney (1991) made use of by implementing augmented designs on farm trials or prototype

evaluation trials, He advocated use of augmented designs that minimizes plot number

and allows farmers to flexibly decide what treatments are to be tested on their farms, he

further concluded that number of plots per farm depend on the region, population density
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and farming system employed by the farmers. Federer [4][11] gave analysis of randomiza-

tion procedure and constructions of the design by adding new treatments to the blocks of

Randomized Complete mock Designs and balanced lattice designs. The outcome showed

that a randomized complete block design had a simple and rapid procedure as compared

to lattice design. Federer [12] gave procedure and designs useful for screening material

inspection and allocation. The procedure has since been used by many researchers to

develop more designs used in screening of strains. Gupta [14J obtained augmented design

using Randomized Complete block design and block designs for one way heterogeneity.

The class of augmented experimental designs [4][11][12J was introduced to replace sys-

tematically spaced check arrangements in plant breeding research investigations after the

named researcher's proved the efficiency of the latter. Federer [12J and Gupta [I] have

produced a statistical procedure for analyzing such experiment at a site that takes account

of the random nature of new treatments and of the blocking variables. Fisher [6J estab-

lished that its important and desirable to determine the relative performance of new test

treatment with respect to the controls in screening experiments. Majumdar[17J suggested

augmenting an incomplete block design in test treatment with one or more replication.

Gupta and Das [13Jdeveloped systematic approach for designing comparative experiments

and made suggestion of supplementation and reinforcement following a study by Das [5]

on comparative experiments. Box [10J compared balance incomplete block design with

augmented Balanced Incomplete mock Design suggested by Parsad and Gupta [18J for

constructing control test treatment contrast. The result indicated that augmented Bal-

anced Incomplete Block Designs were more efficient than a Balanced Incomplete Block

Design in test treatments against control treatments experimental contrast set-up.

Parsad and Gupta [19] developed the theory of incomplete block designs for comparing

several treatments with a control; their development resulted into a balanced treatment

incomplete block design (BTIB) design whose efficiency compares to that of augmented

balanced incomplete block designs. They studied their construction and gave an elaborate

procedures involved. Searle et.al (1992) estimated the effects under the random effect
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assumptions (Best linear unbiased prediction) to be conceptually different from estimation

under a fixed effect assumption Blue were he concluded that both Blup and Best

linear unbiased estimator assume known variance components. Jacroux [21] considered

the problem of optimality in comparing v tests treatments with u controls using block

designs this followed a Majumdar[17] research on sufficient conditions derived for balanced

treatments of unequal blocks. Parsad [18J introduced an application of the augmented

randomized complete block design to poultry research where Avian health researcher had

the desire to minimize animal usage, cost prohibit large, all-inclusive experiments they

showed that plant breeders experiences a problem with variety screening experiments in

which large number of varieties must be evaluated with limited seed supply, this research

was published in poultry scientist in may 1996 in college of veterinary medicine. Rao

[20J gave an elaborate research on effect of maxillary sinus where Augmentation on the

survival endosseous implants where grafting of maxillary sinus was used in the survival

invention. Das and Gupta [2J described an on construction of A-efficient balanced test

treatment in an incomplete design. Federer (2007) introduced a new class of augmented

experimental design as split block designs and split plot designs to help evaluate missing

values in a data. Giri and Das Da1979 published the use of germ plasma accessions test

treatments verses checks in the journal of horticulture sciences where randomized block

designs was employed to evaluate a set of germ plasma accessions alongside local checks.

Fishman [7Jevaluated family and done performance using various patterns of environ-

mental variations to examine effectiveness of randomised incomplete designs. Majumdar

in 1986 [17] derived some sufficient conditions for determining A-optimal designs in classes

D (s,t,b,k) where s = t and k is substantially larger than v, Rajender and Gupta [23] stud-

ied optimality of designs comparing s eon troIs to t tests treatment within classes of binary

designs. Rajender and Gupta [23] obtained partial results on A-optimality for designs in

which the controls appears equally often within blocks. Jacroux [21Jhave derived sufficient

conditions used in establishing A- and MV optimality of augmented block design. The

recent paper providing more overviews of known results for comparing test treatments to
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checks/controls are Majumdar[17] and Gupta and Parsad [14]compared the effectiveness

of augmented block designs and a Balanced Incomplete Block Design in testing of families

against set of controls. In this study, we are interested in using analysis of variance to

determine the effectiveness of Randomized Complete Block Design and Augmented Block

Design in screening new sugarcane varieties by using a given test treatments against set

controls.
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Chapter 3

Research Methodology

3.1 Introduction

Having formulated the problem of screening various sugarcane varieties by use of analysis

of variance for AnD and RenD. The assumptions described for the error terms (£ij) are

very necessary for drawing inferences by adopting a known statistical method. This study

uses the analysis of variance techniques by which inferences are made using the F-test in

evaluation of the effectiveness of the two design. The sequences of these methods were as

follows.

3.2 Data Layout

A conceptual frame work for a Randomized complete block design was constructed, simi-

larly, a layout for augmented block design was also constructed. This followed a generation

of data in frequency of one hundred from a definite resource server, an IASRI design.

The generated layouts for the two designs were as shown below for three replication of

controls in every block.
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mock 1 mock 2 mock 3

Treatment2 Treatment2 N39
--

N39 N39 C0945

Treatment5 Treatment3 C0945
-----

C0945 C0945 N39

C0945 N39 N39

N39 C0945 Treatment4

N39 C0945 C0945
--

C0945 N39

Table 3.1: mocks Layout with 3 replication of treatment

Data was then generated using pseudo random numbers. The different methods of

generating random numbers are discussed in the study

3.3 Data Simulation

Methods of Monte-Carlo class of computational algorithms and E.M algorithms that rely

on repeated random sampling to compute data[7] was used to simulate the generated

data. Monte-Carlo methods are often used when simulating physical and mathematical

systems whereas E.M algorithms are employed while dealing with incomplete data and

order restricted. If the two happens to occur together in an application of risk assessment,

the Monte Carlo method will be employed due to it's advantages over deterministic algo-

rithm. Monte-Carlo simulations are broad classes of computation that rely on repeated

random sampling to obtain numerical results. Computer simulation is preferred in this

study. In comparison of effectiveness of different designs say Augmented Block Design

and Randomized Complete mock Design, we simulated data from standard distributions

using Monte Carlo simulation framework because of their reliance on repeated computa-
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tion and pseudo random numbers. Monte Carlo methods are most suited to calculation

by a computer: Monte- Carlo methods tend to be used when it is infeasible or impossible

to compute exact results with a deterministic algorithm. The simulation of data followed

a generation of Pseudo-Random numbers which was done by a computer then the polar

method was used to relate variables u and r and generates a pair of independent ran-

dom variables from standard normal distribution N (0, 1). In this study, comparison of

RCnD and AnD in screening sugarcane varieties has been achieved through analysis of

simulated data from the standard normal distribution where different Pseudo -random

numbers used were generated.

3.3.1 Generating Pseudo-random Numbers

The most successful computer process for generating Pseudo-random numbers in U(O,l)

is the linear congruently generator (LCG) [10]. For us to have used LCG we had to

choose three positive integers

a, is the multiplier

c, is the increment

m, is the modulus

m> a,

m> c

To obtain the required sequence of random numbers 71,1,71'2, , UN. We first generate a

sequence of integers Xl, X2, .... 'EN in the range 0,1, 2 ..... m. - 1 starting from an initial value

Xo known as the seed. The sequence of integers is the n generated using the recursive rule

Xn = (axn-1 + c) (modm) ,n = 1,2, ....N (3.1)

i.e Xn is the remainder when aXn-1 + c is divided by tri and after that Un is set to be

equal to ~

The technique of analysis of variance described below was employed after the results were
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obtained, however, comparisons of treatments of analyzed data was used to give more

meaningful screens. Finally, general testing of treatments from the analyzed data as set

by research hypothesis was done by use of two sample T- test.

3.3.2 Generating normal Random Variables

Box and muller(1958) developed an algorithm for generating pseudo-random numbers in

N(O,l). This algorithm is expounded below.

let .T" Y rv N(O, 1) therefore

1 _",2
f(x) = rrme-2

v2II
(3.2)

and
1d

f(y) = rrme 2
v2II

(3.3)
As the first step we indicate the following relation.

Intergration of f (y) = e _~2dx = J2IT from -00 to 00

The proof of the above equation can be presented via the replacement of x and y to r and

() such that

x = r cos (}y = 7' sin () (3.4)

When this is done the integral interval is given as 0 ::; l' < R,the equation form is then

represented as

UE(O,l) and the variable R of U(R) = '/1, is described as U(R) = '/1, =? R = J2log(1 - '/1,)

In setting U1 = 1 - U E (0,1) and

U2 E (0,1) the values of x and yare given as

(3.5)x = V(2log(U1) cos2IIu2
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and

(3.6)

Thus in the scheme of I30x Muller method we can generate gaussian random variables

distributed in N(O,l) using uniform distribution on (0,1)

Using the above equation x and y are also held as:

(3.7)

3.3.3 Polar Method

The disadvantage of the box Muller method is the necessity to compute cos(.) andsin(.)

which is time consuming for a computer. The polar method counters this by replacing the

values in the basic I30x Muller method form with rations.It introduces a value s = ui +u~

and identifies the value of s with that of U1 and frI with that of U2 in the basic form. The

values

eqn8 cos (J = cos 211u2 (3.8)

and

sin B = sin 21111,2 (3.9)

In the basic form, this can be replaced with

u u
eqnlO cos (J = R = ..jS (3.10)

and
v v

sinB=- =-R ..jS (3.11)

respectively, where

(3.12)
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3.3.4 Polar Algorithm

We use the polar algorithm to generate normal random variates using polar method as

follows;

(a) Generate random numbers Ul and U2

(b) Set Vl = 2Ul - 1, V2 = 2U2 - 1 and 8 = v; + v~.
Note that Vl and V2 are U(-l,l)

(c) If 8 > 1 go to step 1,Otherwise,return:

(3.13)

Polar algorithm generates a pair of independent random variates from the standard nor-

mal distribution,N(O,I) To generate a random variable x rv N(/-L, (J2), with the mean /-L

and the variance (J2 we use the scaling property of the normal distribution. so we generate

to random variables from the results above as follows:

(3.14)

3.4 Design Model and analysis of variance(ANOVA)

3.4.1 Introduction

A statistical model is basically an assumption relating effects of different levels of factors

involved in an experiment alongside one or more terms representing the error effects.
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To provide more insight understanding of the design, this study proposes a two factor

experiment in screening various sugarcane varieties; we therefore use the analogy of any

agricultural experiment and refer to two-way classification as treatments and blocks as

proposed by Das and Gupta in 1992 under model of communication in statistics[2]. In

this study, we consider v treatments and b blocks and one experimental value which

are the yields of sugarcane per acre corresponding to each treatment (plots) and blocks

(variety) for ith treatment and /h block denoted by Xij as in the analysis of variance.

3.4.1.1 Analysis of Variance

The ANOVA is a powerful statistical tool for test of significance. Since t-distribution is

not adequate, ANOVA which is based on f- distribution is employed with a basic purpose

to test homogeneity of several means. ANOVA is mainly used to dealing with analysis of

agronomical data where variation is inherent and may be caused by either chance causes

or assignable cause.

3.4.2 Assumption for ANOVA

For reliability of F-test in ANOVA

(i) The observations are independent

(ii) Parent populations from which observations are taken are normal.

(iii) Various treatment and environment effects are the effects

3.4.3 Two Way Classification

The values of response in this classification are affected by two factors. In this study, we

have the yield of sugarcane varying for different treatments coded from one up to five
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and two others are used as controls i.e. rations as well as the differences in variety. Let

us now suppose that n breeds of sugarcane are divided into h different plots with each

plot containing k varieties, if we consider the effect of k treatments i.e. rations given at

random to cane variation in each plot on the yield of sugarcane.

Let Xij=(yield of sugarcane from plot with lh variety on ration i)

i=1,2,3 ...k,

j=1,2,3 ...h

We let the yield of sugarcane to be expressed as variable value in k x h two way table as

below.

Table ~.2: ANOVA Table for General model
Treatment Varieties of Sugarcane Raw Raw

(Rations) 1 2....j ....h Total Means

1 Xu X12 .... X1j .... X1h R1 Xl.
2 X21 X22 .... X2j .... X2h R2 X2.

I

......

......

......

1 XiI Xi2 .... Xij .... Xih Ri Xi
........

........

K Xk1 Xk2 .... Xkj .... Xkh Rk Xk.

column total C1 C2..... c,....Ch G = 2:7=1 2:;=1 Xij

column means Xl X2 ..... X.j .... X.h X..

from the above table: ~= 2:7=1 Xij as the sum of observations in the ith row. i =

1,2 ...k

Cj= 2:7=1 Xij as the sum of observations in the lh column. j = 1, 2..h
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Xi=1; 2:7=1 Xij = !f;- mean yield of the ith treatment

Xj=t 2:7=1 Xij = ~i mean yield of the ith sugarcane

X.. =overall mean = ';k 2:~=1 2:7=1 x; = ~
1 k -

=/1 2:i=1 Xi.
1 h -

=7C 2::j=IX.j

3.4.4 Mathematical model and underlying assumptions

Since we had only one observation per cell the mathematical model for the means is

Xij = f..lij + Cij; i = 1, 2 .... k; j = 1, 2 .... h (3.15)

Where Xij is the yield from sugarcane of th variety and the random variables having

normal distribution with means J..lij and common but unknown variance (J2 i.e. N (J..lij,(J2)

The various effects are assumed additive and becomes

(a) The general mean effect J.L = 2::7=12::7=1 ~;
where n = hk

(b) The effect C¥i due to the ith plot is given by C¥i = f..li - J..lassume

2::7=1 C¥i = 0

(c) The effect {Jj due to i" cane variety is given by {Jj = J..lj - u, assume

2::7=1 {Jj = 0
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(d) Interaction effect (a{3)ij when the ith plot and i" variety of cane occurs simultane-

ously is given by:

(a!3)ij = J.lij -- J.li - J.lj + J.l (3.16)

taking into account one observation per cell the assumptions that

h k
'\---- '"L...J {3j = 0, L.-Jai = 0
j=l i=1

(3.17)

and
k h

I:I>:;j=O
i=l j=l

(3.18)

Therefore the mathematical model for the effects used in this study is

Xij = J.l+ a; + {3j + Cij

3.4.5 Statistical analysis of the model

The least square estimates of the model are given as:

1 k h _

P, =- '" '" X· = Xn L-L.-J lJ ..

i=l j=l

(3.19)

Where n = hk,

(3.20)

{3.21}

Substituting these in the model we have

X .. = X + (X· - X ) + (X . - X ) + c"lJ .. 1. .. .J .. lJ (3.22)
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X«. - x = (X· - X ) + (X . - X ) + (X .. - X· + X . - X )tJ .. t. .. .J .. ZJ Z. .J .. (3.23)

The mean sum of squares;
82

MSS due to treatment= i!:J.
11 iTSS d t . ti 82
lVl ue 0 varia lOn=t:1

82
MSS due to error term .(h-l)(Ic-l)

The least statistic under the null hypothesis

Ho : /-ll. = J-L2. = ... = J-Lk.

or otherwise

Ft=~~ d.f (k-L) and (h-l)(k-l)
e

Fv=~ d.f (h-I] and (h-l)(k-l)
e

The ANOVA table then becomes

Table 3.3: ANC VA Table for ABD
Source of variation SS df MSS F-Ratio

VR = h L(X-i. - X..)2 k-l "2 82 82
Treatment Bt = 12I Ft= ~

- - 2 h-l S2_~ 82
Variation Vc = k L(X.j - X..) v - h-1 Fv= ~

Residual (error) VE=V - VR- Vc (h-l)(k-l) "2 8;Be = (h 1J(k 1)

Total V = LI:(Xij - x.Y hk-l

We therefore use the rejection region method to test significance of the observed values

of test statistics Ft and Fv'

3.5 Randomized Complete Block Design

This is the simplest type of layout in which treatment are allotted to the experimental

unit at random. The design in this study has considered one observation per treatment

in each block, the order in which treatments run in each block is done randomly. The

model we assumed in this study for RenD is of the form;
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(3.24)

with estimates

(3.25)

These estimates of

u, alpha», and /3j help in minimizing error.

Since the study considers treatments and block effects as deviations from the overall

mean so that 2:7=1 ai = 0 and 2:7=1/3j = 0

The means for the model then appears as below Table 3.4

mocks

Treatment 1 2 3 .... b Means

1 /-In /-l12 /-l13 ... J-L1b Xl.
2 /-l21 /-l22 /-l23 ... /-l2b X2.

t /-ltl J-Lt2 jlt3 ... /-ltb x;
Mean X.l X.2 X.3 ... X.b X ..

Tabl~ The means for the model

Treatment effects are relative such that the null hypothesis

H!;: No treatment effects: t1 = t2 = ...tb = 0

or otherwise

H!: No blocks effects: bl = b2 = ...bb = 0
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or otherwise

(usually not of interest but assessed to determine if blocking was successful in reducing

the variability in the experimental units)

Source of variation SS df MSS F-Ration

Treatment SST v-I S _88T ~
1-tJ-1 83

Due to blocks SSI3 (b-I) S - SSB S2
2 - b-1 S3-

Due to Error SSE (v-l)(b-l) S - SSE - S
2 - (tJ-1)(b-1) - 3

Total I (bv-l) li TSS

Table 35' The ANOVA Table for ReI3D

3.6 Augmented Block Design (A.B.D)

AI3D is any experimental design in standard treatment to which additional (new) treat-

ment have been added. Augmented block design were introduced by Federer in 1956[11]

as an alternative to the systematically arranged checks and new treatments. AI3Ds pro-

vides several advantages in screening new treatments such as Genotypes, Insecticides and

Drugs. We consider an experimental design where w tests treatment are to be compared

with u control treatment using n experimental units arranged in r blocks such that /h
block is of size kj >u, for augmented block design each of the control treatment is repli-

cated b times and occurs once in every block, while test treatment occurs only once in

one block. The analysis of variance generated from AI3D with v = u + w treatments

comprising of w tests and 11 controls arranged in b blocks having k1 plots in block L k2

plots in block 2, .... up to kb plots in block b such that k1 + k2 + ...+ kb = n will appear as

in the table 3.6.
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Table 3.6: The ANOVA Table for Augmented Block Design with v = u + w

Source of variation SS df MSS F-Ratio

Blocks eliminating treatment b-1 ASSI3 MSSB=Sl 81
81

Treatment eliminating blocks v-I ASST

Among tests w-I SST M88T = 82 ~
81

Among control u-I sse MSSC=S3 83
81

Error n-v-b-l-I SSE MSE= S4

Total n-l TSS
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Chapter 4

DATA ANALYSIS,

PRESENTATION AND

DISCUSSION

4.1 Augmented Block Design

In an augmented block design,the blocks are enlarged to accommodate the new treat-

ments. Augmented block design were introduced by Federer[ll J as an alternative to the

systematically arranged check and new treatments. AnD's have several advantages over

the systematic arrangements. They are very useful for screening new treatments such

as genotype, insecticides, herbicides, drugs etc. We consider an experimental situation

where w test treatments are to be compared with u control treatments using n experi-

mental units arranged in r blocks such that yth block is of size kj >u. For an augmented

randomized complete block design, each of the control treatments is replicated b times

and occurs once in one of the blocks. Therefore, it can easily be seen that in the i" block

there are kj - 1}, = nj test treatments. The randomization procedure is given as follows;

1. Randomly allot u controls to u of the kj blocks experimental units in each block
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MASENO U."!~VERSITYl
5 G S 1, ,'- •• RARY I'. Ii Lr• • '~. ~__'r:iJ :



2. Randomly allot the W test treatments to the remaining experimental units

3. If a new treatment appears more than once, assign the different entries of the treat-

ment at random with the provision that no treatment appears more than once in a

complete block until that treatment occurs once in each of complete blocks.

An Augmented Block Design (ADD) with Parameters;v = 7, W = 5, U = 2 and b = 3

was generated using IASRI design resource server. The two control treatments were laid

in a block design with three replications. In each block,the treatments were augmented

with inclusion of two test treatments randomly allotted to block 1 and 2 and one test

treatment in block 3. This was done in conformity to the optimum replication number T

of each of the two check varieties in every block design that is given by;

y'(U + b -- l)JW
r = b ,fOTW > 7.L+ b - 1

U
(4.1)

and when there tr=L, the formula reduces to

JW
7"= --

b (4.2)

where u=controls

b=the number of blocks

w= number of test varieties
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Table 4.1: The Output Generated by IASRI Design Resources Server with three control

Replications

Block 1 Block 2 mOdS
Treatment 2 Treatment 1 N39

N39 N39 C0945
..-

Treatment 5 Treatment 3 C0945

C0945 C0945 N39

C0945 N39 N39
-

N39 C0945 Treatment4
--

N39 C0945 C0945

C0945 N39

T bl 42 A t d BI k D· . diff tIt ithout replicationsa e ugmen e oc eSI!nm I eren pas WI

Plot 1 C0945 Plot 8 Treatment 4 Plot 9 N39

Plot 2 treatment2 Plot 7 C0945 Plot 10 C0945 I
Plot 3 treatment3 Plot 6 treatmentS Plot 11 treatment 1

-

Plot 4 N39 Plot 5 N39

4.2 Randomized Complete Block Design Layout

A randomized complete block design with parameters v = 5, b = 3 and k = 4 was

generated using IASRI design resource server. The generated design was reinforced by

adding two control varieties (i.e. N39 and C0945) in each of the five blocks. Two blocks

with all the 7 treatments were also added to the design for ease of analysis. The treatments

were randomized in each block creating a completely randomized block design as shown

in the table 4.3 below;
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Table 4.3: Randomized Complete mock Designs
BloCrt~

1 2 3 I 1 5

plot 1 t.reatment. :; ploL 12 C0915 ploL 13 treatment -1. ploL 24 t ree tment 1 ploL 25 N39

plot. 2 treatment 2 ploL 11 Lrea.tmenL ;1 plot. 1-1. N39 pleL 23 treatment :l plot. 2G treatment. 2

plot. 3 LreaLment. 3 plot. 10 treatment. 2 plot. 15 C09-1.5 plot. 22 treat.ment. -1 pIoL 27 t.reatment ..f

plot 1 C0915 plot. 9 N39 ploL 16 t.reatment. :l ploL 21 N39 ploL 28 t.reaLment. 1

ploL 5 treatment. 1 ploL R t.reaLment. Ii ploL 1; treatment 1 ploL 20 treaLment. 5 ploL 29 C0915

ploL (} N39 ploL 7 treatment. 3 ploL 18 treatment 2 plot 19 C0915 plot. 30 treatment 5

Table 4.4: Frequencies table of different treatments in the blocks of RCBD
Block 'Treat ment I TreaLment,2 Tre2.lment.3 Treatmentd TreatmentS N39 (;0915 Block Siae

1 1 1 1 0 1 1 1 G

2 0 1 1 1 1 1 1 G

3 1 1 1 1 0 1 1 G

1 1 0 1 1 1 1 1 G

5 1 1 0 1 1 1 1 6

Repllca.tion ·1 ·1 1 1 1 5 5

4.3 Data Simulation

Data was simulated using Monte Carlo simulation as described in Chapter 3. Each of

the treatment had unique properties as shown in Table 4.4 and figures 4.1 to figure 4.7.

Treatment 1 had the largest dispersion due to large variance while C0945 had the least

dispersion due to small variance.This confirms the Fishman G.S [7]Monte carlo concepts

about properties of treatments" treatments have unique properties when simulated".

Table 4.5: Properties of the simulated data by Monte Carlo Method
Treatment! TreaLmenL2 TreaLmenL3 Treatrnentd TreaLmenL5 N39 009~5

N Valid 100 100 100 100 100 100 100

Mean 81.1595 59.8fi22 19.0·17f) 100.18R2 29.8397 (>1.9051 59.91119

Std. Dev 9.87291 ·1.:~718n :1.92000 1.15725 2.08191 2.102R1 1..13078

Variance 97.·171 19.139 15.366 1;.2R3 ·1.317 1.122 2.0{H
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Figure 4.1: treatment 1 properties

tt"e a.ttTM'l nt't

Figure 4.2: treatment2 properties

tre.atment2
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Figure 4.3: treatment 3 properties

tn~atmEtnt3

r.,,·(:!':~t"I -·•.••••.·~.lJ:;t::
Sid~ c..~v, :..:3.roo

t.1 '11'11:($t)

trnat~nt3

Figure 4.4: treatment4 properties

treatment4

tre.atn~nt4

32



Figure 4.5: treatmentS properties

treatmentS

treatment5

Figure 4.6: N39 properties

N39

.:••I><.~ llii!lililllilllliil
~ 5·

c

1'439
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Figure 4.7: C0945 properties

C0945

C0945

The data generated was inserted in the design and adjusted for block effects. For ease

of computation, block effects were assumed to be uniformly distributed in the range [-5,

5]. The block effects were again generated through Monte Carlo simulation as described

in Chapter 3. From the generated data, the randomized complete Block design had the

following block effects;

Block Radom No Block Effect I
1 3 Enhance the mean by 3 units

2 -3 Depress the mean by 3 units

3 1 Enhance the mean by 1 unit

Table 4.6: The blocks were assumed to have the following properties

From the experiment above, it was observed that the results of the ADDs are depen-

dent on the error term. Therefore,to explore different scenarios, we added three different

random error terms to the simulated data, viz;

A: Cij = N(O, 1)

13: Cij = N(O, 5)

c: Cij = N(O, 25)
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Data was analyzed for each level of the error term

ONEWAY simulatedyield, blockeffect, yieldwithblkeffect, plotyield, BYerrorterm

/STATISTICS EFFECTS

/MISSING ANALYSIS.

ONEWAY simulatedyield, blockeffect, yieldwithblkeffect, plotyield BY errorterm

/STATISTICS EFFECTS

/MISSING ANALYSIS.

ONEWAY simulatedyield blockeffect yieldwithblkeffect plotyield BY errorterm

/STATISTICS EFFECTS

/MISSING ANALYSIS.

4.4 Results

4.4.1 Scenario One: eu= N(O, 1)

Table 4.7: ANOVA Table for Augmented mock Design when N (0, 1)
Source of variation Type III SS df MSS F-Ratio Sig.

mocks 33.84 2 16.92 46.96 0.0209

Treatments 2889.52 6 481.59 1336.44 0.0007

Among Tests 2681.47 4 670.37 1860.32 0.0005

Among Controls 3.11 1 3.11 8.63 0.9900

Tests vs Controls 52.75 1 52.75 156.37 0.0068

Error 0.7207 2 0.3604

Corrected Total 2924.09 10
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From Table 4.7 above, it can be seen that difference among the test treatments is signif-

icant (p- value 0.0005) but difference among controls is not. This was expected and we

can conclude that ABD is able to bring out the difference in treatments.

Table 4.8: The Least square mean yield for ADD Yield when £'j = N (0, 1)
Treatments Least Mean Yield Standard Error Pr> It I
Treatments 1 80.32 0.69316 >0.0001

Treatments2 62.77 0.69316 0.0001

Treatments3 51.82 0.69316 0.0002

Treatments4 99.77 0.69316 >0.0001

Treatments5 30.37 0.69316 0.0005

N39 61.25 0.34658 >0.0001

C0945 59.81 0.34658 >0.0001

The same treatments and data scheme when applied to a randomized complete block

design with three replicates gives the following results;

Table 4.9: ANOVA Table for Randomized complete mock Design when Cij =N (0, 1)
Source of variation SS df MSS F-Ratio Sig.

Treatments 9086.94 6 1514.49 1019.63 <0.0001

mocks 163.71 2 81.85 55.11 <0.0001

Error 17.82 12 1.49

Total 9268.47 20
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Table 4.10: Least square Mean Yield for RCnD Yield when Cij = N (0, 1)

Treatments Least Mean Yield Standard Error Pr> It I
Treatmentsl 81.59 0.70364 >0.0001

Treatments2 60.3 0.70364 >0.0001

Treatments3 49.7 0.70364 >0.0001

Treatments4 100.59 0.70364 >0.0001

Treatments5 30.2 0.70364 >0.0001

N39 61.52 0.70364 >0.0001

C0945 59.94 0.70364 >0.0001

For RCBD the p-values for treatments and the blocks are highly significant (p<.OOOI,

Table 4.10 )

4.4.2 Scenario two c = N(O, 5)

When the error term is distributed as N(0,5)

Table 4.11: ANOVA Table for Augmented mock Design when Cij =N (0,5)

Source of variation Type III SS df MSS F-Ratio Sig.

mocks 33.23 2 16.61 6.59 0.1318

Treatments 2883.43 6 151 190.62 0.0052

among tests 2679.53 4 669.88 265.72 0.0038

among controls 8.28 1 8.28 3.29 0.2116

Test vs Control 8.83 1 8.83 3.50 .2021

Error 5.04 2 2.52

Corrected Total 2921.70 10
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Table 4.12: The Least square mean Yield for Augmented mock Design Yield when Cij =

N (0, 5)

Treatments Least Mean Yield Standard Error Pr> It I
Treatments1 80.71 1.83341 0.0005

Treatments2 59.56 1.83341 0.0009
-

Treatments3 49.74 1.83341 0.0014

Treatments4 97.63 1.83341 0.0004

Treatments5 28.96 1.83341 0.0040

N39 62.66 0.91671 0.0002

C0945 60.31 I 0.91671 0.0002

When the variance of the error term increases to 5, the p-values increase considerably

for both among the test treatments and test vs. Control treatments (Table 4.11). The

structure of Duncan's multiple range tests remains unchanged though the treatment means

are different from Scenario One especially among test families. The control treatments

are stable. This can be attributed to lack of replication in the test treatments and thus

errors are not averaged out. The same treatments and data scheme above was used in a

RCI3D with Three replicates on and the following results were observed;

Table 4.13: ANOVA Table for Randomized complete mock Design when cij =N (0, '5)

Source of variation Type III SS df MSS F-Ratio Sig.

Treatments 8793.05 6 J.465.51 334.94 <0.0001

mocks 174.12 2 87.06 19.90 <0.0002

Error 52.50 12 4.37

Total 9019.67 20

In the RCBD the difference between treatments remains high}y significant, but as

shown in the table 4.14 below the standard error increases to 1.21
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Table 4.14: The Least square mean Yield for RCnD Yield when Cij = N (0,5)

Treatments Least Mean Yield Standard Error Pr> It I
Treatments1 80.45 1.20767 >0.0001

Treatments2 62.60 1.20767 >0.0001

Treatments3 50.72 1.20767 >0.0001

Treatments4 100.66 1.20767 >0.0001

Treatments5 30.56 1.20767 >0.0001

N39 61.68 1.20767 >0.0001

C0945 60.17 1.20767 >0.0001

It can be noted that the results are very similar to scenario One RCnD results. This

is because even though the errors have different variances when averaged, they give nearly

the same figures in the region of zero.

4.4.3 Scenario Three: Cij = N (0, 25)

When the error term is distributed as N (0, 25)

Table 4.15: ANOVA Table for Augmented Block Design when Cij =N (0, 25)

Source of variation Type III SS elf MSS F-value Pr> IFI
Blocks 56.61 2 28.30 0.89 0.5285

Treatments 3315.80 6 552.63 17.42 0.0553

among tests 3113.29 4 778.32 24.53 0.0396

among controls 37.35 1 37.35 1.18 0.3913

test vs controls 14.71 1 14.71 0.46 0.5662

Error 63.45 2 31.73

Total 3435.87 .10
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In the scenario above, the augmented block design is unable to bring out the difference

among the test vs. control treatments. The significance of the difference among the test

treatments drop significantly to 0.0396

Table 4.16: The Least square mean yield for Augmented Block Design yield Cij = N (0,

25)

Treatments Least Mean Yield Standard Error Pr> It I
Treatments 1 80.45 6.50407 0.0065

Treatments2 62.46 6.50407 0.0107

Treatments3 51.46 6.50407 0.0156

Treatments4 100.81 6.50407 0.0041

Treatments5 25.63 6.50407 0.0588

N39 64.29 3.25203 0.0025

C0945 59.30 3.25203 0.0030

On using the same treatments and data scheme as used in Scenario Three of the

Augmented Block design and applied to the randomized Complete Block design with

three blocks, the following results are obtained:

Table 4.17: ANOVA Table for Randomized complete Block Design when Cij =N (0, 25)

Source of variation SS df MSS F-Statistics Sig.

Treatments 7986.96 6 1331.16 59.93 0.0008

Blocks 600.30 2 300.15 13.51 <0.0001

Error 266.55 12 22.21

Total 8853.80 20
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Table 4.18: The Least square mean Yield for ReED Yield when Cij = N (0, 25)
Treatments Least Mean Yield Standard Error Pr> It I
Treatments1 83.22 2.72104 >0.0001

Treatments2 62.02 2.72104 >0.0001

Treatments3 52.14 2.72104 >0.0001

Treatments4 100.42 2.72104 >0.0001

Treatments5 35.39 2.72104 >0.0001

N39 64.14 2.72104 >0.0001

C0945 59.99 2.72104 >0.0001

For the ReBD, Table 4.18 shows that the p-value for significance in treatments in-

creases with increase in variance of the error term. The Least Square means results show

that the ReBD is still robust in bringing out the difference among the treatments.

4.4.4 Relative Efficiency

design is projected as;

To compare the efficienciesof the two designs, Fishers approach was used by calculating

the amount of information which the estimated difference between two treatments means

supplies about the true difference. Thus the relative efficiency of the ABD and ReBD

(n1 + 1)(n2 + 3)8~
(n2 + 1)(n1 + 3)8~

(4.3)

Where

n1 is the AED error degree of freedom

n2 is the ReED error degree of freedom

81 is error mean square for AI3D

82 is error mean square for ReED

The required parameters are found in the ANOVA tables presented above. Upon calcu-
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SCINERION DESIGN ERROR df ERRORMSS Efficiency OF ABD vs RCBD

N(O,l) AI3D 2 0.36 11.86

RCI3D 12 1.49

N(0,5) AI3D 2 2.52 2.08

RCI3D 12 4.37

N(0,25) AI3D 2 13.73 1.81

RCI3D 12 22.21

Table 4.19: Relative Efficiency of ABD against RCBD

lating the relative efficiency for the three different scenarios, we established that ABD has

comparatively smaller efficiency as opposed to RCBD (Table 4.19

From Table 4.19 above, it is evident that the relative efficiency of ABD against RCBD

is dependent on the variance of the error term. ABD designs are relatively efficient than

RCBD for standard normal error but this efficiency depreciates rapidly as the variance of

the error term increases. As evident, the error variance from 5 to 25 registers efficiency

drop of only 0.27 points. We would expect the efficiency of ABD to be the same as the

efficiency of RCBD as error term (cd) tends to infinity. As such it would be recommend-

able to use augmented block design even when variance of experimental error is unknown

as is the case with agricultural experiments.
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Table 4.20: Comparison of AnD and RCnD means and paired t-test result

Cij = N(O, 1) Cij = N(O, 5)

AnD RcnD AnD RcnD AnD RcnD

80.32 81.59 80.71 80.45 80.45 83.22

62.77 60.30 59.56 62.60 62.46 62.02

51.82 49.70 49.74 50.72 51.46 52.14

99.77 100.59 97.63 100.66 100.81 100.42

30.37 30.20 28.96 30.56 25.63 35.39

59.81 59.94 60.31 60.17 59.30 59.99

62.25 61.52 62.66 61.68 64.29 64.14

T-Test:p=O.41 T-Test:p=O.14 T-Test:p=O.23

From Table 4.16 above, it is palatable that there is a trivial difference between means

generated by augmented block design and those generated by randomized complete block

design. We can conclude without fear of disapproval that augmented block design and

randomized block design are equally effective at some point.
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Chapter 5

DISCUSSION AND CONCLUSION

5.1 ABD and RCBD

The two block designs are similar in the sense that in Randomized block design the

control treatments are added to the design containing the test treatments whereas in the

Augmented block design the test treatments are added to a design containing the control

treatments. The outcomes produced by the two methods were insignificantly different as

can be seen in the Table 4.17.

Table 5.1: Comparison of treatment means generated by both AI3D and RCI3D

Augmented Block Design Scenario

Treatments RCI3D AI3D N(O,l) AI3D N(0,5) AI3D N(0,25)

Treatments 1 86.22 80.32 80.71 80.45

Treatments2 57.34 62.77 59.56 62.46

Treatments3 49.32 51.82 49.74 51.46

Treatments4 98.03 99.77 97.63 100.81

Treatments5 31.17 30.37 28.96 25.63

N39 59.56 61.25 62.66 64.29

C0945 60.68 59.81 60.31 59.30
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ReBD - ABD N(O,I) -.51113 3.55372 1.31318 -3.82807 2.71521 -.103 6 I .701

The paired t-test generated the following results;

Paired Differences

I I I 9~% C.I of the Difference

Mean I St.d.Devlat.lcn I St.d.Error Mean I Lower I Upper Ii df Sig(2-Lailed}

Table 5.2: ReI3D - AI3D N(O,l)

Paired Differences-
95% CJ of the Difference

Mean St.d.Devlat.lon St.d.Error Mean Lower I Upper I i df Sig(2-iaiJed)

RCBD - ABD N(0,5) .39286 2.86285 1.08206 -2.25181 I 3.01055 I .3<13 6 .729

Table 5.3: ReI3D AI3D N(O,5

I I
Paired Differences

~~_ I 95% C.I of the Difference

Mean SLd.DeviaLion St.d.Error Mean I Lower I Upper I L df Slg(2-iailed)

Table 5.4: ReI3D AI3D N(O,25

RCBD - ABD N(0,25) -.29711 1.58560 1.73319 ..1.53811 -.171 6 I .870

From the results above the two blocks designs can be interchangeably used.

Figure 5.1: Deviation of various AI3D from ReI3D

{~ '~"";~~ - .
: «:~ r,

,;L ...:i\ ..... -; .. \....

~E~~~::
~(~.:. ~~~2~ ._......... .. ..

1> ..,............................................................................................................................•............................

From figure 5.1above, it is clear that deviations were equally likely to occur in both
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positive and negative. RCBD design produced higher figures for treatment 1 though it is

still within the treatment standard deviation.

5.2 Conclusion and Reccommendat.ion

In agricultural experiments, setting a block will always have some degree of intra block

variation. The major factors affecting the variation are the number of plots per block. The

more the number of plots or experimental units in a block, the higher the degree of intra

blocks variations and vice-versa. A randomized complete block design is discouraged by

this study when evaluating large number of treatments instead augmented block designs

are encouraged due to the capability of having few plots per block. The study has revealed

that in any randomized complete block designs the number of plots in every block is

dictated by the number of treatments being evaluated. In conclusion, the study has

revealed that augmented block designs are more efficient than randomized complete block

design for a finite error variance. In most cases under agricultural experiments, error

variances are assumes to be finite as it has been shown in the study.

Finally, we say that augmented block designs are more efficient than randomized

complete block design in test treatments versus control treatment experiments hence more

valuable in screening new stains of sugarcane. The efficiency of augmented block design

when it is tailored to fit strongly in large inter block variation and scarce test treatment.

This study recommends the use of augmented block design in screening new strains of

sugarcane due to it's high efficiency as opposed to the randomized complete block designs

which only appear to be simple.
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