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ABSTRACT

An elementary operator is a bounded linear map defined on the set of bounded lin-

ear operators acting on an infinite dimensional complex Hilbert space H. Various

forms of elementary operators have been studied in the past including generalized

elementary operator, left and right operators, inner derivation, generalized deriva-

tion and basic elementary operators among others. Various aspects such as spectra,

compactness, norm properties, numerical ranges among others have been used to

study the properties of these operators in the recent past and good results have

been obtained. Over time, the relationship between the various generalizations of

numerical range have been investigated and it emerges that for the basic elementary

operator, an exact description of the numerical range has not been exhaustively ex-

plored as the operator acts on various algebras. In this study, we have investigated

both the algebraic numerical range of the basic elementary operator and the norm of

a generalized derivation on the operator algebra B(H). Specifically, by application

of set inclusion approach and convexity properties of sets, it has been shown that

the algebraic numerical range of the basic elementary operator is convex, contains

the closure of its classical numerical range and that the algebraic numerical range

of the basic elementary operator is equal to the closure of the classical numerical

range of the implementing operators. Finally, we have shown that the norm of a

generalized derivation is equal to the sum of the norms of implementing operators

if the operators are finite rank. These results are of great importance to quan-

tum physics, for solving force closure in robotic grasping and provision of basis of

solution to optimization and duality problems.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the study.

The study of elementary operators originated from the theory of matrix equations

by Sylvester in 1884 [29]. He computed the eigenvalues of the matrix operators

corresponding to the elementary operator TAB on the set of an n× n matrix. The

term elementary operator was coined by Lumer and Rosenblum [18] in a more

general Banach algebra context in 1959. They computed the spectra of such oper-

ators and put a lot of emphasis on the application of these spectra to the systems

of operator equations. Since then, many mathematicians in operator theory have

been interested in the study of the properties of elementary operators such as their

spectrum, compactness, norm and numerical ranges see [2], [6] and [7]. There are

varied good results and expositions on different aspects of elementary operators,

mainly their spectral and structural properties. However, there are still many open

problems since these properties are connected directly to the structure of the un-

derlying space that the operator is defined on. The norm of inner and a generalized

derivation have been computed in various spaces.

On the other hand, the concept of a quadratic form associated with a matrix and

its application in matrix theory is known. These ideas when extended naturally in

finite and infinite dimensional spaces, lead to the concept of numerical range for

matrices. Numerical range is also referred to as Hausdorff domain, range of values
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and most importantly, the field of values in matrix theory, when the operator is

defined on a finite dimensional space.

In early studies of Hilbert spaces, researchers such as Hellinger, Toeplitz, Hilbert

among others, concentrated on the quadratic forms. The sesquilinear form fT asso-

ciated to a bounded linear operator T on a Hilbert space H is given by fT (x, y) =

〈Tx, y〉, for all x, y ∈ H which corresponds to the quadratic form fT (x) = fT (x, x) =

〈Tx, x〉 for all x ∈ H. The range of restriction of the quadratic form to the unit

sphere gives the formal definition of the numerical range implemented by the oper-

ator T as W (T ) = {〈Tx, x〉, x ∈ H ‖x‖ = 1}.

Topological properties of numerical range have been proved such as its non-emptiness,

inclusion of the spectrum of an operator within the closure of the operator’s numeri-

cal range, the numerical range of an operator lying in the closed disk of radius equal

to the norm of the operator and most importantly, its convexity by Toeplitz and

Hausdorff see [1], [11], [23], [30] and [31]. Many studies have given generalizations

that are varied depending on whether the set being considered is finite or infinite

dimensional.

The generalizations of the numerical range, both in finite and infinite dimension in

Banach spaces or Banach algebras have been extensively explored by Bonsall and

Duncan [6]. For more details see [11] and [15]. The classical numerical range for

elementary operators in Banach spaces, Banach algebras and C*-algebras have been

studied extensively too. Currently, motivated by theoretical study and applications,

there are lots of dynamic research in matrix analysis and operator theory on the

numerical range and its generalizations that have been done and documented. The

areas of interest include; k-numerical range, c-numerical range, m-numerical range

and their generalization in matrix analysis. In operator theory, the generalizations

are mainly on the extension to Banach spaces using the Hahn-Banach theorem and

the concept of the semi-inner product. The algebraic numerical range of the basic

elementary operator is such a generalization that we have obtained.
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1.2 Statement of the Problem.

Various generalizations of numerical ranges of various elementary operators in cer-

tain base fields have been studied in the past and good results obtained. However,

there is very little results on the relationship between the numerical ranges of these

elementary operators with that of their implementing operators. In this study, we

use Barraa’s results to investigate the relationship between the algebraic numerical

range of the basic elementary operator with that of the classical numerical range of

its implementing operators in the operator algebra B(H).

The norm of a generalized derivation δAB on B(H) has been fully determined by

Stampfli using maximal numerical range. The norm restriction of this operator on

finite rank operators has not been done. In this study, therefore we determine the

norm of a generalized derivation δAB on B(H) using finite rank operators. We have

also continued to use Stampfli’s maximal numerical range to determine this norm

equality.

1.3 Objective of the study

1.3.1 General objective

The main objective of the study was to investigate the algebraic numerical range of

the basic elementary operator and the norm of a generalized derivation on B(H).

1.3.2 Specific objectives

Our study aimed at

(i) Proving that the algebraic numerical range of the basic elementary operator

is convex and contains the closure of its classical numerical range on B(H).

(ii) Determining the relationship between the algebraic numerical range of the ba-
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sic elementary operator and the classical numerical range of the implementing

operators on B(H).

(iii) Determining the norm properties of a generalized derivation on B(H).

1.4 Significance of the study

The geometrical properties of numerical range provide important information about

the algebraic and analytic properties of an operator. Thus the geometric properties

of the numerical range is an important tool for classifying types of operators such

as unitary, normal and self adjoint. The theory of numerical range has been crucial

in the study of some algebraic structures of operators mostly in the non-associative

context. The numerical range of an operator T contains important information on

the properties of the operator. The numerical range allows one to deduce many

properties of an operator. For example, the numerical range is often used to locate

the spectrum of an operator since the spectrum is known to be contained within

the numerical range of the operator. Numerical range can also be used to obtain

dilations with simple structure, lower and upper norm bounds among others.

Numerical range has been used in engineering as a rough estimate of eigenvalues of

an operator. Approximation using commutators TX−XS or TX−XT are problems

in quantum mechanics that researchers in Applied Mathematics and Physics have

an interest in.

Since the numerical range and numerical radius are closely related by definition, the

distance of the numerical range of the operator T to the origin and the numerical

radius of T are useful in the study of approximation problems, stability, perturbation

and convergence. More precisely, the numerical radius has been used as a reliable

indicator for iterative methods and rate of convergence and therefore, it is important

in stability theory of finite-differences approximations for hyperbolic initial-value

problems.

On the other hand since by definition the norm of a vector is its length from the zero
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vector, the operator norm of any operator is equal to the spectral radius especially

if the operator is normal. This gives the least upper bound on the magnitude of

the largest eigenvalue.

We hope that our research findings will greatly contribute to the field of numerical

range of elementary operators and norm of derivation and provide motivation for

further research to pure mathematicians in these areas of study. The research

findings will contribute to the theoretical knowledge needed by mathematicians

and physicists.

1.5 Research methodology

1.5.1: Convexity

To prove that the algebraic numerical range of the basic elementary operator is

convex, we have built up the convexity using a functional and showed that the

functional is a state since it preserves convexity.

1.5.2: Equality of sets

To prove that the algebraic numerical range of the basic elementary operator is

equal to the closure of the classical numerical range of its implementing operators,

we have showed set inclusion in both directions since numerical range is a set.

1.5.3: Norm properties

The norm properties of elementary operators have been comprehensively studied

by many researchers. From the already established norms, done by applying the

definition of an operator norm and the known results of Stampfli, we have deter-

mined the norm of a generalized derivation by showing that inequality holds in both

directions. Also, from the theory of Banach spaces, the Hahnn- Banach theorem

allows us to algebraically construct functionals in the subspace which is extended

in the whole space under consideration. Finite rank operators is a mathematical
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tool that has been used in the construction to determine the norm of a generalized

derivation.

1.6 Organization of the study

Our study is divided into four chapters. In this first chapter, we give the overview

of our study by discussing the background of our work, and the significance of

the study. We have stated the problem and outlined the objectives to be achieved

together with the methods used. Finally we give the definitions of basic concepts

and necessary theoretical information which are relevant to the study. In the second

chapter we give the literature review of the study. The main results are given in

chapter three, where in the section 3.1, we have given results on the numerical range

of the basic elementary operator and the section 3.2, is on the norm of a generalized

derivation. We finally give our summary and recommendations for future research

in chapter four. The references used in the study are given at the end.

1.7 Basic concepts

In this section we give definitions and the necessary theoretical background infor-

mation from the theories of normed spaces, Banach spaces, Banach algebras and

C*-algebras that are relevant in the study.

1.7.1: Algebra.

An algebra is a vector space A equipped with a bilinear map called multiplication

such that A × A → A : (a, b) → ab which is associative;(ab)c = a(bc) for all

a, b, c ∈ A.

An algebra A is commutative if its multiplication is, that is, ab = ba for all

a, b ∈ A.

An algebra A is unital if there exist a unique e ∈ A such that ea = ae = a for all

a ∈ A.
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1.7.2: Banach Algebras

A norm ‖.‖ defined on an algebra A is said to be submultiplicative if

‖ab‖ ≤ ‖a‖‖b‖

for all a, b ∈ A.

A normed algebra is an algebra with submultiplicative norm defined on it.

A Banach algebra is a complete normed algebra and a unital normed algebra is a

normed algebra A with a unit element e.

A unital Banach algebra is a complete normed algebra with unit element e.

Generally, there are three kinds of Banach algebras depending on the way the

multiplication is defined. Thus from [21] we have;

(a) Operator algebras

Here we consider algebras whose elements are operators on a Banach space.

In this case the multiplication is the composition of operators.

• If X is a complex Banach space, then B(X ) the Banach space of all bounded

linear operators on X with respect to the operator norm is a Banach algebra

with the multiplication defined as composition of operators. The identity

operator I is the unit element. The operator norm of T ∈ B(X ) is given by

‖T‖ = sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}.

For T, S ∈ B(X ) we have that,

‖TSx‖ ≤ ‖T‖‖Sx‖ ≤ ‖T‖‖S‖‖x‖

⇒ ‖TS‖ ≤ ‖T‖‖S‖.

‖I‖ = 1 since ‖Ix‖ = ‖x‖ ≤ 1⇒ ‖I‖ ≤ 1 and

‖x‖ = ‖Ix‖ ≤ ‖I‖‖x‖ ⇒ 1 ≤ ‖I‖.

If dimX ≥ 2, then B(X ) is a non commutative Banach algebra.

If X = H, a Hilbert space, then B(H) is also a Banach algebra.
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• Let A = Mn(C), (n ≥ 2), the set of all n× n matrices with matrix addition

and matrix multiplication and with Frobenious norm defined by

‖A‖F = (
n∑

i,j=1
|aij|2) 1

2

is a non commutative unital Banach algebra.

• The setK(X ) = {T ∈ B(X ) : T is compact} is a closed sub-algebra of B(X )

and therefore is a Banach space. K(X ) is unital if and only if dimX <∞ and

it is an ideal in B(X ).

(b) Function algebras

Here we consider algebras of functions. In this case the multiplication is

pointwise.

• Let A = C. Then with respect to the usual addition, multiplication of

complex numbers and modulus, A is a commutative, unital Banach algebra.

• Let K be a compact Hausdorff space and A = C(K). Then with respect to

the pointwise multiplication of functions, A is a commutative unital Banach

algebra and the norm is given by

‖f‖∞ = supt∈K |f(t)|.

• Let S 6= 0 and B(S) = {f : S → C : S is bounded}. For f, g ∈ B(S) and

s ∈ S we define

(f + g)(s) = f(s) + g(s)

(αf)(s) = αf(s) for all f, g ∈ B(S) and α ∈ C

• Let Ω be a locally compact Hausdorff space and let

A = Cb(Ω) = {f : C(Ω) : f is bounded}.

Then A is a commutative unital Banach algebra.

• Let A = Co(Ω) = {f ∈ C(Ω) : f vanishes at∞}. Here f vanishes at

infinity if and only if for every ε > 0, there exist a compact subset Kε of Ω

such that |f(t)| < ε for every t ∈ Kc
ε . A is a commutative Banach algebra

and is unital if and only if Ω is compact.
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• Let X = [0, 1]. Then C
′ [0, 1] ⊂ C[0, 1] is an algebra and (C ′ [0, 1], ‖.‖∞)

is not complete. If we define ‖f‖ = ‖f‖∞ + ‖f ′‖∞, f ∈ C
′ [0, 1], then

(C ′ [0, 1], ‖.‖) is a Banach algebra.

• Let D = {z ∈ C : |z| < 1}. Considering

A(D) = {f ∈ C(D) : f |D is analytic}. Then A(D) is a closed

subalgebra of C(D) and so is a commutative unital Banach algebra called disk

algebra.

• Let H∞(D) = {f : D → C : f is bounded and analytic}. This is a com-

mutative unital Banach algebra with respect to the point wise addition, mul-

tiplication of functions and usual scalar multiplication of function and the

supremum norm.

(c) Group algebras

These are algebras which consists of functions but the multiplication is the

convolution product. These algebras do not always have a unit.

• Let A = L1(R) = {f : R → C : f is measurable and
∫
|f(t)|dt < ∞}.

Multiplication is defined by

(f ∗ g)(x) =
∫
f(x− t)g(t)dµ(t)

for all f, g ∈ L1(R).

The norm is defined by

‖f‖1 =
∫
|f(t)|dt,

and

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1

for all f, g ∈ L1(R).

Since A is complete, then L1(R) is a Banach algebra and the convolution is

commutative.

• Let w : R → [0,∞) be such that w(s + t) ≤ w(s) + w(t) for all s, t ∈ R.

Let L1
w(R) = {f : R → C : f is measurable and

∫
R |f(t)|w(t)dt < ∞}. For

f ∈ L1
w, the norm is defined as

‖f‖ =
∫
R
|f(t)|w(t)dt.
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Then L1
w(R) is a Banach space and with the convolution it becomes a Banach

algebra.

• Let T = {z ∈ C : |z| = 1} and

A = L1(T) = {f : T→ C : f is measurable and
∫
T |f(t)|µ(dt) <∞}. µ is the

normalized Lebesgue measure on T. The convolution is defined by

(f ∗ g)(t) =
∫
T
|f(t)|µ(dt)

for all f, g ∈ A.

Then A is a non unital commutative Banach algebra.

• Let B = {f : R→ C : f is measurable, 2π−periodic and
∫ 2π

0 |f(t)|dt <∞}.

The convolution is defined by

(f ∗ g)(t) =
∫ 2π

0
f(t− τ)g(τ)dτ

for all f, g ∈ B.

The norm is defined by

‖f‖ = 1
2π

∫ 2π

0
|f(t)|dt.

B is a commutative, non unital Banach algebra.

Generally, if G is a locally compact topological group, then there is a Haar

measure µ on G, that is, a regular Borel measure that is invariant under left

translation. L1(G, µ) is a Banach algebra with convolution

(f ∗ g)(x) =
∫
G
f(t)g(t−1x)dµ(t)

for f, g ∈ L1dµ(x).

Here, L1(G) = {f/f : G→ C}.

The Haar measure is unique up to the positive constant and so we write,
∫
G
f(x)dx =

∫
G
f(x)dµ(x).

L1(G) is is commutative if and only if G is abelian.
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1.7.3: C∗-algebra

Let A be a complex algebra. An involution on A is a conjugate linear map ∗ : A →

A that satisfies the following axioms;

(i) (a∗)∗ = a for all a ∈ A,

(ii) (ab)∗ = b∗a∗ for all a, b ∈ A and

(iii) (µa+ λb)∗ = µa∗ + λb∗ for all a, b ∈ A and µ, λ ∈ C

A ∗-algebra or an involution algebra is the ordered pair (A, ∗).

An element a ∈ A is said to be self adjoint or hermitian if a = a∗.

In addition, a is said to be normal if a∗a = aa∗ and unitary if a∗a = aa∗ = e

A Banach *-algebra is an involution algebra A endowed with a complete submulti-

plicative norm such that ‖a∗‖ = ‖a‖ for all a ∈ A.

A is called a unital Banach *- algebra if it has a unit element e such that ‖e‖ = 1.

A C*-norm on A is the norm for which ‖a∗a‖ = ‖a‖2 for all a ∈ A.

A C*-algebra A is a Banach*-algebra which is complete in the C*-norm.

A C*-algebra A is said to be unital if it has a unit element e ∈ A such that that

ea = ae = a for all a ∈ A.

On the other hand if a C*-algebra is non unital, it can always be unitized by ad-

joining a unit to it.

A subset S of a C*-algebra is called C*-sub-algebra if it is a C*-algebra with the

inherited operations, involution and norm.

The following are some examples of C*-algebras;

(i) If A = C, the map z → z (where z is the complex conjugate of z) is an

involution with which A becomes a commutative involutive algebra and hence

a C*-algebra.

(ii) If X is a compact Hausdorff topological space and A = C(X ) the algebra

of complex valued continuous functions on X , then A is a commutative C*-

algebra with involution f ∗ = f (Pointwise conjugation of function values).

When X is a single point, this reduces to example (i) above.

11



(iii) Let H be a Hilbert space and A = B(H) the bounded linear endomorphism

of H is a C*-algebra with the usual adjoint defined by

〈Tx, y〉 = 〈x, T ∗y〉

for all x, y ∈ H and T ∈ B(H).

(iv) Let G be a unimodular locally compact group and A the convolution algebra

L1(G) for each f ∈ L1(G), put f ∗(s) = f(s−1) where s ∈ G with the map

f → f ∗, then A is an involutive algebra and hence C*-algebra.

1.7.4: Positive linear functional and the GNS construction. See[20].

A self adjoint element a in a C*-algebra A is said to be positive if σ(a) ⊂ [0,∞)

and we write a ≥ 0. The set of positive elements of A is denoted by

A+ = {a ∈ A : a ≥ 0}

or equivalently,

A+ = {a∗a : a ∈ A}.

Let A and B be C*-algebras. A linear map f : A → B is said to be positive if

f(A+) ⊂ B+.

A positive map is said to be faithful if a ≥ 0 and f(a) = 0 implies that a = 0.

Any ∗- homomorphism is positive. Thus every ∗-homomorphism φ is faithful exactly

when it is injective; φ(a) = 0 if and only if φ(a∗a) = 0.

Now for all B ⊂ C, the linear functional f : A → C is positive since f(a∗a) ≥ 0 for

all a ∈ A and is called a positive linear functional. For example, if T ∈ B(H)

and x ∈ H, then f(T ) = 〈Tx, x〉 is a positive linear functional on B(H) since

f(T ∗T ) = 〈T ∗Tx, x〉 = 〈Tx, Tx〉 = ‖Tx‖2 ≥ 0.

A positive linear functional f on A of norm one is called a state on A. The set of

all states of A denoted by S(A) is called a state space. S(A) is non-empty since

by Hahnn Banach theorem, there exist f ∈ A∗ such that f(e) = 1 = ‖f‖.
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The state space S(A) forms a compact subset of A∗ in weak∗-topology; S(A) is

closed and convex and

S(A) =
⋂
a∈A
{f ∈ A∗ : f(a) ∈ [0,∞)}.

Some of the examples of state include;

(a) Let A be a C*-algebra and φ : A → B(H) be a ∗-homomorphism. For all

x ∈ H, we define a map ψx : A → C by

ψx(a) = 〈φ(a)x, x〉

for all a ∈ A.

Then ψx is a positive linear functional on A of norm 1 and hence a state.

(b) Let Ω be a compact Hausdorff space and µ the probability measure on Ω. We

define ψ : C(Ω)→ C by

ψ(f) =
∫

Ω
f(x)dµ(x)

for all f ∈ C(Ω), then ψ is a state.

(c) Let x be a vector in a Hilbert space H. Define f : B(H) → C such that

T → 〈Tx, x〉 for T ∈ B(H). Then f is a positive linear functional on B(H).

If x is a unit vector, then f is a state on B(H).

A representation of a C*-algebra is the pair (π,H) where H is a Hilbert space

and π : A → B(H) is a ∗-homomorphism.

A representation is said to be faithful if π is injective.

Theorem 1.7.4.1:

If a is a normal element of a non-zero C*-algebra A, then there is a state f of A

such that ‖a‖ = |f(a)|.

See [20] for the proof.
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Theorem 1.6.4.2:(Gelfand-Naimark Segal).

If A is a C*-algebra, then there exist a Hilbert space H and a universal faithful

representation π : A → B(H).

For the proof see [20].

1.7.5: Elementary operator.

There are various settings for the definition of the elementary operators. The ele-

mentary operator can be defined on separable infinite dimensional complex Hilbert

space H, normed space, Banach space or on C∗- algebras.

Let H be a complex Hilbert space and B(H) the algebra of all bounded linear op-

erators on H. For a single operator A ∈ B(H), we define two elementary operators;

LA and RA on B(H) called the left multiplication operator and right multiplication

operator respectively given by:

LA(X) = AX and RA(X) = XA

for every X ∈ B(H).

Let A = (A1, ......, Ak) and B = (B1, ......, Bk) be two fixed k− tuples of elements

of B(H) with Ai, Bi ∈ B(H) for 1 ≤ i ≤ k. The map RAB : B(H) → B(H) is the

general elementary operator induced by A and B given by

RAB(X) = A1XB1 + .......+ AnXBn =
k∑
i=1

AiXBi

for all X ∈ B(H).

Other particular elementary operators for all X ∈ B(H) are;

(a) The generalized derivation corresponding to A and B is

δAB(X) = (LA −RB)X = AX −XB.

(b) The inner derivation induced by A is δAA(X) = (LA −RA)(X) = AX −XA.

(c) The basic elementary operator MAB(X) = LARB(X) = AXB.
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(d) The Operator ∆A(X) = (LA +RA)(X) = AX +XA.

(e) The Jordan elementary operator UAB(X) = (MAB + MBA)(X) = AXB +

BXA.

(f) The operator VAB(X) = (MAB −MBA)(X) = AXB −BXA.

The elementary operators are linear and bounded.

1.7.6: Finite rank operator.

Let X and Y be Banach spaces. A linear map T : X → Y has a finite rank if its

range is finite dimensional. A finite rank operator need not to be bounded. We

denote the set of finite rank operators T ∈ B(X ,Y) by Boo(X ,Y) which is clearly

a vector space.

If f ∈ X ∗ and y ∈ Y , we define an operator y ⊗ f : X → Y by

y ⊗ f(x) = f(x)y.

y ⊗ f : X → Y is linear and

‖y ⊗ f‖ = sup{‖(y ⊗ f)(x)‖ : ‖x‖ ≤ 1}

= sup{‖f(x)y‖ : ‖x‖ ≤ 1}

≤ ‖y‖ sup{|f(x)| : ‖x‖ ≤ 1}

= ‖f‖‖y‖.

Thus y ⊗ f is bounded.

(y ⊗ f)(H) ⊆ span{y}, so y ⊗ f has a finite rank therefore, y ⊗ f ∈ Boo(X ,Y).

The following theorems give representation for bounded finite rank operators. See

[16]

Theorem 1.7.6.1:

If T ∈ Boo(X ,Y) and u1, ..., un is a basis for T (X ), then there are unique f1, ..., fn ∈

X ∗ such that T = ∑n
i=1 ui ⊗ fi.
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Proof.

Let u1, ..., un be a basis for T (X ).

Now, T (X ) ⊆ Y since T : X → Y . and so u1, ..., un ∈ Y .

Given unique f1, ..., fn ∈ X ∗, then for T ∈ Boo(X ,Y) we have by the definition of

finite rank operator that

u1 ⊗ f1 + u2 ⊗ f2 + ......+ un ⊗ fn : X → Y

This implies that ∑n
i=1 ui ⊗ fi : X → Y .

Thus T = ∑n
i=1 ui ⊗ fi. �

Theorem 1.7.6.2:

If there are u1, ..., un ∈ Y and f1, ..., fn ∈ X ∗ such that T = ∑n
i=1 ui ⊗ fi, then

T ∗ = ∑n
i=1 fi ⊗ ui.

Proof.

For y ∈ Y , we define Fy : Y∗ → C by Fy(λ) = λ(y). So Fy ∈ (Y∗)∗ and we write

y = Ty.

Let y ∈ Y and f ∈ X ∗. If x ∈ X and g ∈ Y∗ then

〈(y ⊗ f)x, g〉 = f(x)〈y, g〉 = f(x)g(y) where

〈., .〉 : Y × Y∗ is the dual pairing.

But,

f(x)g(y) = 〈x, g(y)f〉 = 〈x, Fy(g)f〉 = 〈x, (Fy ⊗ f)(g)〉 where,

〈., .〉 : X × X ∗ → C is the dual pairing.

We have Fy ⊗ f ∈ B(Y∗,X ∗) and hence

(y ⊗ f)∗ = Fy ⊗ f = y ⊗ f .

This shows that the adjoint of each term ui ⊗ fi in T is fi ⊗ ui and the adjoint

of the sum is the sum of adjoints of the terms. Thus, if T ∈ Boo(X ,Y) then

T ∗ ∈ Boo(Y∗,X ∗). �

Theorem 1.7.6.3:

If X is a Banach space, then Boo(X ) is a two sided ideal in the Banach algebra

B(X ).
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Proof.

We recall that Boo(X ,Y) is a vector space. Since here, Y = X , then Boo(X ) is a

vector space.

If A ∈ Boo(X ) and T ∈ B(X ), then AT ∈ B(X ) and A(T (X )) ⊆ AX , which is

finite dimensional. So AT ∈ Boo(X ).

TA ∈ B(X ) and T (A(X )) is the image of a finite dimensional subspace under T ,

and so is itself finite dimensional. Hence TA ∈ Boo(X ). �

We now proceed to show that finite rank operators are compact.

If T : X → Y is a linear map and U the open unit ball in X , then T is compact if

T (U) in Y is compact. In other words, T is compact if T (U) is totally bounded.

A convenient characterization of a compact operator is as follows;

A linear map T : X → Y is compact if and only if for every bounded sequence

xn ∈ X there is a subsequence xan such that Txan converges in Y .

We denote the set of compact operators by Bo(X ,Y) which is a vector space.

For T ∈ B(X ,Y), it is clear that T ∈ Bo(X ,Y) if and only if T ∗ ∈ Bo(Y∗,X ∗).

Also, B(X ,Y) being a Banach space implies that Bo(X ,Y) is a Banach space as

well with the operator norm.

The following theorem shows that a bounded finite rank operator is a compact

operator. Since a limit of compact operators is a compact operator, then it follows

from this that a limit of a bounded finite rank operator is a compact operator.

Theorem 1.7.6.4:

If T ∈ Boo(X ,Y) then T ∈ Bo(X ,Y).

Proof.

Let U be the open unit ball in X . Since T is bounded and U is a bounded set in

X , T (U) is a bounded set in Y . But T (X ) is a finite dimensional vector space and

hence, the closure of T (U) in T (X ) is a compact subset of T (X ). T (X ) is finite

dimensional so it is a closed subset of Y . Thus the closure of T (U) in Y is a compact

subset of Y . �

17



If H is a Hilbert space then B(H) is a C*-algebra (as the adjoint of T ∈ B(H) is

not just an element of B(H∗) but can be identified with an element of B(H)) and

therefore the above theorems implies Boo(H) and Bo(H) are two sided ∗-ideals in

the C*-algebra B(H).

1.7.7: Trace class operators

Let T ∈ B(H). We define |T | to be the unique operator S ∈ B(H) with S ≥ 0 such

that S2 = T ∗T .

If {ei : i ∈ I} is an orthonormal basis for H, we say that T ∈ B(H) is trace class if∑
i∈I〈|T |ei, ei〉 <∞. We denote the set of trace class operators in B(H) by B1(H).

The trace class operator norm is defined by

‖T‖1 =
∑
i∈I
〈|T |ei, ei〉.

If T ∈ B1(H) and ε is an orthonormal basis for H, we define the trace of T written

as tr T , to be

tr T =
∑
e∈ε
〈Te, e〉.

Since tr : B1(H)→ C is a positive linear functional that is, tr is a linear functional

from B1(H) to C. If T ∈ B1(H) is a positive operator, then trT is real and ≥ 0.

If T ∈ B1(H) is a positive operator, then it is diagonalizable and since being a

bounded trace class operator implies that it is compact, there is an orthonormal

basis {ei : i ∈ I} for H such that T = ∑
i∈I〈Tei, ei〉ei ⊗ ei, where the series

converges in the strong operator topology.

Since T is positive, 〈Tei, ei〉 is a real nonnegative number for each i ∈ I.

trT = 0 means that ∑
i∈I〈Tei, ei〉 = 0 and because this is a series of nonnegative

terms, they must be all 0.

Substituting this into the expression of T gives T = 0, showing that tr : B1(H)→ C

is a non-negative definite linear functional.

1.7.8: Convex set

A set P is said to be convex if the line segment between any two points in P lies in

P , that is, if x, y ∈ P then z = tx+ (1− t)y ∈ P for all t ∈ [0, 1].
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Given any non empty set P , there is a smallest convex set containing P denoted by

con(P ) and is referred to as the convex hull of P . Equivalently, it is the intersection

of all convex sets containing P .

1.7.9: Generalizations of the Numerical Range.

For operators on Hilbert space H, the notion of numerical range (or field of values)

is important in various applications in the study of operators. Here we introduce

the numerical range on Hilbert space.

Let T be an operator in B(H), the algebra of all bounded operators on H. The

numerical range W (T ) of an operator T is a subset of the complex plane C defined

by

W (T ) = {〈Tx, x〉 : x ∈ H, ‖x‖ = 1}.

It is known that the numerical range is convex, that is, if λ1, λ2 ∈ W (T ) then

λ = tλ1 + (1− t)λ2 ∈ W (T ) for every real number 0 ≤ t ≤ 1.

Some of the basic properties of numerical range are;

(i) W (T ∗) = W (T ),

(ii) W (T ) contains the spectrum of T ,

(ii) If µ, λ ∈ C then W (λT + µIH) = λW (T ) + µ,

(iv) W (U∗TU) = W (T ) for all unitary operators U and

(v) W (T + S) ⊆ W (T ) +W (S) for all T, S ∈ B(H).

For the proofs of these properties, see [6], [11] and [15].

Other numerical ranges include:

(a) Maximal numerical range of T defined by the set

Wo(T ) = {λ : 〈Txn, xn〉 → λ where ‖xn‖ = 1 and ‖Txn‖ → ‖T‖}
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where xn is a sequence in H and λ ∈ C.

Stampfli [28] introduced this numerical range and showed that it is nonempty,

closed, convex and is contained in the closure of the classical numerical range.

Lemma 1.7.9.1:

Let H be a complex Hilbert space and B(H) the algebra of all bounded operators

on H. If ‖T‖ = ‖x‖ = 1 and ‖Tx‖2 ≥ (1− ε), then

‖(T ∗T − I)x‖2 ≤ 2ε.

See Stampfli [28] for the proof.

Lemma 1.7.9.2: (Stampfli [28])

Let H be a complex Hilbert space and B(H) the algebra of all bounded operators

on H. Then for all T ∈ B(H), the set Wo(T ) is nonempty,closed, convex

and contained in the closure of the numerical range.

Proof.

We only show the convexity since it is clear that the maximal numerical range

Wo(T ) is nonempty and closed.

Let λ, µ ∈ Wo(T ) and xn, yn ∈ H. Assume without loss of generality that

‖T‖ = 1. Assume also that

‖xn‖ = ‖yn‖ = 1, 〈Txn, xn〉 → λ and 〈Tyn, yn〉 → µ.

Consider Tn = PnTPn, where Pn is the projection on H of {xn, yn}.

Let η be a point on the line segment joining λ and µ. Then for each n

it is possible, by Toeplitz-Hausdorff Theorem, to choose αn, βn such that

〈Tun, un〉 = 〈Tnun, un〉 → η and ‖un‖ = 1, where un = αnxn + βnyn.

Note that |〈xn, yn〉| ≤ 0 < 1 for n sufficiently large; that is, the angle between

xn and yn is bounded away from 0. (It is difficult to compute an explicit upper

bound for lim sup|〈xn, yn〉| in terms of λ and µ). Thus, there exist a constant

M such that |αn| ≤ M and ‖βn| ≤ M for large n, where ‖αnxn + βnyn‖ = 1.

Since by lemma 1.7.8.1 above, ‖Tun‖ = 〈T ∗Tun, un〉 = ‖un‖2 − 2Mεn where

εn → 0, and thus it follows that ‖Tun‖ → 1. Since 〈Tun, un〉 → η this

completes the proof. �

Stampfli [28] used the maximal numerical range to determine the norm of
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inner derivation acting on the Banach algebra B(H) as

‖δT‖ = inf{2‖T − λI‖ : λ ∈ C}.

Theorem 1.7.9.3:(Stampfli [28])

Let δT be a derivation on B(H). Then, ‖δT‖ = inf{2‖T − λ‖ : λ ∈ C.}

Proof.

Since

‖TX −XT‖ = ‖(T − λ)X −X(T − λ)‖

≤ 2‖T − λ‖‖X‖.

It follows that ‖δT‖ ≤ inf{2‖T − λ‖ : λ ∈ C}.

On the other hand,

‖T −λ‖ is large for λ large, so inf ‖T −λ‖ must be taken on at some point, say

zo. But ‖T − zo‖ ≤ ‖(T − zo) + λ‖ for all λ ∈ C implies that 0 ∈ Wo(T − zo).

Hence ‖δT‖ = ‖δ(T−zo‖ = 2‖T − zo‖ which completes the proof. �

(b) If A is a C*-Banach algebra with identity e, a ∈ A and

S(A) = {f ∈ A∗ : f(e) = 1 = ‖f‖}, the set of states on A then the

algebraic numerical range of a ∈ A is the set

V (a/A) = {f(a) : f ∈ S(A)}

The set V (a) is known to be non empty, convex and compact. This follows

immediately from the corresponding properties of the set of states being con-

vex and weak* compact in A∗. Since the map f → f(x) is weak* continuous

on A then the range is compact and convex. See [27] for details.

It has also been shown that for A = B(H) the algebraic numerical range is

equal to the closure of the classical numerical range that is, V (T ) = W (T )

for T ∈ B(H). See[1].

The algebraic numerical range of the basic elementary operator MAB is defined

by

V (MAB/B(H)) = {f(MAB) : f ∈ B(B(H))∗, ‖f‖ = 1 = f(I)}
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(c) Let X be a complex Banach space with dual space X ∗ and B(X ) the complex

Banach algebra of all bounded linear operators on X . For the operator T ∈

B(X ), the spatial numerical range Vo(T ) of T is defined by

Vo(T ) = {f(Tx) : (x, f) ∈
∏
}

where ∏ = {(x, f) ∈ X × X ∗ : ‖x‖ = 1 = ‖f‖ = f(x)}.

It has been shown that the closure of the convex hull of the spatial numerical

range is equal to the usual classical numerical range.

When X is a Hilbert space, ‖x‖ = ‖x∗‖ = 〈x, x∗〉 if and only if x∗ is a

function given by x∗y = 〈y, x〉, y ∈ X thus V (T ) in this case coincides with

W (T ). See[19] and [27].

(d) Let H be a Hilbert space and B(H) the algebra of all bounded linear operators

on H. Then for n-tuple T = (T1, T2, ..., Tn) of self adjoint operators on H, the

joint numerical range of T ∈ B(H) is defined as

WJ(T ) = {(〈T1x, x〉, 〈T2x, x〉, ....., 〈Tnx, x〉) : x ∈ H, ‖x‖ = 1}

(e) We denote K(X ) the ideal of all compact operators acting on a complex

Banach space X and let π be the canonical projection from B(X ) onto Calkin

algebra B(X )/K(X ). Denote further by ‖.‖e the essential norm

‖T‖e = inf{‖T +K‖ : K ∈ K(X )}. Let X be an infinite-dimensional Banach

space and T ∈ B(X ). The Essential numerical range Ve(T ) of T is defined by

Ve(T ) = V (π(T ), B(X )/K(X ), ‖.‖e)

1.7.10: Spectrum, Spectral radius and numerical radius

Let B(X ) be a complex unital algebra with identity I and let A ∈ B(X ) where X

is a complex normed space. The spectrum of A denoted by σ(A) is the set of all

λ ∈ C such that (A− λI) has no inverse, that is,

σ(A) = {λ ∈ C : A− λI is not invertible}.
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It is known that the closure W (A) of W (A) contains the spectrum of A. The

spectral radius of A is defined to be the number

r(A) = sup{|λ| : λ ∈ σ(A)}.

Since the spectrum of any A ∈ B(X ) is non-empty and compact we have that the

spectral radius r(A) is the smallest number r such that the disk {λ : |λ| ≤ r}

contains the spectrum of A that is, r(A) = sup{|λ| : λ ∈ σ(A)} = limk→∞ ‖Ak‖
1
k .

The numerical radius w(A) of A is given by

w(A) = sup{|λ| : λ ∈ W (A)}.

The numerical radius w(A) is a norm equivalent to the operator norm ‖A‖ which

satisfies 1
2‖A‖ ≤ w(A) ≤ ‖A‖.

23



CHAPTER TWO

LITERATURE REVIEW

The literature related to elementary operators is by now very large, and there

are excellent surveys on expositions of certain aspects. Elementary operators first

appeared in a series of notes by Sylvester in 1880’s in which he computed the eigen-

values of the matrix operators corresponding to the elementary operator RA,B on

the set of square matrices. The term elementary operator was coined by Lumer and

Rosenblum [18] (in a more general Banach algebra context) where they computed

the spectra of such operators and gave their applications to systems of operator

equations in 1959.

The structural theory of elementary operators has been an interesting area of re-

search mainly on the norm and numerical range of these operators. Over time, the

relationship between spatial numerical ranges, numerical ranges and their spectra

has been investigated. Most importantly, it has been shown that the numerical

range is convex.

The concept of numerical range of operators was introduced by Toeplitz in 1918 [31]

for matrices, a concept easily extensible to bounded linear operators on a Hilbert

space. He proved that the numerical range is a convex set by the classical Toeplitz

theorem which is an important property of numerical range.

In 1961, this concept was independently extended by Lumer [19] to bounded linear

operators acting on arbitrary Banach space by introducing the spatial numerical
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range of an operator on a Banach space.

In 1968, Stampfli and Williams [27] showed that the closure of the numerical range is

equal to the algebraic numerical range, that is, V (A/B(H)) = W (A) for an operator

A ∈ B(H). Later in 1970, Stampfli [28] introduced the concept of maximal numer-

ical range of bounded linear operator. He established that the maximal numerical

range as a set is non empty, closed and convex and used it to derive the norm of the

inner and generalized derivation. He showed that ‖δA‖ = 2 inf{‖A − λ‖ : λ ∈ C}

and ‖δA‖ = 2‖A‖ if and only if 0 ∈ Wo(A).

Bonsal and Duncan [7] in 1973 on their research give detailed generalization of the

numerical range for Banach space and Banach algebra setting. They defined the

algebraic numerical range on a complex unital Banach algebra A as

V (a/A) = {f(a) : f ∈ S(A)}, where S(A) is the set of states on A.

Kyle [17] in 1978 using the known results on spectra of inner derivation examined

the relationship between the numerical range of a derivation and that of its im-

plementing operator on a complex unital Banach algebra. He established that the

algebraic numerical range of the a derivation is equal to the sum of the algebraic

numerical ranges of the implementing operators, that is,

V (TAB/B(B(H))) = V (A/B(H)) + V (B/B(H)).

On his part, Shaw [26] in 1984 working on normed linear spaces Y and X , proved

that the algebraic numerical range of a generalized derivation restricted to δ the

subspace of B(Y ,X ) is equal to the difference of the algebraic numerical range of the

implementing operators A and B, that is, V (δAB/B(δ)) = V (A/B(Y))−V (B/B(X )).

Here, B(Y ,X ) is the space of all operators from Y to X , B(Y) the algebra of all

bounded operators on Y and B(X ) the algebra of all bounded linear operators on

X .

Seddik [23] in 2001 established that the algebraic numerical range of a generalized

derivation equals to that of the same derivation when restricted to the Banach

space of p-Schatten class of operators on H. Furthermore, he showed that these
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numerical ranges are equal to the difference in the algebraic numerical ranges of

the implementing operators, that is, V (δAB) = V (δAB/`p) = V (A) − V (B). Using

these results and working on complex unital Banach algebra, in 2002 Seddik [24]

showed that the convex hull of the joint numerical range of elements implementing

the general elementary operator is contained in the algebraic numerical range of the

elementary operator, that is,

co{
k∑
i=1

αiβi : (α1, . . . , α2) ∈ WJ(A), (β1, . . . , βk) ∈ WJ(B)}− ⊂ V (RA,B).

He further established that the inclusion is strict if RAB is a multiplication operator

MAB induced by non scalar self adjoint operators and an equality if RAB is taken

to be a generalized derivation. Again in 2004, Seddik [25] showed that the result is

the same when the elementary operator RAB is restricted a norm ideal J of B(X )

the complex Banach algebra of all bounded linear operators on a complex Banach

space X .

In 2014, Barraa [4] expressed the algebraic numerical range of the general elemen-

tary operator RAB in terms of the classical numerical range of the operators that

implement it in operator algebra B(H). He established that

V (RAB/B(B(H))) = [⋃U∈U(H)W (∑k
i=1 UAiU

∗Bi)]− where A = (A1, ..., Ak), B =

(B1, ..., Bk) are k-tuples of elements of B(H) and U(H) is the set of unitary opera-

tors. He extended this expression to the context of C*-algebra in 2015 [5] to give

V (Rab/B(A)) = [⋃{V (∑k
i=1 u

∗aiubi, /A) : u ∈ U}]−.

In our study we determine the formula for numerical range of multiplication operator

in which Barraa’s work [4], [5] forms the basis of our research.

On the other hand, the norm of a generalized derivation can be traced back to

Stampfli’s work in 1970 [28]. In his work, he gave an elegant formula for the norm

of a generalized derivation as ‖δAB‖ = inf{‖A − λ‖ + ‖B − λ‖ : λ ∈ C} using

maximal numerical range.

Fialkow [9] in 1979 and 1992 [10] estimated the norm of the generalized derivation

restricted on the norm ideal J in B(H) in the opposite direction.
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In 2001, Barraa and Boumazgour [3] established that the norm of a generalized

derivation restricted on the norm ideal is less or equal to the norm of the generalized

derivation, i.e. ‖δJAB‖ ≤ ‖δAB‖. They further characterized the class of operators

for which the equality holds. Boumazgour [8] in 2006 further established that for

every pair (A,B) of operators on H, there exists a positive number αi satisfying

1 ≤ αi ≤ 2 such that ‖δAB‖ ≤ αi‖δAB‖. He extended this work in 2006 where he

compared the norm of a generalized derivation on a Hilbert space H with the norm

of its restriction to Schatten norm ideals.

In our study we establish that the norm of the generalized inner derivation is equal

to the summation of the norms of the fixed operators that implement it.
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CHAPTER THREE

RESULTS AND DISCUSSION

In this chapter we give results on some properties of the numerical range of the

basic elementary operator. In particular, we determine the relationship between

the algebraic numerical range of the basic elementary operator and the classical

numerical range of the implementing operators. We also determine the norm of a

generalized derivation.

3.1 Algebraic numerical range of the basic ele-
mentary operator

In this section, we show that some properties of the numerical range of an operator

in a Hilbert space holds for the algebraic numerical range of the basic elementary

operator. In particular, we prove that the algebraic numerical range of the basic

elementary operator is equal to the classical numerical range of the implementing

operators in the operator algebra B(H) and extend the relation to when B(H) is a

C*-algebra.

Let A be a unital Banach algebra. The basic elementary operator

Ma,b : A → A is defined by

Mab(x) = axb (3.1.1)

where x ∈ A and a, b ∈ A are fixed.
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For A = B(H) a C*-algebra the basic elementary operator

MAB : B(H)→ B(H) is defined by;

MAB(X) = AXB (3.1.2)

for all X ∈ B(H).

We recall that the algebraic numerical range of the basic elementary operator MAB

is given by

V (MAB/B(H)) = {f(MAB) : f ∈ B(B(H))∗, ‖f‖ = 1 = f(I)}.

Proposition 3.1.1

Let the map MAB : B(H)→ B(H) be the basic elementary operator. Then we have

that

(i) V (αMAB + βI) = αV (MAB) + β,

(ii) V (U∗MABU) = V (MAB),

(iii) V (MA1B1 +MA2B2) ⊆ V (MA1B1) + V (MA2B2) and

(iv) σ(MAB) ⊆ V (MAB) where A,B ∈ B(H), α, β ∈ C, a unitary U ∈ B(H) and

the identity operator I ∈ B(H).

Proof.

(i) By definition,

V (αMAB + βI) = {f(αMAB + βI) : f ∈ B(B(H))∗, ‖f‖ = 1 = f(I)}

= {f(αMAB) + f(βI) : f ∈ B(B(H))∗, ‖f‖ = 1 = f(I)}

= {αf(MAB) + βf(I) : f ∈ B(B(H))∗, ‖f‖ = 1 = f(I)}

= αV (MAB) + β.

(ii) For a unitary U ∈ B(H),

V (U∗MABU) = {f(U∗MABU) : f ∈ B(B(H))∗, ‖f‖ = 1 = f(I)}

= {f(MABU
∗U) : f ∈ B(B(H))∗, ‖f‖ = 1 = f(I)}

= {f(MAB)f(U∗U) : f ∈ B(B(H))∗, ‖f‖ = 1 = f(I)}

= {f(MAB) : f ∈ B(B(H))∗, ‖f‖ = 1 = f(I)}

= V (MAB).
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(iii) For MA1B1 ,MA2B2 ∈ B(B(H)), we have

V (MA1B1 +MA2B2) = {f(MA1B1 +MA2B2) : f ∈ B(B(H))∗, ‖f‖ = 1 = f(I)}

⊆ {f(MA1B1) : f ∈ B(B(H))∗, ‖f‖ = 1 = f(I)}+{f(MA2B2) : f ∈ B(B(H))∗, ‖f‖ =

1 = f(I)}

= V (MA1B1) + V (MA2B2)

(iv) Since both the spectrum and the numerical range transform properly under

affine mappings of operators, it is enough to prove that if 0 ∈ σ(MAB) then

0 ∈ W (MAB).

Let 0 ∈ σ(MAB) that is, MAB is not invertible. Then there are two possibilities,

either MAB is not bounded below or MAB is bounded below but is not onto.

For the first possibility, if MAB is not bounded below, then there exists unit vectors

xn ∈ B(H) such that 〈MABxn, xn〉 → 0.

Thus limn→∞〈MABxn, xn〉 = 0.

Therefore 0 ∈ W (MAB) and since the algebraic numerical of an operator is equal

to the closure of the classical numerical range of the operator then we have that

0 ∈ V (MAB).

For the second possibility, if MAB is bounded below but not onto, then

0 6= (ranMAB)⊥ = Ker(MAB)∗, hence 0 ∈ W (MAB)∗ and therefore 0 ∈ W (MAB). �

In the following Theorem 3.1.2., we show that the algebraic numerical range of the

basic elementary operator is a convex set.

Theorem 3.1.2

Let H be a Hilbert space and B(H) the algebra of all bounded linear operators on

H. Then the algebraic numerical range V (MAB) is a convex set.

Proof.

We need to show that if α1, α2 ∈ V (MAB) and t ∈ (0, 1) then

α = tα1 + (1− t)α2 ∈ V (MAB) where α ∈ C.

Let α1, α2 ∈ V (MAB) then there exist support functionals f1 andf2 ∈ B(B(H))∗

such that

α1 = f1(MAB(X)) and α2 = f2(MAB(X)) where MAB ∈ B(B(H)),
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f1(AB) = 1 = ‖f1‖ and f2(AB) = 1 = ‖f2‖.

We define f on B(B(H)) by

f(MAB(X)) = tf1(MAB(X)) + (1− t)f2(MAB(X)).

We show that f is a state.

We first show that f is linear.

Let µ1, µ2 ∈ C and MAB ∈ B(B(H)) then for any X ∈ B(H) we have that,

f(µ1(MAB(X)) + µ2(MAB(X))) = tf1(µ1(MAB(X)) + µ2(MAB(X))) + (1− t)

f2(µ1(MA,B(X)) + µ2(MAB(X)))

= [tf1(µ1(MAB(X))) + (1− t)f2(µ1(MAB(X)))]

+ [tf1(µ2(MAB(X))) + (1− t)f2(µ2(MA,B(X)))]

= [µ1(tf1(MAB(X))) + µ1((1− t)f2(MAB(X)))]

+ [µ2(tf1(MAB(X))) + µ2((1− t)f2(MAB(X)))]

= µ1[tf1(MAB) + (1− t)f2(MAB(X))]

+ µ2[tf1(MAB(X)) + (1− t)f2(MAB)]

= µ1(f(MAB(X))) + µ2(f(MAB(X))).

Hence f is linear.

Next we prove that f is positive

f((AXB)∗AXB) = tf1((AXB)∗AXB) + (1− t)f2((AXB)∗AXB) ≥ 0 since

f1((AXB)∗AXB) ≥ 0 and f2((AXB)∗AXB) ≥ 0.

Lastly, we prove that ‖f‖ = 1.

Since

f(AB) = tf1(AB)+(1−t)f2(AB) with f1(AB) = 1 = ‖f1‖ and f2(AB) = 1 = ‖f2‖,

then

|f(AB)| = |tf1(AB) + (1− t)f2(AB)|

≤ |tf1(AB)|+ |(1− t)f2(AB)|

≤ t‖f1‖‖AB‖+ (1− t)‖f2‖‖AB‖

= ‖AB‖ ⇒ ‖f‖ ≤ 1.
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Also,

f(AB) = tf1(AB) + (1− t)f2(AB) = 1 and

f(I) = tf1(I) + (1− t)f2(I)

= t+ (1− t)

= 1.

But,

1 = |f(I)| ≤ ‖f‖‖I‖ = ‖f‖ which implies that ‖f‖ ≥ 1.

Thus f is a state on B(B(H)) and therefore, f(MAB) ∈ V (MAB) so V (MAB) is

convex. �

If A = B(X ) where B(X ) is the algebra of bounded linear operators on a normed

space X and T ∈ B(X ), then we have the spatial numerical range of T defined by;

Vo(T ) = {f(Tx) : x ∈ X , f ∈ X ∗ with ‖f‖ = ‖x‖ = 1} (3.1.3)

If X = H then we have the classical numerical range W (T ) for any T ∈ B(H)

defined by;

W (T ) = {〈Tx, x〉 : x ∈ H, ‖x‖ = 1} (3.1.4)

which is convex but not closed and in general V (T ) = W (T ).

So we have the classical numerical range of the basic elementary operator to be

W (AXB) = {〈AXBx, x〉 : x ∈ H, ‖x‖ = 1}. (3.1.5)

Theorem 3.1.3

W (MAB) ⊆ V (MAB)

Proof.

Let α ∈ W (AXB) then there exists a convergent sequence {xn}n≥1 of unit vectors

in H such that limn→∞〈AXBxn, xn〉 = α. We define a functional f on B(B(H))

by

f(AXB) = lim
n→∞
〈AXBxn, xn〉 = α.
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We then show that f is a state.

First, f is linear since if A1X1B1, A2X2B2 ∈ B(B(H)) and λ, µ ∈ C then,

f(λ(A1X1B1) + µ(A2X2B2)) = lim
n→∞
〈(λ(A1X1B1) + µ(A2X2B2))xn, xn〉

= lim
n→∞
〈λ(A1X1B1)xn, xn〉+ lim

n→∞
〈µ(A2X2B2)xn, xn〉

= λ lim
n→∞
〈(A1X1B1)xn, xn〉+ µ lim

n→∞
〈(A2X2B2)xn, xn〉

= λf(A1X1B1) + µf(A2X2B2).

f is positive since

f((AXB)∗(AXB)) = lim
n→∞
〈((AXB)∗AXB)xn, xn〉

= lim
n→∞
〈AXBxn, AXBxn〉

= { lim
n→∞

‖AXBxn‖}2 = ‖AXB‖2 ≥ 0.

Finally, we show that ‖f‖ = 1.

For I ∈ B(B(H)) we have that,

f(I) = limn→∞〈Ixn, xn〉 = limn→∞〈xn, xn〉 = {limn→∞ ‖xn‖}2 = 1.

f(AXB)| = | lim
n→∞
〈AXBxn, xn〉|

≤ lim
n→∞

‖AXBxn‖ lim
n→∞

‖xn‖

= ‖AXB‖.

so that ‖f‖ ≤ 1.

Since f(I) = 1, then ‖f‖ = f(I) = 1 and 1 = ‖f(I)‖ ≤ ‖f‖‖I‖ = ‖f‖ so that

‖f‖ ≥ 1.

Therefore, α = f(AXB) ∈ V (MAB) and hence W (AXB) ⊆ V (MAB). �

The following preliminary results will be used to prove our first result on the alge-

braic numerical range of the basic elementary operator.

Lemma 3.1.4

Let A and B be elements in B(H). Then, W (AB) ⊂ V (MAB/B(B(H))) where

W (AB) = {〈ABx, x〉 : x ∈ H, ‖x‖ = 1}.
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Proof.

Let α ∈ W (AB) then by definition of the classical numerical range, there exist

x ∈ H with ‖x‖ = 1 such that;

α = 〈ABx, x〉 = tr(AB(x⊗ x)) where tr(.) is a linear functional trace.

We now define a linear functional Ψx⊗x by

Ψx⊗x(X) = tr(X(x⊗ x)) = 〈Xx, x〉

on B(H).

The linear functional is bounded and its norm is equal to one that is;

‖Ψx⊗x‖ = ‖x⊗ x‖ = 1.

The functional Ψx⊗x is also a state since

Ψx⊗x(I) = tr(x⊗ x) = 〈x, x〉 = ‖x‖2 = 1 and

Ψx⊗x(X∗X) = tr(X∗X(x⊗ x)) = 〈X∗Xx, x〉 = 〈Xx,Xx〉 = ‖Xx‖2 ≥ 0.

So Ψx⊗x(MAB(IH)) ∈ V (MAB/B(B(H))) and we have that

Ψx⊗x(MAB(IH)) = Ψx⊗x(AB) = tr(AB(x⊗ x)) = 〈ABx, x〉 = α.

Thus W (AB) ⊂ W (MAB) ⊂ V (MAB/B(B(H))). �

We recall that the algebraic numerical range of an operator a ∈ A is given by

V (a/A) = {f(a) : f ∈ A∗ ‖f‖ = 1 = f(e)}.

However, the following Theorem 3.1.5 also gives another expression for algebraic

numerical range.

Theorem 3.1.5

Let A be a Banach algebra, then for any a ∈ A;

V (a/A) =
⋂
z∈C
{λ : |λ− z| ≤ ‖a− z‖}.

See [27] for the proof.

The algebraic numerical range of the basic elementary operator can also be ex-

pressed in a similar manner as shown by the following results.
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In the following Lemma 3.1.6, the distance between a point λ and a set S in the

complex plane is denoted as d(λ, S).

Lemma 3.1.6

If λ is not in V (MAB), then ‖(MAB−λ)−1‖ ≤ d(λ, V (MAB))−1, where d(λ, V (MA,B))

is the distance from the point λ to the set V (MAB) and d(λ, V (MAB))−1 its inverse.

Proof.

If λ is not in V (MAB), then (MAB − λ)−1 exits since V (MAB) is known to be a

closed convex set that contains the spectrum σ(MAB). Therefore we only need to

show that d[λ, V (MAB)]‖y‖ ≤ ‖(MAB − λ)y‖ for all y ∈ H.

Now, for any y ∈ H with ‖y‖ = 1, we choose a functional g ∈ B(H)∗ such that

‖g‖ = 1 = g(y). Let f(x) = g(xy) for x ∈ H. Then f is a state and

d[λ, V (MAB)]‖y‖ ≤ |λ− f(MAB)|

= |f(λ−MAB)|

= |g(λ−MAB)y|

≤ ‖g‖‖(λ−MAB)y‖

= ‖(λ−MA,B)y‖.�

Theorem 3.1.7

If L is a closed convex subset of the plane, then V (MAB) ⊂ L if and only if

‖(MAB − λ)−1‖ ≤ d[λ, L]−1 for λ not in L.

Proof.

Assume that V (MAB) ⊂ L. By lemma 3.1.6 we have that,

‖(MAB − λ)−1‖ ≤ d(λ, V (MAB))−1 ≤ d(λ, L)−1 for λ which is not in L.

Conversely,

let ‖(MAB−λ)−1‖ ≤ d(λ, L)−1 for λ not in L. Then to show that V (MAB) ⊂ L, we

only need to show that every half plane M which contains L also contains V (MAB).

Let M be the right-half plane, then Rez ≥ 0 since M ⊂ L then

‖(1 + εMAB)−1‖ ≤ 1 for all ε > 0.

If f is a state then we have that
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Ref((1 + εMAB)−1 ≤ ‖f‖‖(1 + εMAB)−1‖ ≤ f(1). So,

0 ≤ f(1)−Ref(1 + εMAB)−1 = Ref(1− (1 + εMAB)−1).

Therefore 0 ≤ Ref(εMAB(1 + εMAB)−1).

Dividing by ε and letting ε→ 0 we obtain that

0 ≤ Ref(MAB). Since f was arbitrary, then V (MAB) ⊂ L. �

Corollary 3.1.8

‖(MAB − λ)−1‖ ≤ d(λ, L)−1 + o(1) as λ→∞.

See [19] for the proof.

Lemma 3.1.9

limε→∞ ‖MAB + ε‖ − ε = sup Re V (MAB).

Proof.

If f is a state, then for ε > 0 we have

‖MAB + ε‖ ≥ Re f(MAB + ε) = Re f(ε) +Re f(MAB) = ε+Re f(MAB).

⇒ ‖MAB + ε‖ ≥ ε+Re f(MAB)

⇒ ‖MAB + ε‖ − ε ≥ Re f(MAB) = sup Re f(MAB) = sup Re V (MAB)

Therefore, ‖MAB + ε‖ ≥ sup Re V (MAB).

On the other hand,

‖MAB + ε‖ = ‖[(MAB)2 − ε2][MAB − ε]−1‖

= ‖(MAB)2[MAB − ε]−1 − ε2[MAB − ε]−1‖

≤ ε2d[ε, V (MAB)]−1 + o(1)

≤ ε2[ε− sup Re V (MAB)]−1 + o(1).

Thus

lim supε→∞ ‖MAB + ε‖ − ε ≤ sup Re V (MAB). �

Theorem 3.1.10

Let ω be a complex number. Then ω ∈ V (MAB) if and only if

|ω − λ| ≤ ‖MAB − λIH‖ for all λ ∈ C. Hence

V (MAB) = ⋂
λ∈C{z : |z − λ| ≤ ‖MAB − λIH‖}.
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Proof.

If ω = f(MAB) ∈ V (MAB), then |ω − λ| = |f(MAB − λ| ≤ ‖MAB − λIH‖ for any

λ ∈ C.

Conversely,

if ω is not an element of V (MAB), then there is λ ∈ C such that

|ω − λ| > ‖MAB − λIH‖.

By convexity of V (MAB) we assume without loss of generality that V (MAB) lies in

the half plane with Re z ≤ 0 and that ω > 0. Thus by Lemma 3.1.9 we have that

‖MAB + ε‖ − ε < ω for large positive ε, hence the proof. �

We recall that, norm of the basic elementary operator is defined by;

‖MAB‖ = sup{MAB(X) : X ∈ B(H), ‖X‖ = 1}

= sup{‖AXB‖ : X ∈ B(H), ‖X‖ ≤ 1}.

Theorem 3.1.11

Let A be C*-algebra, then

‖MAB‖ = sup{‖MAB(U)‖ : U ∈ U(A)}

= sup{‖AUB‖ : U ∈ U(A)}

where U(A) denotes the set of unitaries in A.

For proof see [30].

Theorem 3.1.12

Let H be a complex Hilbert space and B(H) the algebra of all bounded linear op-

erators on H. Then, V (MAB/B(B(H))) = [⋃U∈U(B(H))W (U∗AUB)], for all A,B ∈

B(H) and U a unitary operator.

Proof.

We first show that [⋃U∈U(B(H))W (U∗AUB)] ⊂ V (MAB/B(B(H)))

Let E be a Banach space. Then T ∈ B(E) is said to be an isometry if ‖Tx‖ = ‖x‖

for all x ∈ E. If T is an invertible isometry, then its inverse T−1 is also an isometry

and therefore,

V (TST−1
/B(E)) = V (S/B(E)) (3.1.6)
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for all S ∈ B(E).

If E = H then T = U and T−1 = U∗. Thus from equation (3.1.6) we have that

V (UAU∗ /B(H)) = V (U∗AU/B(H)) = V (A/B(H)) (3.1.7)

for all A ∈ B(H).

Given two unitaries U, V ∈ B(H), then

V (MU∗AU V ∗BV/B(B(H))) = V (MAB/B(B(H))) (3.1.8)

for all A ∈ B(H).

Now, taking an invertible isometry RUV ∗ with RU∗V as its inverse, then

V (MU∗AU V ∗BV/B(B(H))) = V (RUV ∗ MAB RU∗V/B(B(H))),

and by lemma 3.1.5

W (U∗AU V ∗BV ) ⊂ V (RUV ∗ MAB RU∗V/B(B(H)))

and ⋃
U,V ∈U(B(H))

W (U∗AU V ∗BV ) ⊂ V (MAB/B(B(H))).

Since the algebraic numerical range of the basic elementary operator is closed and

the product of two unitaries is also a unitary, then

[
⋃

U∈U(B(H))
W (U∗AUB)] ⊂ V (MAB/B(B(H))) (3.1.9)

or

[
⋃

V ∈U(B(H))
W (V ∗AV B)] ⊂ V (MAB/B(B(H))).

Next we proceed to show the inclusion

V (MAB/B(B(H))) ⊂ [⋃U∈U(B(H))W (U∗AUB)].

Now, if A = B(H) then MAB(U) = AUB for all U ∈ U(B(H)).

Therefore,

V (MAB/B(B(H))) = ⋂
z∈C{λ : |λ− z| ≤ ‖MA,B − zIB(H)‖}.

But
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‖MAB − z‖ = sup{‖(MAB − z)(U)‖ : U ∈ U(B(H))}

= sup{‖AUB − zU‖ : U ∈ U(B(H))}.

Since the unitary U ∈ U(B(H)) is an isometry, then

‖MAB − zIB(H)‖ = sup{‖U∗AUB − zIB(H)‖ : U ∈ U(B(H))}.

So if µ ∈ V (MAB/B(B(H))) then for all z ∈ C,

µ ∈ {|λ− z| ≤ ‖MAB − zIB(H)‖}.

Taking a fixed ε > 0, there exists Uε such that

‖MAB − zIB(H)‖ < ‖U∗εAUεB − zIB(H)‖+ ε and by Theorem 3.1.10 we have that,

W (U∗εAUεB)− = V (U∗εAUεB)

=
⋂
z∈C
{λ : |λ− z| ≤ ‖U∗εAUεB − zIB(H)‖}

and so there exists λ ∈ W (U∗εAUB) such that |µ− λ| ≤ ε.

Since ε is arbitrary, µ ∈ [⋃U∈U(B(H))W (U∗AUB)].

Thus

V (MAB/(B(BH))) ⊂ [
⋃

U∈UB((H))
W (U∗AUB)] (3.1.10).

Therefore, from equations 3.1.9 and 3.1.10 we have that

V (MAB/(B(H))) = [⋃U∈U(B(H))W (U∗AUB)]. �

Example 3.1.13

As an immediate calculation to theorem 3.1.12, we consider B(H) to be M2(C) such

that M2(C) : C2 → C2.

We recall that by definition, MAB : B(H)→ B(H) is given by

MAB(X) = AXB

for all X ∈ B(H) with ‖X‖ = 1 and A,B ∈ B(H) fixed.

Let A =
[

0 1
0 0

]
, B =

[
0 0
1 0

]
and X =

[
1 0
0 1

]
.

Then we have that AXB =
[

1 0
0 0

]
.
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Now,

W

[
1 0
0 0

]
= {〈

[
1 0
0 0

]
x1, x1
x2 x2

〉 : ‖x‖ ≤ 1}

= {〈 x1, x1
0 x2

〉 : |x1|2 + |x2|2 = 1}

= {x1x1 : |x1|2 + |x2|2 = 1

Ifx1 = r1e
iθandx2 = r2e

iθthen

= {x1x1 : r2
1 + r2

2 = 1}

= {|x1|2 : r2
1 + r2

2 = 1}

= {r2
1 : r2

1 + r2
2 = 1}

= {1− r2
2 : r2

1 + r2
2 = 1}

= {1− r2
2 : 0 ≤ r2 ≤ 1}

= {1− x2
2 : 0 ≤ x2 ≤ 1}.

So when x2 = 0 we have that |x1|2 = 1 and x1 = 0 gives |x1|2 = 0.

Therefore W
[

1 0
0 0

]
is a subset of [0,1] and contains 0,1.

Since the classical numerical range of an operator is convex, then the numerical

range W (AXB) is the closed interval [0, 1].

The closure of this interval [0, 1] is again the closed interval [0, 1] and since V (T ) =

W (T ), then we have that V (MAB(X)) is the closed interval [0, 1].

Next we extend this result to the context of C*-algebra and show that

V (Mab/B(A)) = ⋃{V (u∗aub/A) : u ∈ U(A)}, where U(A) denotes the set of unitary

elements. Here, the multiplication operator acts on a C*-algebra.

Let A be a unital C*-algebra. Then an element u ∈ A is called unitary if u∗u =

uu∗ = 1, that is, u is invertible and u∗ = u−1. Also,

V (u−1au/A) = V (a/A), for any a, u ∈ A.

Proposition 3.1.14

Let A be a C*-algebra with a, b ∈ A. Then

V (Mab/B(A)) = ⋃{V (u∗aub/A) : u ∈ U(A)}, where U(A) denotes the set of unitary

elements.
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Proof.

We begin by showing that;⋃{V (u∗aub/A) u ∈ U(A)} ⊂ V (Mab/B(A)).

The norm of Mab is given by;

‖Mab‖ = sup{‖Mab(x)‖ : ‖x‖ ≤ 1}

= sup{‖axb‖ : x ∈A, ‖x‖ ≤ 1}

and by Theorem 3.1.5,

V (Mab/B(A)) = ⋂
z∈C{λ : |λ− z| ≤ ‖Mab − z‖}

But,

‖Mab − z‖ = sup{‖(Mab − z)(u)‖ : ‖u‖ ≤ 1}

= sup{‖(aub− zu)‖ : ‖u‖ ≤ 1}

= sup{‖u∗aub− z‖ : ‖u‖ ≤ 1}

for all u ∈ U(A).

So,

V (u−1aub/A) =
⋂
z∈C
{λ : |λ− z| ≤ ‖u−1aub− z‖}

=
⋂
z∈C
{λ : |λ− z| ≤ ‖aub− zu‖}

=
⋂
z∈C
{λ : |λ− z| ≤ ‖(Mab − z)‖}

= V (Mab).

Since

‖(Mab − z)(u)‖ ≤ ‖Mab − z‖ and

‖Mab(u)‖ ≤ ‖Mab‖, then

{V (u−1aub/A) : u ∈ U(A)} ⊂ V (Mab/B(A)). Since u−1 = u∗ and by [21] Russo-

Dye’s theorem that a closed unit ball in A is the closed convex hull of U(A) for a

unital C*-algebra A and a unitary group U , then⋃{V (u∗aub/A) : u ∈ U(A)} ⊂ V (Mab/B(A)).

Next we shall prove the inlusion

V (Mab/B(A)) ⊂
⋃{V (u∗aub/A) : u ∈ U(A)}.
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From Theorem 3.1.6,

V (Mab/B(A) = ⋂
z∈C{λ : |λ− z| ≤ ‖Mab − z‖}

But

‖Mab − z‖ = sup{‖(Mab − z)(u)‖ : u ∈ U(A), ‖u‖ = 1}

= sup{‖(aub− zu)‖ : u ∈ U(A), ‖u‖ = 1}

= sup{‖u∗aub− zu‖ : u ∈ U(A), ‖u‖ = 1}.

So if α ∈ V (Mab/B(A)), then for all z ∈ C, α ∈ {|λ− z| ≤ ‖Mab − z‖}.

Taking a fixed ε > 0, then there exists a unitary uε ∈ A such that

‖Mab − z‖ < ‖u∗εauεb− zu‖+ ε.

But

(u∗εauεb/A) =
⋂
z∈C
{λ : |λ− z| ≤ ‖u∗εauεb− z‖}

=
⋂
z∈C
{λ : |λ− z| ≤ ‖auεb− zuε‖}.

Hence there exists α ∈ V (u∗εauεb/A) such that |α− λ| ≤ ε and since ε is arbitrary,

then α ∈ ⋃
u∈U(A) V (u∗aub/A). �

3.2 Norm of a generalized derivation

In this section we determine the norm of a generalized derivation. Let H be a sep-

arable infinite dimensional complex Hilbert space and let B(H) denote the algebra

of all bounded linear operators on H. Let A,B ∈ B(H). The left and the right

multiplication operators induced by A and B is denoted by LA and RB respectively

and defined by

LA(X) = AX

and

RB(X) = XB.

The generalized derivation δAB : B(H)→ B(H) is defined by

δAB(X) = (LA −RB)(X) = AX −XB. (3.2.1)
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for all X ∈ B(H)

Proposition 3.2.1

The generalized derivation δAB : B(H)→ B(H) is a linear bounded map.

Proof.

We first show that the generalized derivation is linear.

Let µ, ω ∈ C and fix A,B ∈ B(H). Then for all S, T ∈ B(H), we have that

µS + ωT ∈ B(H). So

δAB(µS + ωT ) = A(µS + ωT )− (µS + ωT )B

= µAS + ωAT − µSB − ωTB

= (µAS − µSB) + (ωAT − ωTB)

= µ(AS − ST ) + ω(AT − TB)

= µδAB(S) + ωδAB(T ).

Next, we show that δAB is bounded on B(H).

Now, for all X ∈ B(H) with ‖X‖ = 1 and A,B fixed in B(H), we have that

‖δAB(X)‖ = ‖AX −XB‖

≤ ‖AX‖+ ‖XB‖

≤ ‖A‖‖X‖+ ‖X‖‖B‖

= ‖A‖+ ‖B‖.�

The following result which show equality between ‖δAB(X)‖ and ‖A‖ + ‖B‖ is

proved for only finite rank operators in B(H).

Note that for any space B(H), the set of all finite rank operators on H is a subspace

of B(H). We denote this set by F(H).

Theorem 3.2.2

Let B(H) be the set of all linear bounded operators from H to H and assume

that F(H) ⊂ B(H) be the subspace of finite rank operators from H to H. Then

‖δAB/F(H)‖ = ‖A‖+ ‖B‖ for all A,B ∈ F(H).
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Proof.

By definition,

‖δAB/F(H)‖ = sup{‖δAB(X)‖ : X ∈ F(H), ‖X‖ = 1}

= sup{‖AX −XB‖ : X ∈ F(H), ‖X‖ = 1}.

Therefore,

‖δAB/F(H)‖ ≥ ‖δAB(X)‖ for all X ∈ F(H) and ‖X‖ = 1.

Taking an arbitrary ε > 0 we have

‖δAB/F(H)‖ − ε < ‖δAB(X)‖ for all X ∈ F(H) and ‖X‖ = 1. So

‖δAB/F(H)‖ − ε < ‖AX −XB‖.

Since‖AX −XB‖ ≤ ‖A‖+ ‖B‖ and letting ε→ 0, then we have that

‖δAB/F(H)‖ ≤ ‖A‖+ ‖B‖ (3.2.2).

On the other hand,

Let s, y, z ∈ H be unit vectors and let u, v be functionals so that u ⊗ y : H → C

and v ⊗ z : H → C are finite rank operators defined by

(u⊗ y)s = u(s)y

and

(v ⊗ z)s = v(s)z

for all s ∈ H with ‖s‖ = 1.

So

‖u⊗ y‖ = sup{‖(u⊗ y)s‖ : s ∈ H, ‖s‖ = 1}

= sup{‖u(s)y‖ : s ∈ H, ‖s‖ = 1}

= sup{|u(s)|‖y‖ : s ∈ H, ‖s‖ = 1}

= ‖u‖.

Similarly, ‖v ⊗ z‖ = ‖v‖.

So if we let A = u⊗ y and B = v⊗ z, then ‖A‖ = |u(s)| = ‖u‖ and ‖B‖ = |v(s)| =

‖v‖.

44



Now,

‖δAB/F(H)‖ ≥ ‖δAB(X)‖ ≥ ‖δAB(X)s‖ where X ∈ F(H) with ‖X‖ = 1.

But,

δAB(X)s = (AX −XB)(s)

= AX(s)−XB(s)

= ((u⊗ y)X(s))− (X(v ⊗ z))(s)

= u(s)yX −Xv(s)z

= u(s)X(y)−X(z)v(s.)

Therefore,

‖δAB/F(H)‖2 ≥ ‖(AX −XB)(s)‖2

But,

‖(AX −XB)(s)‖2 = 〈u(s)X(y)−X(z)v(s), u(s)X(y)−X(z)v(s)〉

= 〈u(s)X(y), u(s)X(y)〉 − 〈u(s)X(y), X(z)v(s)〉 − 〈X(z)v(s), u(s)X(y)〉

+ 〈X(z)v(s), X(z)v(s)〉

= ‖u(s)X(y)‖2 − 〈u(s)X(y), X(z)v(s)〉 − 〈X(z)v(s), u(s)X(y)〉+ ‖X(z)v(s)‖2

= |u(s)|2‖X(y)‖2 − (uX(y)X(z)v)〈s, s〉 − (X(z)vuX(y))〈s, s〉+ ‖X(z)‖2|v(s)|2

= |u(s)|2 − uX(y)vX(z)− vX(z)uX(y) + |v(s)|2

= ‖u‖2 − uX(y)vX(z)− vX(z)uX(y) + ‖v‖2.

Setting uX(y) = |uX(y)| = ‖A‖, and

vX(z) = −|vX(z)| = −‖B‖ then we have that

‖u‖2 − uX(y)vX(z)− vX(z)uX(y) + ‖v‖2 = ‖A‖2 + 2‖A‖‖B‖+ ‖B‖2

= (‖A‖+ ‖B‖)2.

Thus,

‖δAB/F(H)‖2 ≥ (‖A‖+ ‖B‖)2.

Taking square root on both sides we obtain

‖δAB/F(H)‖ ≥ ‖A‖+ ‖B‖ (3.2.3).
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Equations (3.2.2) and (3.2.3) together yields,

‖δAB/F(H)‖ = ‖A‖+ ‖B‖. �

The result in Theorem 3.2.2 can only be extended to the whole of B(H) with certain

conditions on the numerical ranges Wo(A) and Wo(B). This is done using Stampfli’s

maximal numerical range.

We recall that for A ∈ B(H) the maximal numerical range of A is given by

Wo(A) = {λ ∈ C : 〈Axn, xn〉 → λ, with ‖xn‖ = 1 and ‖Axn‖ → ‖A‖}.

Lemma 3.2.3 and Theorem 3.2.4 give detailed conditions on Wo(A) and Wo(B) for

the results of Theorem 3.2.2 to hold in case of B(H).

Lemma 3.2.3

Let λ1 ∈ Wo(A) and λ2 ∈ Wo(B). Then

‖δAB/B(H)‖ ≥ (‖A‖2 − |λ1|2) 1
2 + (‖B‖2 − |λ2|2) 1

2 .

Proof.

By definition,

‖δAB/B(H)‖ = sup{‖AX −XB‖ : X ∈ B(H) and ‖X‖ = 1}.

Since λ1 ∈ Wo(A), there exists xn ∈ H such that ‖Axn‖ → ‖A‖ and 〈Axn, xn〉 → λ1.

Also, for λ2 ∈ Wo(B), there exists xn ∈ H such that ‖Bxn‖ → ‖B‖ and 〈Bxn, xn〉 →

λ2.

We set Axn = αnxn + βnyn and Bxn = αnxn + ωnyn where 〈xn, yn〉 = 0, ‖yn‖ = 1.

Also, let βn and ωn be either both positive or both negative.
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Given that Vnxn = xn, Vnyn = −yn and Vn = 0 on {xn, yn}⊥, then

‖(AVn − VnB)xn‖ = ‖AV xn − VnBxn‖

= ‖Axn − Vn(αnxn + ωnyn)‖

= ‖Axn − Vnαnxn − Vnωnyn‖

= ‖αnxn + βnyn − αnxn + ωnyn‖

= ‖βnyn + ωnyn‖

= |βn + ωn|

= |βn|+ |ωn|.

But

‖Axn‖ = ‖αnxn + βnyn‖ ≤ ‖αnxn‖+ ‖βnyn‖ = |αn|+ |βn|.

So |βn| ≥ ‖Axn‖ − |αn| and since ‖Axn‖ → ‖A‖, then

|βn| ≥ (‖A‖2 − |αn|2) 1
2 − εn where εn → 0 and αn → λ1.

Also,

‖Bxn‖ = ‖αnxn + ωnyn‖ ≤ ‖αnxn‖+ ‖ωnyn‖ = |αn|+ |ωn|

So |ωn| ≥ ‖Bxn‖ − |αn| and since ‖Bxn‖ → ‖B‖ then

|ωn| ≥ (‖B‖2 − |αn|2) 1
2 − εn where εn → 0 and αn → λ2

Thus

|βn + ωn| = |βn|+ |ωn| ≥ (‖A‖2 − |αn|2) 1
2 − εn + (‖B‖2 − |αn|2) 1

2 − εn
= (‖A‖2 − |λ1|2) 1

2 + (‖B‖2 − |λ2|2) 1
2 .

Therefore,

‖δAB/B(H)‖ ≥ ‖δAB(Vn)‖ ≥ ‖(AVn − VnB)xn‖ ≥ (‖A‖2 − |λ1|2) 1
2 + (‖B‖2 − |λ2|2) 1

2 .

Similarly,

if λ1 and λ2 are as defined in lemma 3.2.3 and we let αn = 〈Axn, xn〉 → λ1 and

αn = 〈Bxn, xn〉 → λ2 so that

|αn|2 + |βn|2 = ‖Axn‖2 → ‖A‖2 that is, |βn| = (‖AXn‖2 − |αn|2) 1
2 and

|αn|2 + |ωn|2 = ‖Bxn‖2 → ‖B‖2 that is, |ωn| = (‖Bxn‖2 − |αn|2) 1
2 .

Also, let Vn = xn⊗xn− yn⊗ yn, then ‖Vn‖ = 1 and (AVn−VnB)xn = βnyn +ωnyn.

Thus

‖δAB/B(H)‖ ≥ ‖(AVn − VnB)xn‖ = ‖βnyn + ωnyn‖ = |βn|+ |ωn|

= (‖Axn‖2 − |αn|2) 1
2 + (‖Bxn‖2 − |αn|2) 1

2
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= (‖Axn‖2 − |〈Axn, xn〉|2) 1
2 + (‖Bxn‖2 − |〈Bxn, xn〉|2) 1

2

→ (‖A‖2 − |λ1|2) 1
2 + (‖B‖2 − |λ2|2) 1

2 . � (3.2.4)

Now, by application of results in Lemma 3.2.3, we prove that equality exists between

‖δAB/B(H)‖ and ‖A‖+ ‖B‖ if and only if Wo(A) ⋂
Wo(B) at least contains zero.

Theorem 3.2.4

Let δAB : B(H) → B(H) be the generalized derivation and assume that 0 ∈

Wo(A) ⋂
Wo(B). Then ‖δAB/B(H)‖ = ‖A‖+‖B‖ if and only if 0 ∈ Wo(A) ⋂

Wo(B).

Proof.

Let 0 ∈ Wo(A) and 0 ∈ Wo(B), then by lemma 3.2.3 we have that

‖δAB/B(H)‖ ≥ ‖A‖+ ‖B‖.

Since ‖δAB/B(H)‖ ≤ ‖A‖+ ‖B‖ for fixed A,B ∈ B(H) then

‖δAB/B(H)‖ = ‖A‖+ ‖B‖.

Conversely,

let ‖δAB/B(H)‖ = ‖A‖+ ‖B‖.

We show that if 〈Axn, xn〉 → λ1 and 〈Bxn, xn〉 → λ2 then λ1,−λ1 ∈ Wo(A) and

λ2,−λ2 ∈ Wo(B)

Since ‖δAB/B(H)‖ = ‖A‖+ ‖B‖, there exists xn, Vn ∈ B(H) such that

‖xn‖ = ‖Vn‖ = 1 and ‖(AVn − VnB)xn‖ → ‖A‖+ ‖B‖ so that

‖Vnxn‖ = 1, ‖Axn‖ → ‖A‖, ‖Bxn‖ → ‖B‖, ‖AVnxn‖ → ‖A‖ and ‖BVnxn‖ → ‖B‖.

Moreover since ‖(AVn − VnB)xn‖ → ‖A‖+ ‖B‖, then

AVnxn = −VnAxn +−→εn where ‖−→εn‖ → 0 and

VnBxn = −VnBxn +−→εn where ‖−→εn‖ → 0

Let 〈Axn, xn〉 → λ1 and 〈Bxn, xn〉 → λ2 that is λ1 ∈ Wo(A) and λ2 ∈ Wo(B).

By choosing a subsequence we have that

〈AVnxn, Vnxn〉 = −〈VnAxn,Vnxn〉−→εn

= −〈Axn, V ∗n Vnxn〉+−→εn

= −〈Axn, xn〉+−→εn.

Thus
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limn→∞〈AVnxn, Vnxn〉 → −λ1 that is, −λ1 ∈ Wo(A).

Therefore 0 ∈ Wo(A).

Similarly,

〈VnBxn, Vnxn〉 = −〈VnBxn, Vnxn〉+−→εn

= −〈Bxn, V ∗n Vnxn〉+−→εn

= −〈Bnxn, xn〉+−→εn.

Thus

limn→∞〈VnBxn, Vnxn〉 = −λ2 that is, −λ2 ∈ Wo(B).

Therefore, 0 ∈ Wo(B). �

The above results can always be extended to the space Mn(C), the space of all

n× n matrices, with finite entries via the Gelfand-Naimark Segal theorem since by

construction there is always an isomorphism representation π between B(H) and

Mn(C) implying that the two spaces are isomorphic.

Thus, ‖δAB/Mn(C)‖ = ‖A‖ + ‖B‖ if and only if 0 ∈ Wo(A) ⋂
Wo(B) where A,B ∈

Mn(C).

A C*-algebra A is said to be irreducible if the commutant of A contains only the

scalars.

As mentioned earlier, note that B(H) is isomorphic to C*-algebras of the form

Mn(C).

Let A ∈ B(H), B(H) an irreducible C*-algebra and define the distance of A from a

scalar multiple of the appropriate identity operator I ∈ B(H) denoted as d(A) by

d(A) = inf{‖A− λ‖ : λ ∈ C}. (3.2.5)

Theorem 3.2.5

Let δAB : B(H) → B(H) be a generalized derivation, B(H) an irreducible C*-

algebra and suppose d(A) and d(B) are distances from A and B respectively as

defined in (3.2.5), then ‖δAB/B(H)‖ = d(A) + d(B).

Proof.
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Following Stampfli’s proof, ‖δAB/B(H)‖ = infλ∈C(‖A− λ‖+ ‖B − λ‖).

Since d(A) = infλ∈C ‖A− λ‖ and d(B) = infλ∈C ‖B − λ‖, we need to prove that for

all A,B ∈ B(H)

d(A) + d(B) = inf
λ∈C

(‖A− λ‖+ ‖B − λ‖).

It therefore suffices to show that if X and Y are bounded sets, then

inf(X + Y) = inf X + inf Y .

Now,

inf X ≤ x and inf Y ≤ y for all x ∈ X and y ∈ Y implies that

inf X + inf Y ≤ x+ y for all x ∈ X and y ∈ Y

⇒ inf X + inf Y ≤ inf(X + Y).

On the other hand,

Let ε > 0 be given.

Then by definition of infimum, there exists x ∈ X and y ∈ Y such that

x < inf X + ε
2 and

y < inf Y + ε
2

⇒ x+ y < inf X + inf Y + ε

Since ε is arbitrary, we have that

x+ y < inf X + inf Y which completes the proof. �
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CHAPTER FOUR

CONCLUSION AND
RECOMMENDATIONS

In this chapter we conclude and provide some recommendations for further research.

4.1 Conclusion

In this thesis, in proposition 3.1.1, we have shown that some basic properties of the

numerical range of an operator T ∈ B(H) holds for the algebraic numerical range of

the basic elementary operator. The convexity of the algebraic numerical range of the

basic elementary operator has been proved in theorem 3.1.2 and that the algebraic

numerical range of the basic elementary operator contains the closure of its classical

numerical range in theorem 3.1.3. Using lemma 3.1.4, theorem 3.1.5, lemma 3.1.6,

theorem 3.1.7, lemma 3.1.9 and theorem 3.1.10, we have proved that the algebraic

numerical range of the basic elementary operator is equal to the closure of classical

numerical range of the operators that implement it in theorem 3.1.11. Further, in

proposition 3.1.14 we have extended the result in theorem 3.1.11 to the context of

C*-algebra and proved that the algebraic numerical range of the basic elementary

operator is equal to the algebraic numerical range of its implementing operators.

For the generalized derivation, we have shown in proposition 3.2.1 that it is linear

and bounded. We have used finite rank operators in theorem 3.2.2 to prove that the
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norm of a generalized inner derivation has also been shown to be equal to the sum

of the norms of the operators that induce it. Further, using Stampfli’s results on

maximal numerical range in lemma 3.2.3 and theorem 3.2.4, we have proved that

the norm equality holds. Finally we have shown that ‖δAB/B(H) = d(A) + d(B) in

theorem 3.2.5.

4.2 Recommendation

From the results obtained from this study, we recommend the following for further

research.

1. In this study we have determined the algebraic numerical range of the ba-

sic elementary operator. Further investigations should be done using other

generalization of numerical range such as joint numerical range and even ex-

tended to other forms of elementary operators such as the Jordan elementary

operator.

2. We have established the norm of a generalized derivation using finite rank op-

erators and Stampfli’s maximal numerical range. This can still be investigated

under some conditions or special classes of operators.
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