
AN EVALUATIONOF HYBIRDMACHINE LEARNING CLASSIFIER MODELS FOR

IDENTIFICATION OF TERRORIST GROUPS IN THE AFTERMATH OF AN

ATTACK

BY

PETER OPIYO OKETCH

A THESIS SUBMITTEDIN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF A MASTER OF SCIENCE IN INFORMATION

TECHNOLOGY

SCHOOL OF COMPUTING AND INFORMATICS

MASENO UNIVERSITY

©2020

ii

DECLARATION

I declare that this thesis is my original work and that it has not been presented in any other

university, defense panel or institute of higher learning for academic award or any other award.

Peter Opiyo Oketch:

MSC/CI/00110/2014

Signature: __________________________ Date: _________________________

APPROVAL

The undersigned certify that they have read and hereby recommend for acceptance of Maseno

University a thesis entitled “An Evaluation of Hybrid Machine Learning Classifier Models

for identification of Terrorist Groups in the aftermath of an Attack”

Dr. Titus Muhambe Mukisa (PhD)

School of Computing and Informatics, Maseno University

Signature: __________________________ Date: _________________________

Dr. Ratemo Makiya Cyprian (PhD)

Directorate of e-Learning, Kisii University

Signature: __________________________ Date: _________________________

iii

ACKNOWLEDGEMENT

To the Almighty for this great gift of life to accomplish this far I have come.

To my loved ones; family and friends, for their great support and encouragement throughout my

academic years.

To my supervisors Dr. Muhambe & Dr. Ratemo, for their support, guidance, time, and critique

during my research process and the panelists for their positive criticisms thus have led to success

of this research.

I wish to thank the National Consortium for the study of terrorism and response to terrorism

(START) at the University of Maryland for granting access to their database for the purpose of

this research.

To all my classmates who shared ideas and helped during this study, I say thank you.

iv

DEDICATION

This work is dedicated to my Parents.

v

ABSTRACT

Terrorist attacks have globally led to loss of life and property, fear, and general insecurity.

Terrorist acts are planned and perpetrated by collections of loosely organized people operating in

shadowy networks that are difficult to identify. Machine learning classifier algorithms have been

used in accurate identification of terrorist groups and weapon types in India, Egypt, Pakistan, and

United Kingdom. However, the urgency of responding to a terrorist attack and the subsequent

nature of analysis required to identify the terrorist group involved in an attack demands that the

performance of the classifiers yield highly accurate outcomes. The concept of combining

classifier algorithms into hybrid is proposed as a new way of improving the accuracy. To date

there has not been sufficient research that attempts to find combinations of Naïve Bayes, K-

Nearest Neighbor, Decision Trees, Support Vector Machines and Multi-Layer Perceptron as base

classifier algorithm modelsand resample sample size percent for optimum accuracy in the

identification of terrorist groups in the aftermath of an attack. The aim of the study is to build

and evaluate hybrid classifier algorithm models for identification of terrorist groups.

Specifically, it builds and evaluates base classifier algorithm models, builds, and evaluates

hybrid classifier algorithm models by combining and evaluating the base classifier algorithm

models,and compares the performance of the classifier algorithm models. The study adoptsa

randomized block experimental research design using Waikato Environment for Knowledge

Analysis (WEKA) tool for building and evaluating the classifier algorithm models, and 1999-

2017 sub-Sahara terrorist dataset from the Global Terrorist Database (GTD). The features

country, region, attack type, target type, group name and weapon type are ranked highest of 23

attributes of the dataset for identification of the terrorist group name the using WEK Afilter-

based search and ranker routine. Data imbalance in the dataset is addressed by varying resample

sample size percent for optimum performance. The classifier algorithm models were evaluated

and compared on accuracy and build time as performance metrics using 10-fold cross validation,

test split and ANOVA test. The results suggest that hybrid classifier algorithm models yield

higher accuracy rates, accuracy rates for 10-fold cross validation are higher than the rates for test

split and that resample sample size percent as a technique to solve class imbalance affects

accuracy and yields optimum accuracy rates at resample sample size percent of 1000 for the

available dataset. The results show a significant improvement in accuracy between the control

group and the experimental group.The study concludes that hybrid KD (a combination of K-

Nearest Neighbor and Decision trees) outperformed all other classifier algorithm models at

resample sample size percent of 1000 with an accuracy rate of 88.18% and build time of 0.03

seconds for 10- fold cross validation and accuracy rate of 87.66% and build time of 1.03 seconds

for test split in the identification of terrorist groups in the aftermath of an attack for the sub-

Sahara Africa dataset.The study makes contribution by developing a systematic process of

building a hybrid classifier algorithm model and establishing a resample sample size percent of

1000 for optimum accuracy rates for the dataset.

vi

TABLE OF CONTENTS

TITLE PAGE………………………………………………………………………………………i

DECLARATION .. ii

ACKNOWLEDGEMENT ... iii

DEDICATION ... iv

ABSTRACT ...v

TABLE OF CONTENTS ... vi

LIST OF ABBREVIATIONS .. ix

OPERATIONAL DEFINITION OF KEY TERMS ..x

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

LIST OF APPENDICES ..xv

CHAPTER ONE: INTRODUCTION ..1

1.1 Background to the Study ... 1

1.2 Statement of the Problem .. 2

1.3 Purpose of the Study ... 3

1.4 Specific Objectives of the Study ... 3

1.5 Research Questions ... 3

1.6 Significance of the Study .. 3

1.7 Scope and Limitations of the Study .. 4

1.8 Assumptions of the Study ... 4

1.9 Contribution .. 4

CHAPTER TWO: LITERATURE REVIEW ...5

2.1Terrorism and Response to Terrorism ... 5

2.2Machine Learning Methods ... 6

2.2.1Naïve Bayes .. 7

2.2.2 K-Nearest Neighbor ... 8

2.2.3 Decision Trees ... 10

2.2.4 Support Vector Machine .. 12

2.2.5 Multi-Layer Perceptron .. 14

vii

2.2.6 The Concept of Ensemble and Hybrid Machine Learning Models 19

2.2.7 Ensemble Combination Techniques .. 21

2.2.8 Review of Previous works ... 26

2.3 Classifier Algorithm Performance Evaluation and Comparison Metrics 33

2.4 Data Mining Tools .. 35

2.4.1 Waikato Environment for Knowledge Analysis .. 35

2.4.2 Knostanz Information Miner .. 35

2.4.3 Rapid Miner ... 35

2.4.4 Orange .. 36

2.5 Data Mining Methodologies ... 36

2.6 Feature Selection ... 37

2.7Class Imbalance Problem ... 38

2.8 Chapter Summary and Gap ... 39

CHAPTER THREE: RESEARCH METHODOLOGY ...40

3.1Research Design... 40

3.2 Data Mining Methodology and Tools ... 42

3.3 Terrorism Dataset and Collection Methodology... 43

3.4 Data Pre-processing .. 43

3.5 The Flow of Building the Hybrid Classifier Model for Identification of Terrorist groups 45

3.5.1 Build and Evaluate Base Classifier Algorithm Models for Identification of Terrorist Groups

 ... 47

3.5.2 Build and Evaluate Hybrid Classifier algorithm models for Identification of Terrorist

Groups ... 54

3.5.3 The KD Hybrid Architecture ... 58

CHAPTER FOUR: RESULTS & DISCUSSIONS ..60

4.1 Build and Evaluate Base Classifier algorithm models for the Identification of Terrorist Group

 ... 60

4.1.1 Decision Tree ... 60

4.1.2 K-Nearest Neighbor ... 64

4.1.3 Support Vector Machine .. 68

viii

4.1.4 Multi -Layer Perceptron ... 72

4.1.5 Naïve‟ Bayes .. 76

4.2 Build and Evaluate Hybrid Classifier Algorithm Models for the Identification of Terrorist

Groups ... 81

4.2.1 Hybrid KNMSD ... 82

4.2.2 Hybrid KNSD .. 86

4.2.3 Hybrid KND... 90

4.2.4 Hybrid KD ... 94

4.3 ComparePerformance of Classifier Algorithm Models in the Identification of Terrorist

Groups ... 99

4.3.1 Compare Error Rate Percentage and Build Time for 10-Fold Cross Validation 100

4.3.2 Compare Error Rate and Build Time for Test Split ... 104

4.3.3 Statistical Test of Significance for Optimum Accuracy Averages 109

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS112

5.1 Conclusion .. 112

5.2 Recommendation .. 113

5.3 Future Work .. 114

REFERENCES ...115

APPENDICES………………………………………………………………………………....126

ix

LIST OF ABBREVIATIONS

ANN - Artificial Neural Networks

ARFF - Attribute-Related File Format

CRISP-DM - Cross Industry Standard Process for Data Mining

CSV - Comma Separated Values

DM - Data mining

DT - Decision Trees

GTD - Global Terrorism Database

KNN - K-Nearest Neighbor

LR - Logistic Regression

MLP - Multi Layer Perception

NB - Naïve Bayes

ROC - Receiver Operating Characteristic

SVM - Support Vector Machines

WEKA - Waikato Environment for Knowledge Analysis

x

OPERATIONAL DEFINITION OF KEY TERMS

Anti-terrorism: The defensive efforts to reduce vulnerabilities of targets to terrorist

attacks and to lessen the effects of terrorist attacks that do occur.

Building: Refers to Construction, Training, validating, and testing of a

machine learning classifier algorithm.

Classification: Refers to supervised learning approach which specifies the class to

which data elements belong to and is best used when output has

finite and discrete values.

Classifier: Special case of a hypothesis or discrete valued function that is used

to assign categorical class labels to a data point.

Counterterrorism: Offensive and military measures against terrorists to prevent, deter

and respond to terrorist acts.

Hypothesis: A certain function that is believed to be similar to the true function,

the target function to be modeled machine learning classification.

Hybrid/Ensemble: The concept of combining different classifier algorithm families to

improve classification accuracy.

Identification: The act of specifying the class to which a terrorist group belongs

based on known attributes.

Prediction: Refers to the output of an algorithm after it has been trained on

historical dataset and applied to new data when forecasting the

likelihood of a particular income.

Resample : A data-based technique that produces a random sub-sample of

dataset using either sampling with replacement or without

replacement for imbalanced dataset, to achieve oversampling of

the minority class, rather than under sampling of the majority class

xi

Supervised learning A machine learning paradigm where the algorithm learns on a

labeled dataset, providing an answer key that the algorithm can use

to evaluate its accuracy on training data.

Target function: The function to be learnt or approximated in predictive modeling

Training sample: Data point x in an available training set that is used for tackling a

predicting modeling task

Terrorism: Premeditated, ideologically, politically motivated violence

perpetrated against non-combatant targets by sub-national groups

or clandestine agents usually intended to influence an audience.

xii

LIST OF TABLES

Table 4.1: DT Accuracy ...61

Table 4.2: DT build time ..63

Table 4.3: KNN Accuracy ...65

Table 4.4: KNN Build Time ..67

Table 4.5: SVM Accuracy ...69

Table 4.6: SVM build time ..71

Table 4.7: MLP accuracy ...73

Table 4.8: MLP build time ...75

Table 4.9: NB accuracy..77

Table 4.10: NB Build Time ...79

Table 4.11: Hybrid KNMSD accuracy ..83

Table 4.12: Hybrid KNMSD build time ..85

Table 4.13: Hybrid KNSD accuracy ..87

Table 4.14: Hybrid KNSD build time ..89

Table 4.15: Hybrid KND accuracy ..91

Table 4.16: Hybrid KND build time ..93

Table 4.17: Hybrid KD Accuracy ..95

Table 4.18: Hybrid KD Build Time ...97

Table 4.19: 10- fold cross validation percentage error rate comparison101

Table 4.20: Comparison of build time in seconds ...103

Table 4.21: Test split percentage error rate comparison ..105

Table 4.22: Test Split build time Comparison ...107

Table 4.23: 10-fold cross validation optimum accuracy comparison between control and

optimum ...109

Table 4.24: AVOVA test for 10-fold cross validation accuracy ...109

Table 4.25: Test split comparison between control and optimum accuracy110

Table 4.26: ANOVA test for test split ...110

xiii

LIST OF FIGURES

Figure 2.1: KNN model (Bouziane, Messabih, & Chouarfia, 2011) ...9

Figure 2.2: Decision tree model (Chen & Liu, 2010) ..11

Figure 2.3: An example of a two-class problem in a two-dimensional space. (Cortes & Vapnic,

1995). ...13

Figure 2.4: MLP model (Kotsiantis, Zaharakis, & Pinteals, 2004) ...15

Figure 2.5: Concept of Ensemble Classifier (Baba, Makhtar, Fadzili, & Awang, 2015)19

Figure 2.6: CRISP-DM (Rahim, 2014) ..37

Figure 3.1: The hybrid classifier algorithm model process flow ...46

Figure 3.2: NB Configuration setup (author) ...48

Figure 3.3: KNN configuration setup (author) ..49

Figure 3.4: DT (J48) configuration setup (author)...50

Figure 3.5: SVM (SMO) configuration setup (author) ..52

Figure 3.6: MLP (back propagation) configuration setup ...53

Figure 3.7: KNMSD configuration setup (author) ...55

Figure 3.8: KNSD configuration setup (author) ..56

Figure 3.9: KND configuration setup (author) ..57

Figure 3.10: KD configuration setup (author) ...58

Figure 3.11: Architecture of the KD hybrid classifier algorithm model (Author).........................59

Figure 4.1: DT Accuracy ...62

Figure 4.2: DT build time ..64

Figure 4.3: KNN Accuracy ..66

Figure 4.4: KNN build time ...68

Figure 4.5: SVM accuracy ...70

Figure 4.6: SVM build time ...72

Figure 4.7: MLP accuracy..74

Figure 4.8: MLP build time ...76

Figure 4.9: NB accuracy ..78

Figure 4.10: NB build time ..80

Figure 4.11: Hybrid KNMSD Accuracy ..84

Figure 4.12: Hybrid KNMSD build time ...86

xiv

Figure 4.13: Hybrid KNSD Accuracy ...88

Figure 4.14: Hybrid KNSD build time ..90

Figure 4.15: Hybrid KND Accuracy ..92

Figure 4.16: Hybrid KND build time ...94

Figure 4.17: KD accuracy ..96

Figure 4.18: Hybrid KD build time..98

Figure 4.19: 10-fold cross validation error rate comparison ..102

Figure 4.20: 10-fold cross build time comparison ...104

Figure 4.21: Test Split Error rate comparison ...106

Figure 4.22: Test split build time comparison ...108

xv

LIST OF APPENDICES

Appendix A: SGS Approval ..126

Appendix B: MUERC Approval ..127

Appendix C: NACOSTI Approval...128

Appendix D: GTD Distribution Letter ...129

Appendix E: Sample Dataset ...130

Appendix F: WEKA URL ...131

1

CHAPTER ONE

INTRODUCTION

This chapter consists of background to the study, statement of the problem, purpose of the

study, specific objectives, research questions, significance of the study, scope and limitations,

assumptions of the study and ethical considerations.

1.1 Background to the Study

According to the Global Terrorism Index (2018), there has been a continued rise of terrorism

which is a serious concern. Terrorist groups with time have continued to expand into other

countries for instance, the Islamic state of Iraq and the Levant (ISIL) and its affiliates have

expanded into 15 new countries. More so, Boko Haram which was formerly in Nigeria is also

currently in Niger, Cameroon, and Chad. Other countries that have also been affected by

terrorism over the past years are UK, USA, Turkey, France, Afghanistan, Syria, Iraq, India,

Pakistan, Central Africa Republic, Somalia, Sudan, and Kenya to mention a few.

Consequently, terrorist attacks and activities have globally led to rise in loss of life and

property, fear, and general insecurity. Terrorist acts are planned and perpetrated by

collections of loosely organized people operating in shadowy networks that are difficult to

define and identify. Terrorism is considered a low-intensity form of warfare; however,

terrorist plots and activities will leave an information signature, albeit not one that is easily

detected (Popp, Armour , Senator, & Numrych, 2004).There is need to develop more accurate

mechanisms of identifying terrorist groups. Data mining and automated data analysis

techniques have become used as effective branch of the most important key features for many

applications, data mining has a wide number of applications ranging from marketing and

advertising of goods, services or products, artificial intelligence research, biological sciences,

crime investigations to high-level government intelligence (Kalpana & Bansa, 2014).

Recently there has been much concern on using data mining in detecting and investigating

unusual patterns, crimes, terrorist activities and preventing the fraudulent behavior (Prasad,

Sonali, & Sonali, 2014), some of different techniques used in that regard are entity extraction,

clustering techniques, deviation detection, classification techniques, string comparator, and

social network (Osemengbe & Uddin, 2014). Data mining, Sentiment analysis, text mining,

machine learning techniques and predictive analytics are some of methodologies being used

to identify and combat terrorism (Foster, 2017).The serious consequences of acts of terrorism

and the difficulty in identifying the culprits has necessitated the need to improve on

counterterrorism interventions.

2

The concept of combing classifier algorithms is proposed as a new direction for the

improvement of the performance of individual machine learning algorithms(Kuncheva &

Whitaker, 2003). Multiple, ensemble learning models have been theoretically and empirically

shown to provide significantly better performance than single weak learners, especially while

dealing with high dimensional, complex regression and classification problems. Hybrid

classifier systems are ensemble classifiers that combine, and integrate different standard

machine learning algorithms, resulting in improved performance, and more adaptivity

(Kainulainen, 2010). For that reason, hybrid methods have found application in various real-

world problems ranging from pattern recognition, medical diagnosis, financial forecasting,

weather prediction as well as terrorism prediction (Pillry & Sikchi, 2014). Thus, active area

of research in supervised learning is the study methods for the construction of good

ensembles of classifiers(Villada & Drissi, 2002).The performance of hybrid/ensemble

depends on accuracy of base classifiers, diversity among the base classifiers, decision making

strategy(aggregation technique) and the number of the base classifiers among other

factors(Vladislav, 2014).

While there has been previous work on evaluation of hybrid classifiers in identification of

terrorist groups, no sufficient research has been conducted to determine the combinations of

diverse classifier algorithms K-nearest Neighbor (KNN), Naïve Bayes (NB), Decision Trees

(DT), Support Vector Machines (SVM), Multi-Layer Perceptron (MLP) and resample sample

size percent that would yield optimum accuracy estimates. The need to build and evaluate

hybrid machine learning classifier models becomes imperative with class imbalanced

datasets. Class imbalance leads to class imbalance problem.

1.2 Statement of the Problem

The urgency of responding to a terrorist attack and the subsequent nature of analysis required

to identify the group involved in the attack demands that the performance of machine

learning classifier algorithms used in identification of the terrorist groups yield highly

accurate outcomes. A strong case can be made for combining models across algorithm

families as a means of improving performance. To date there has not been sufficient research

that attempts to find combinations of KNN, DT, MLP, SVM and NB and resample sample

size percent for better accuracy in the identification of terrorist groups in the aftermath of an

attack. It is equally important to understand the hybrid component classifier algorithms and

the correlation between resample sample size percent and performance.

3

1.3 Purpose of the Study

The aim of the study was to build and evaluate hybrid classifier algorithms for identification

of terrorist groups in the aftermath of an attack.

1.4 Specific Objectives of the Study

The specific objectives of the study were:

i. To build base classifier algorithm models for identification of terrorist groups in the

aftermath of an attack.

ii. To evaluate base classifier algorithm models of terrorist groups in the aftermath of an

attack.

iii. To build hybrid classifier algorithm models of terrorist groups in the aftermath of an

attack.

iv. To evaluate hybrid classifier algorithm models of terrorist groups in the aftermath of

an attack

v. To compare the performance of the classifier algorithm models of terrorist groups in

the aftermath of an attack.

1.5 Research Questions

To achieve the objectives, the following research questions were answered:

i. What approach can be used to build and evaluate base classifier algorithm models of

terrorist groups in the aftermath of an attack?

ii. What approach can be used to build and evaluate hybrid classifier algorithm models

of terrorist groups in the aftermath of an attack?

iii. What are the outcomes of analysis of performance of classifier algorithm models of

terrorist groups in the aftermath of an attack?

1.6 Significance of the Study

The study is important to law enforcement community in improving performance of their

data mining tools and thus better response to terror attacks. The study is important to the

researchers as it lays foundation for further research in hybrid machine learning approaches.

4

1.7 Scope and Limitations of the Study

The scope of study was to build and evaluate a hybrid machine learning classifier algorithm

for optimum accuracy from combinations of KNN, DT, MLP, SVM, & NB using bagging

and majority voting combination approach and evaluate the effects of resample sample seize

percent on the accuracy. The generalizability of the study results is limited to machine

learning classifier algorithms KNN, DT, NB, SVM, and MLP; Bagging and majority voting

as the combination technique; the available dataset for sub-Saharan Africa; accuracy and

build time as the performance measure metrics.

1.8 Assumptions of the Study

The researcher assumed that Global terrorism database (GTD) is a credible data source for

terrorism related research activities.

1.9 Contribution

The study makes the following contributions:

i. Methodological contribution by developing a systematic process of building a hybrid

machine learning classifier algorithm model for better accuracy.

ii. Theoretical contribution by establishing a combination and resample sample size

percent of base classifiers for better identification accuracy.

iii. Policy and practice by developing hybrid architecture for better accuracy in

identification of terrorist group provides can be used in improving policy and practice

on counter terrorism efforts.

5

CHAPTER TWO

LITERATURE REVIEW

This chapter consists reviews literature on terrorism and counterterrorism, machine learning

methods, ensemble learning concepts, ensemble techniques, related literature, cross

validation, classifier algorithm performance evaluation and comparison metrics, data mining

tools, data mining methodologies, feature selection, class imbalance problem and summary

and gap.

2.1Terrorism and Response to Terrorism

Terrorism is one of the major threats to human life in the 21
st
 Century. It is instigated by the

emergence of extremists who propagate use of violence with the intention of causing mass

fatalities and casualties. As destructive activity that destroys property, and causes human

casualties and fatalities, terrorism has obvious economic impacts and consequences for

countries in general (Barth, Tong, McCarthy, Phumiwasana, & Yago, 2006). According to

the Global Terrorism Index there has been a continued rise in terrorism (GTI, 2018) which is

a cause for serious concern today. Terrorist groups with time have managed to expand into

other countries for instance; the Islamic State of Iraq and the Levant (ISIL) and its affiliates

have expanded into 15 new countries. More so, Boko Haram which was formerly in Nigeria

is also currently in Niger, Cameroon, and Chad. This has consequently resulted in more

terrorist attacks and activities globally leading to rise in insecurity, fear and a higher

perceived risk of terrorism (Foster, 2017).

According to Magogo, a terrorist carried an attack in Spain by ploughing a van into crowds

and thus killing people. In Germany, July 2016, in separate incidences; a man blew himself

up, an Iranian German shot people, while another terrorist hacked passengers in a train. In

France on the 14
th

 July 2016, a terrorist in a lorry mowed down revelers on Bastille Day, in

another attack on January 7
th

, 2015 in the Charlie Hebdo attack, two gunmen carried out an

attack on the French satirical weekly Newspaper, Charlie Hebdo, in Paris killing and injuring

many. These attacks were by such Islamic militant terror groups such as Al-Qaeda, ISIS, and

others were by Muslim individuals labelled as terrorists. In the USA apart from the 11

September 2001 attack which brought attention to terrorism in the world, there have been

shooting attacks, bombings, stabbings and vehicle attacks on people(Magogo, 2017). Africa

as a continent is no exception to terrorism as the terror attacks by radical groups increased

6

immensely. While Global terror groups such as the Islamic State of Iraq and Syria (ISIS) and

Al-Qaeda have made their presence felt in the region, other local groups are Boko Haram and

Al-Shabaab. Boko haram has claimed over 20,000 lives, displaced 2.6 million people, created

over 75,000 orphans and caused unimaginable damage financially(Barth, Tong, McCarthy,

Phumiwasana, & Yago, 2006).Counter terrorism measures have been put in place over time

to prevent and respond to terrorist activities. Accurate identification of terrorist groups

immediately after an attack is one of the most important steps for counter terrorism

interventions. As soon as the group name involved is found, responders are able to develop

effective strategies to catch the culprits (Robert & Johnson, 2016). Technology has been

employed in countering terrorism with the aim of improving the effectiveness of

counterterrorism interventions (Popp, Armour , Senator, & Numrych, 2004).

By utilizing emerging technologies to collect and effectively analyze intelligence, law

enforcement are able to better understand how the enemy operates, or plans to operate, as

well as identify possible threats before an attack occurs(Hongbo, 2010). The use of predictive

analytics can assist in providing law enforcement with information to better prevent, prepare

for, and recover from an all-hazards event. While this technology was originally developed

for private sector use, a partnership with the law enforcement community can help develop a

process and procedure to use predictive analytics to better safeguard against terrorist-related

threats(Isson, 2012). Employment of machine learning algorithms is the conspicuous

approach in data mining to generate better performing predictive models for improved

counter terrorism response.

2.2Machine Learning Methods

Machine learning is a data mining Technique. The main goal of data mining is to extract

useful, hidden predictive knowledge from large data sets in a human understandable

structure. It involves database, data management and pre-processing tools, model and

interface capabilities, post-processing of discovered structure, visualization, and online

updating methods for finding hidden patterns, and predictive information that experts may

miss because it lies outside their expectations. Machine learning can be either supervised

learning, unsupervised or reinforcement learning. Machine learning models can be classified

as parametric or nonparametric; parametric models operate within a fixed number of

parameters regardless of data growth and make particular assumptions about data based on

parameter characteristics, whereas nonparametric models can adapt and grow with an

7

increase in data size and do not make any assumptions of raw data (Hongbo, 2010).

Supervised learning is one of the sub-disciplines of Machine Learning. In supervised learning

we are in search for the optimized function (a.k.a. model) to map input features to an output.

And to find that optimized function we have a set of data with all the features and the outputs

in our hands. By learning or finding the patterns from this data, we get the mapping function.

Supervised learning branches to two sub-parts depending on the output property. If we are

searching for a group, category or class it is called classification; or if we are looking for a

value (usually continuous) then it is called regression(Rizwan, Masrah, Aida, Payam, &

Nasim, 2013).Classification is used to predict the categorical class label of a given data

instance, so as to classify it into one of the predetermined classes. It is a two-step process, in

first step classification algorithm uses training dataset to build a classifier, and then in second

step this classifier is used to predict the class label of a given unlabelled data instance

(Verma, 2019) The resulting classifier is then used to assign class labels to the testing

instances where the values of the predictor features are known, and the value class label is

unknown. The input data for the classification is a set of instances. Each instance is a record

of data in the form of (x, y) where x is the features set and y is the target variable (class

label). A classification equation can be expressed as follows:

 Y=f(x)………………………………….2.1

 Where Y is the output, f is the prediction function and (x) features

The key question when dealing with classification is not whether a learning algorithm is

superior to others, but under which conditions a particular method can significantly

outperform others on a given application problem (Kotsiantis, Zaharakis, & Pinteals,

2004).There are various classification approaches proposed by the researchers in machine

learning, statistics, and pattern recognition (Jantan, Hamdan, & Othman, 2009).These

approaches are Naïve Bayes, K-Nearest Neighbor, Decision Trees, Multi-Layer Perceptron,

Support Vector Machine and Hybrid Classifiers (Ozekes & Osman, 2003).

2.2.1Naïve Bayes

Naive Bayes „classification algorithm is based on Bayes‟ Theorem of Posterior Probability.

This algorithm works by predicting probability that a given data instance belongs to a

particular class. The probability that a given data vector is in class C, is called posterior

8

probability and is denoted by P (C|X).Finally, Maximum a posteriori hypothesis is

applied(Verma, 2018).

P(c|x)=(P(x|c)P(c))/P(x)…………………………….2.2

Where P (c|x) is the posterior probability, P(x|c) is the likelihood, P(c) is the class prior

probability, and P(x), is the predictor prior probability. Bayes theorem provides a way of

calculating the posterior probability, P(c|x), from P(c), P(x), and P(x|c). Naive Bayes

classifier considers that the effect of the value of a predictor (x) on a given class (c) is

independent of the values of other predictors. Naïve Bayes assumes that descriptive attributes

are conditionally independent of each other given the class label is known; in other words,

Bayesian Classifiers have the ability to predict the probability that a given tuple belongs to a

particular class(Hongbo, 2010). Practically there are some complexities with Bayesian

Classifier for instance, it requires prior information of probabilities and in absence of that

they are frequently predicted on the basis of background knowledge and earlier available data

about original distributions (Mitchel, 1997). The other complexity is the computational cost

that is required to find out the Bayes finest hypothesis in common case, but in certain cases

this cost could be minimized. The Advantages of Naïve Bayes Classifier are it proves success

in solving different classification tasks effectively, as it is robust to isolated noisy data, and

also robust against irrelevant attributes. The Naïve Bayes method can also cope with null

values (Batch & Aravindan, 2011).

2.2.2 K-Nearest Neighbor

K-Nearest Neighbor (KNN) Classifier algorithm is one of the top ten algorithms used for the

classification and regression. It is, also known as lazy learner or instance-based, in that it

stores all of the training samples and do not build a classifier until a new sample needed to be

classified that makes predictions based on KNN labels assigned to test sample(Breiman,

2001). KNN is based on is based on the principle that the instances within a dataset will

generally exist in close proximity to other instances that have similar properties as shown in

fig.2.1. If the instances are tagged with a classification label, then the value of the label of an

unclassified instance can be determined by observing the class of its nearest neighbours. The

KNN locates the k nearest instances to the query instance and determines its class by

identifying the single most frequent class label. For more accurate results, several algorithms

9

use weighting schemes that alter the distance measurements and voting influence of each

instance.

Figure 2.1: KNN model (Bouziane, Messabih, & Chouarfia, 2011)

A survey of weighting schemes is given by (Wettschereck, Aha, & Mohrit, 1997). The power

of KNN has been demonstrated in a number of real domains, but there are some reservations

about the usefulness of KNN, such as: they have large storage requirements, they are

sensitive to the choice of the similarity function that is used to compare instances, and they

lack a principled way to choose k, except through cross-validation or similar,

computationally-expensive technique (Guo, Wang, Bell, & Greer, 2003). The choice of k

affects the performance of the KNN algorithm. Consider the following reasons why a k

nearest Neighbour classifier might incorrectly classify a query instance: When noise is

present in the locality of the query instance, the noisy instance(s) win the majority vote,

resulting in the incorrect class being predicted. A larger k could solve this problem; When the

region defining the class, or fragment of the class, is so small that instances belonging to the

class that surrounds the fragment win the majority vote. A smaller k could solve this problem.

Breiman reported that the stability of nearest neighbor classifiers distinguishes them from

decision trees and some kinds of neural networks (Breiman, 1996). A learning method is

termed “unstable” if small changes in the training-test set split can result in large changes in

the resulting classifier. A major disadvantage of instance-based classifiers is their large

computational time for classification. A key issue in many applications is to determine which

of the available input features should be used in modeling via feature selection (Yu & Liu,

2002), because it could improve the classification accuracy and scale down the required

10

classification time. Furthermore, choosing a more suitable distance metric for the specific

dataset can improve the accuracy of instance-based classifiers. KNN is implemented in

algorithm below.

KNN implementation algorithm (Kotsiantis, 2007)

Function KNN (train_patterns, train_targets, test_patterns)

end

Uc-a set of unique labels of train-targets;

N-size of test patterns

For i =1…N,

dist:=EQ-Dist(train-patterns,test-patterns(i))

idxs:=sort(dist)

topk Classes:=train_targets (idxs(1:Knn))

cls:=Dominating Class(topk Classes)

test-targets (i):=cls

2.2.3 Decision Trees

A Decision Tree Classifier consists of a decision tree generated on the basis of instances. A

decision tree is a classifier expressed as a recursive partition of the instance space. The

decision tree (Chen & Liu, 2010) consists of nodes that form a rooted tree, meaning it is a

directed tree with a node called “root” that has no incoming edges. All other nodes have

exactly one incoming edge. A node with outgoing edges is called an internal or test node. All

other nodes are called leaves (also known as terminal or decision nodes) as shown in fig. 2.2.

In a decision tree, each internal node splits the instance space into two or more sub-spaces a

certain discrete function of the input attributes values. The root and the internal nodes are

associated with attributes, leaf nodes are associated with classes. Basically, each non-leaf

node has an outgoing branch for each possible value of the attribute associated with the node.

To determine the class for a new instance using a decision tree, beginning with the root,

successive internal nodes are visited until a leaf node is reached. At the root node and at each

internal node, a test is applied. The outcome of the test determines the branch traversed, and

the next node visited. The class for the instance is the class of the final leaf node. The

estimation criterion in the decision tree algorithm is the selection of an attribute to test at each

decision node in the tree. The goal is to select the attribute that is most useful for classifying

examples (Kotsiantis, Zaharakis, & Pinteals, 2004). A good quantitative measure of the worth

11

of an attribute is a statistical property called information gain that measures how well a given

attribute separates the training examples according to their target classification. This measure

is used to select among the candidate attributes at each step while growing the tree.

Figure 2.2: Decision tree model (Chen & Liu, 2010)

Decision tree implementation algorithm (Kotsiantis, Zaharakis, & Pinteals, 2004)

Function DTL (examples, attributes, default) returns a decision tree

if examples is empty then return default

else if all examples have the same classification then return the classification

else if attributes is empty then return MODE(examples)

else

 best←CHOOSE-ATTRIBUTE (attributes, examples)

tree← a new decision tree with root test best

for each value viof best do

examplesi←{ elements of examples with best =vi}

subtree←DTL (examplesi, attributes-best, MODE (examples))

add a branch to tree with label viand subtree subtree

return tree

Decision Trees (DT) are predictive decision support tools that create mapping from

observations to possible consequences, a statistical data mining technique that express

independent and dependent attributes logically and, in a tree, shaped structure(Sohini &

12

Shaikh, 2014). As a major approach decision tree induction has received a great attention

from researchers in the last two decades, as a result there are a number of decision tree

induction methods have been developed such as ID3, C4.5, C5, C&RT, and CHAID(Hongbo,

2010). The strengths of DT are it assigns a class label to an unseen record, as well as explains

why the decision is made in an easy-to-understand classification rule. DT classifies unseen

records efficiently, and it can handle both categorical and continuous attributes, the attribute

selection measures used by DT induction method are capable of indicating the most

important attribute in relation to class. The researchers mentioned the weaknesses points of

DT; it has high error rates when the training set contains a small number of instances of a

large variety of different classes, DT algorithm may not work well on data sets when attribute

split in any other shape exist. DT are automatically quite expensive to build.ID3 is one of the

popular DT algorithms that deal with nominal data sets and does not deal with missing

values(Kalpana & Bansa, 2014).ID3 is the classical version of the decision tree induction. It

mainly works on the selections of attributes at all the levels of decision tree that is based on

information entropy(Farysal, Wasi, & Usman, 2014).This algorithms is a good selection

where the research needs accuracy as it improves the accuracy and speed of classification; it

is helpful when dealing with a large scale problem. Furthermore, it has some other

weaknesses such as; it does not have the quality of backtracking during the search, and it is

sensitive to noise (Chen & Liu, 2010).

2.2.4 Support Vector Machine

SVMs revolve around the notion of a “margin”—either side of a hyper-plane that separates

two data classes as shown in fig. 2.3. Maximizing the margin and thereby creating the largest

possible distance between the separating hyper-plane and the instances on either side of it has

been proven to reduce an upper bound on the expected generalization error. In the case of

linearly separable data, once the optimum separating hyper-plane is found, data points that lie

on its margin are known as support vector points and the solution is represented as a linear

combination of only these points. Other data points are ignored.

13

Figure 2.3: An example of a two-class problem in a two-dimensional space. The support

vectors are marked with grey squares(Cortes & Vapnic, 1995).

Therefore, the model complexity of an SVM is unaffected by the number of features

encountered in the training data (the number of support vectors selected by the SVM learning

algorithm is generally small). For this reason, SVMs are well suited to deal with learning

tasks where the number of features is large with respect to the number of training instances.

Even though the maximum margin allows the SVM to select among multiple candidate

hyper-planes, for many datasets, the SVM may not be able to find any separating hyper-plane

at all because the data contains misclassified instances. The problem can be addressed by

using a soft margin that accepts some misclassifications of the training instances

(Veropoulos, Campbell, & Cristianini, 1999). Nevertheless, most real-world problems

involve non-separable data for which no hyper-plane exists that successfully separates the

positive from negative instances in the training set. One solution to the inseparability problem

is to map the data onto a higher-dimensional space and define a separating hyper-plane there.

This higher-dimensional space is called the feature space, as opposed to the input space

occupied by the training instances. With an appropriately chosen feature space of sufficient

dimensionality, any consistent training set can be made separable. A linear separation in

feature space corresponds to a non-linear separation in the original input space. Mapping the

14

data to some other (possibly infinite dimensional) Hilbert space . Then the

training algorithm would only depend on the data through dot products in H, i.e., on functions

of the form . If there were a “kernel function” K such that K (xi , x j) =

, we would only need to use K in the training algorithm and would never need to

explicitly determine .Thus, kernels are a special class of function that allow inner products

to be calculated directly in feature space, without performing the mapping described above

(Scholkopf, Burges, & Smola, 1999).Once a hyper-plane has been created, the kernel

function is used to map new points into the feature space for classification. The selection of

an appropriate kernel function is important, since the kernel function defines the feature space

in which the training set instances will be classified. Gentondescribed several classes of

kernels, however, he did not address the question of which class is best suited to a given

problem. It is common practice to estimate a range of potential settings and use cross-

validation over the training set to find the best one. For this reason, a limitation of SVMs is

the low speed of the training. Training the SVM is done by solving Nth dimensional

Quadratic Programming (QP) problem, where N is the number of samples in the training

dataset. Solving this problem in standard QP methods involves large matrix operations, as

well as time-consuming numerical computations, and is mostly slow and impractical for large

problems. Sequential Minimal Optimization (SMO) is a simple algorithm that can, relatively

quickly, solve the SVM QP problem without any extra matrix storage and without using

numerical QP optimization steps at all (Platt, 1999). SMO decomposes the overall QP

problem into QP sub-problems. The training optimization problem of the SVM necessarily

reaches a global minimum, and avoids ending in a local minimum, which may happen in

other search algorithms such as neural networks. However, the SVM methods are binary, thus

in the case of multiclass problem one must reduce the problem to a set of multiple binary

classification problems. Discrete data presents another problem, although with suitable

rescaling good results can be obtained (Keerthi & Gilbert, 2002).

2.2.5 Multi-Layer Perceptron

A multi-layer neural network consists of large number of units (neurons) joined together in a

pattern of connections as shown in fig. 2.4. Units in a net are usually segregated into three

classes: input units, which receive information to be processed; output units, where the results

of the processing are found; and units in between known as hidden units. Feed-forward

Artificial Neural Networks (ANNs) (Figure2.4) allow signals to travel one way only, from

input to output.

15

Figure 2.4: MLP model (Kotsiantis, Zaharakis, & Pinteals, 2004)

Generally, properly determining the size of the hidden layer is a problem, because an

underestimate of the number of neurons can lead to poor approximation and generalization

capabilities, while excessive nodes can result in overfitting and eventually make the search

for the global optimum more difficult(Camargo & Yoneyama, 2001). ANN depends upon

three fundamental aspects, input and activation functions of the unit, network architecture and

the weight of each input connection. Given that the first two aspects are fixed, the behavior of

the ANN is defined by the current values of the weights. The weights of the net to be trained

are initially set to random values, and then instances of the training set are repeatedly exposed

to the net. The values for the input of an instance are placed on the input units and the output

of the net is compared with the desired output for this instance. Then, all the weights in the

net are adjusted slightly in the direction that would bring the output values of the net closer to

the values for the desired output (Kon & Plaskota, 2000). There are several algorithms with

which a network can be trained (Neocleous & Schizas, 2002).However, the most well-known

and widely used learning algorithm to estimate the values of the weights is the Back

Propagation (BP) algorithm. The general rule for updating weights is:

…………………………………………………..2.3

where:

16

• η is a positive number (called learning rate), which determines the step size in the gradient

descent search. A large value enables back propagation to move faster to the target weight

configuration, but it also increases the chance of its never reaching this target.

• Oi is the output computed by neuron I,

• δ j = Oj (1 − Oj)(Tj− Oj) for the output neurons, where Tj is the wanted output for the

neuron j and,

• δ j = Oj (1 − Oj)_k δkWk j for the internal (hidden) neurons.

During classification, the signal at the input units propagates all the way through the net to

determine the activation values at all the output units. Each input unit has an activation value

that represents some feature external to the net. Then, every input unit sends its activation

value to each of the hidden units to which it is connected. Each of these hidden units

calculates its own activation value and this signal are then passed on to output units. The

activation value for each receiving unit is calculated according to a simple activation

function. The function sums together the contributions of all sending units, where the

contribution of a unit is defined as the weight of the connection between the sending and

receiving units multiplied by the sending unit‟s activation value. This sum is usually then

further modified, for example, by adjusting the activation sum to a value between 0 and 1

and/or by setting the activation value to zero unless a threshold level for that sum is reached.

Feed-forward neural networks are usually trained by the original back propagation algorithm

or by some variant. Their greatest problem is that they are too slow for most applications.

One of the approaches to speed up the training rate is to estimate optimal initial weights

(Yam & Chow, 2001). Genetic algorithms have been used to train the weights of neural

networks (Siddique & Tokhi, 2001)and to find the architecture of neural networks (Yen &

LU, 2000). There are also Bayesian methods in existence which attempt to train neural

networks. Vivarelli and Williams compare two Bayesian methods for training neural

networks. A number of other techniques have emerged recently which attempt to improve

ANNs training algorithms by changing the architecture of the networks as training proceeds

(Vivarelli & Williams, 2001). These techniques include pruning useless nodes or weights

(Castellano, Fanelli, & Pelillo, 1997), and constructive algorithms, where extra nodes are

added as required (Parekh, Yang, & Honavar, 2000).ANN learning can be achieved, among

others, through synaptic weight modification, network structure modifications (creating or

deleting neurons or synaptic connections), use of suitable attractors or other suitable stable

17

state points, and appropriate choice of activation functions. Since back-propagation training

is a gradient descending process, it may get stuck in local minima in this weight-space. It is

because of this possibility that neural network models are characterized by high variance and

unsteadiness. Radial Basis Function (RBF) networks have been also widely applied in many

science and engineering fields (Robert & Howlet, 2001). An RBF network is a three-layer

feedback network, in which each hidden unit implements a radial activation function and

each output unit implements a weighted sum of hidden units‟ outputs. Its training procedure

is usually divided into two stages. First, the centers and widths of the hidden layer are

determined by clustering algorithms. Second, the weights connecting the hidden layer with

the output layer are determined by Singular Value Decomposition (SVD) or Least Mean

Squared (LMS) algorithms. The problem of selecting the appropriate number of basis

functions remains acritical issue for RBF networks. The number of basis functions controls

the complexity and the generalization ability of RBF networks. RBF networks with too few

basis functions cannot fit the training data adequately due to limited flexibility. On the other

hand, those with too many basis functions yield poor generalization abilities since they are

too flexible and erroneously fit the noise in the training data. To sum up, ANNs have been

applied to many real-world problems but still, their most striking disadvantage is their lack of

ability to reason about their output in a way that can be effectively communicated. For this

reason, many researchers have tried to address the issue of improving the comprehensibility

of neural networks, where the most attractive solution is to extract symbolic rules from

trained neural networks. Setiono and Loew divided the activation values of relevant hidden

units into two sub-intervals and then found the set of relevant connections of those relevant

units to construct rules (Setiono & Loew, 2000). However, it is also worth mentioning that

Roy identified the conflict between the idea of rule extraction and traditional connectionism

(Roy, 2000). In detail, the idea of rule extraction from a neural network involves certain

procedures, specifically the reading of parameters from a network, which is not allowed by

the traditional connectionist framework that these neural networks are based on. Neural

networks are usually more able to easily provide incremental learning than decision trees

(Saad, 1998).

MLP back propagation implementation algorithm (Kotsiantis, 2007)

Neural network learning for classification or

prediction using the back propagation:

18

Input: D, a data set consisting of the training tuples and

their associated target values; 1, the learning rate;

Network: A multiplayer feed-forward network.

Output: A trained neural network.

Method:

Initialize all weights and biases in network;

 While terminating condition is not satisfied{

 for each training tuple X in D

 {

//Propagate the inputs forward:

 for each input layer unit j

{

Oj= Ij; //output of an input unit is its actual value

 for each hidden or ouput layer unit j

{

Ij=∑iWijOi+qj//compute the net input of unit j with

 respect to the previous layer, i

Oj=1/1+e
-1

j;

 }

 // compute the output of each unit j

//Backpropagate the errors:

for each unit j in output layer

Err j=Oj(1-Oj)(Tj-Oj); //compute the error

for each unit j in the hidden layers, from the last to the

first hidden layer

Errj=Oj(1-Oj)∑kErrkWjk;//compute the error with

respect to the next higher layer, k

19

for each weight wi j in network

{

ΔWij=(1)Err jOi;//weight increment

Wij=Wij+ΔWij; g//weight update

for each bias ϴj in network

 {

Δϴj=(1)Err j;//bias increment

ϴj=ϴj+Δϴj;} bias update

}}

2.2.6 The Concept of Ensemble and Hybrid Machine Learning Models

Ensemble learning is a machine learning discipline in which many base classifiers are trained

on given datasets in order to provide a solution to given problems (Hui, 2013),(Tao,

2003),(Zhou & Tang, 2003),(Dietterich, 2000). An ensemble consists of a group of base

classifiers that are trained (such as neural networks or decision trees), whose decisions are

integrated for classifying new instances (Dietterich, 2000). It is sometimes referred to as a

mixture of experts (Ricardo, 2014)(Polikar, 2012), committees (Santana, Siva, Canuto,

Pintro, & Vale, 2010), multi-classifier systems, fusion of experts (Neto & Canuto, 2004),

selection or thinning (Banfielf, Hall, Bowyer, & Kegelmeyer, 2002). The main aim of

ensemble method is to integrate a set of models that are used for solving different tasks so as

to come up with enhanced composite global model which produces higher accuracy and

reliable estimate than what can be achieved through a single model (Quinlan, 1996),(Optiz &

Maclin, 1999),(Kuncheva & Whitaker, 2003)].

Figure 2.5: Concept of Ensemble Classifier (Baba, Makhtar, Fadzili, & Awang, 2015)

20

In fig. 2.5, data is fed into various classifiers, different outputs were obtained, and they are

then combined into a single output by the combiner. The method falls into two categories,

namely homogeneous and heterogeneous ensemble; if the ensemble is made up of the same

type of learning algorithm, say neural network, then it is called homogeneous, but if it is

made up of more than one different learning algorithm, for example, neural network and

decision trees, then it is referred to as heterogeneous (Kuncheva & Whitaker, 2003),(Santana,

Siva, Canuto, Pintro, & Vale, 2010). However, when ensemble is built with models that are

homogeneous, neither high accuracy nor diversity would make the ensemble obtain higher

accuracy than the individual classifiers (Wang, 2010). Ensemble method is chosen because it

has been proven that it produces more accurate results than when a single model is used to

solve the same problem (Dietterich, 2000). Ensemble technology was introduced to the area

of data classification and has since obtained great success. In order to achieve great success

with the ensemble method, two criteria are taken into consideration, which are that the

ensemble should have enough diversity introduced into it, and secondly, a suitable integrated

method must be chosen in order to combine the decision of the base classifiers to a single

output. The term diversity refers to the fact that indicates that the base classifiers errors are

uncorrelated. Diversity is typically considered as a quantified estimation of the distinction of

making the same errors among models in an ensemble (Wang, 2008) or it can simply be put

as the difference between base classifiers in the ensemble(Wang & Yao, 2013). It is grouped

into two: pairwise and non-pairwise (Kuncheva, 2005), (Kuncheva & Whitaker, 2003). Their

examples can be found in literatures (Kuncheva & Whitaker, 2003), (Tang, Suganthan, &

Yao, 2006) such as entropy, double default measure and Q-statistic to generalize diversity

measures. However, the pairwise has the drawback of not having effectiveness in measuring

diversity and shows no or little relation with the accuracy of the ensemble because it only

considers the difference of two models and hence, they are not valuable. Others split diversity

into destructive and constructive or negative and positive diversity (Wang, 2008).

Combination or integration method is used to combine the output of the base classifiers in the

ensemble. They are categorized differently in the literature, such as fusion, selection, and

hybrid (Santana, Siva, Canuto, Pintro, & Vale, 2010), static and adaptive (Ricardo, 2014),

utility-based and evidence-based (Ghosh, NG, & Srinivasan, 2011), evidence, fusion, genetic

algorithm, and voting based aggregation techniques (Asmita & Shukla, 2014). Fusion based

methods are the ones in which all classifiers are assumed to be of equal experience in the

whole feature space, and all classifier‟s decision are considered for any given input pattern.

Examples are sum, majority voting, naïve Bayesian, neural networks, fuzzy neural networks,

21

and fuzzy connectives, among others. For selection based methods, only one classifier is

needed to classify the input pattern correctly, for example, dynamic classifier selection, as

suggested in (Kuncheva, 2004), is one of the main methods. Hybrid Methods combine both

selection and fusion techniques to provide the most suitable output to classify the input

pattern. The main idea is to use selection only, and only if the best classifier is good enough

to classify the test pattern, otherwise, a combination method is used. Examples are dynamic

classifier selection based on multiple classifier behavior and dynamic classifier selection

based on decision templates (Kuncheva, 2004). Static combiners are independent of the

feature vector. They are further subdivided into trainable and nontrainable. The trainable

combiner undergoes individual training phase to increase the ensemble performance, e.g.

weighted averaging, and stacked generalization. Non-trainable performs voting independently

of the performance. Examples are: Borda count, averaging and voting. Adaptive means

individual experts only need to perform well in their region of expertise and not on all inputs,

e.g. a mixture of experts and hierarchical mixture of experts. Utility-based is the type that

does not make use of prior knowledge or evidence to make decisions, e.g. simple averaging,

voting techniques while decision-based are the ones that use previous evidence to make

decision, for example, Dempster-Shafer theory of evidence (Shafer, 1976).Other researchers

suggest that the performance of the ensembles depends on two properties, which are the

individual success of the base classifiers of the ensemble and the independence of the base

classifier‟s results from each other (Brown, Wyatt, & Tino, 2005). Another researcher

suggests that the accuracy of individual models, diversity among the individual models,

decision making strategy, and number of base classifiers used for constructing an ensemble

(Makhtar, Yang, Neagu, & Ridley, 2012),(Wang, 2008) are among the factors responsible for

the success of an ensemble. Ensemble methods had been widely applied in many fields such

as web ranking algorithm, classification and clustering, time series and regression problems,

and water quality application, among others (Baba, Makhtar, Fadzili, & Awang, 2015).

2.2.7 Ensemble Combination Techniques

Numerous methods have been suggested for the creation of ensemble of

classifiers(Dietterich, 2000). Although or perhaps because many methods of ensemble

creation have been proposed, there is as yet no clear picture of which method is best (Villada

& Drissi, 2002). Thus, an active area of research in supervised learning is the study of

methods for the construction of good ensembles of classifiers. Mechanisms that are used to

build ensemble of classifiers include: using different subsets of training data with a single

22

learning method, using different training parameters with a single training method (e.g., using

different initial weights for each neural network in an ensemble) and using different learning

methods.

Bagging is a method for building ensembles that uses different subsets of training data with a

single learning method (Breiman, 1996). Given a training set of size t, bagging draws t

random instances from the dataset with replacement (i.e. using a uniform distribution).These t

instances are learned, and this process is repeated several times. Since the draw is with

replacement, usually the instances drawn will contain some duplicates and some omissions,

as compared to the original training set. Each cycle through the process results in one

classifier. After the construction of several classifiers, taking a vote of the predictions of each

classifier produces the final prediction.

Bagging implementation algorithm(Bauer & Kohavi, 1999)

Input: I (an inducer), T (the number of iterations), S (the training set), N

 (the subsample size)

Output: Ct;t=1……….,T

 1: t← 1

 2: repeat

 3: St← Samples N instances from S with replacement

 4: Build classifier Ct using I on St

 5: t++

 6: until t>T

Inputs: Training data S; supervised learning algorithm, Base Classifier, integer T

Specifying ensemble size; percent R to create bootstrapped training data.

Do t = 1……….,T

1. Take a bootstrapped replica St by randomly drawing R% of S.

2. Call Base Classifier with St and receive the hypothesis (classifier) ht.

3. Add ht to the ensemble, Ꜫ←ꜪUht

End

Ensemble Combination: Simple Majority Voting ─Given unlabeled instance x

1. Evaluate the ensemble Ꜫ ={h1,………,hT} on x.

2. Let vt,c=1 if ht chooses class ωc, and 0, otherwise.

23

3. Obtain total vote received by each class

Vc=Σ
T

t=1 Vt,c, c=1…….C

Output: Class with the highest Vc

Breiman made the important observation that instability (responsiveness to changes in the

training data) is a prerequisite for bagging to be effective. A committee of classifiers that all

agree in all circumstances will give identical performance to any of its members in isolation

(Breiman, 1996). A variance reduction process will have no effect if there is no variance. If

there is too little data, the gains achieved via a bagged ensemble cannot compensate for the

decrease in accuracy of individual models, each of which now considers an even smaller

training set. On the other end, if the dataset is extremely large and computation time is not an

issue, even a single flexible classifier can be quite adequate. Another method that uses

different subsets of training data with a single learning method is the boosting approach

(Freund & Schapire, 1997).

Boosting is similar in overall structure to bagging, except that it keeps track of the

performance of the learning algorithm and concentrates on instances that have not been

correctly learned. Instead of choosing the t training instances randomly using a uniform

distribution, it chooses the training instances in such a manner as to favor the instances that

have not been accurately learned. After several cycles, the prediction is performed by taking a

weighted vote of the predictions of each classifier, with the weights being proportional to

each classifier‟s accuracy on its training set. AdaBoost (short for Adaptive Boosting) (Freund

& Schapire, 1997), and its several variations later extended the original boosting algorithm to

multiple classes (AdaBoost.M1,AdaBost.M2), as well as to regression problems

(AdaBoost.R). Here we describe the AdaBoost.M1, the most popular version of the AdaBoost

algorithms.

AdaBoost. M1 implementation algorithm (Bauer & Kohavi, 1999)

Inputs: Training data = {xi,yi}, I = 1,……….N yi Є { ω1,……….ωc}, supervised

BaseClassifier; ensemble size T.

Initialize D1(i) = 1/N.

Do for t = 1,2,…….., T:

24

1. Draw training subset St from the distribution Dt.

2. Train Base Classifier on St, receive hypothesis ht: X→ Y

3. Calculate the error of ht:

 Ꜫt = ΣiI[ht(xi ≠yi)] Dt(xi)

 If Ꜫt> ½ abort

4. Set

 β t = Ꜫt /(1- Ꜫt)

5. Update sampling distribution

 Dt+1(i) = Dt(i)/Zt .{ β t, if ht(xi)=yi 1, otherwise

 Where Zt = Σi Dt(i) is a normalization constant to ensure that Dt+1 is

 a proper distribution function.

End

 Weighted Majority Voting: Given unlabeled instance z,

Obtain total vote received by each class

Vc = Σt:ht(z)=ωclog (1/ β t) , c =1,………,C

 Output: Class with the highest Vc.

AdaBoost is a practical version of the boosting approach (Freund & Schapire, 1997)Adaboost

requires less instability than bagging, because Adaboost can make much larger changes in the

training set. A number of studies that compare AdaBoost and bagging suggest that AdaBoost

and bagging have quite different operational profiles (Bauer & Kohavi, 1999); (Quinlan,

1996). In general, it appears that bagging is more consistent, increasing the error of the base

learner less frequently than does AdaBoost. However, AdaBoost appears to have greater

average effect, leading to substantially larger error reductions than bagging on average.

Generally, bagging tends to decrease variance without unduly affecting bias (Breiman, 1996);

(Bauer & Kohavi, 1999). On the contrary, in empirical studies AdaBoost appears to reduce

both bias and variance ((Breiman, 1996); (Bauer & Kohavi, 1999). Thus, AdaBoost is more

effective at reducing bias than bagging, but bagging is more effective than AdaBoost at

reducing variance. The decision on limiting the number of sub-classifiers is important for

practical applications. To be competitive, it is important that the algorithms run in reasonable

time. For both bagging and boosting, much of the reduction in error appears to have occurred

after ten to fifteen classifiers. However, Adaboost continues to measurably improve test-set

25

error until around 25classifiers for decision trees (Optiz & Maclin, 1999).As mentioned in

Bauer and Kohavi, the main problem with boosting seems to be robustness to noise. This is

expected because noisy instances tend to be misclassified, and the weight will increase for

these instances. They presented several cases where the performance of boosted algorithms

degraded compared to the original algorithms. On the contrary, they pointed out that bagging

improves the accuracy in all datasets used in the experimental evaluation(Bauer & Kohavi,

1999). MultiBoosting is another method of the same category. It can be conceptualized

wagging committees formed by AdaBoost(Webb, 2000). Wagging is a variant of bagging:

bagging uses resampling to get the datasets for training and producing a weak hypothesis,

whereas wagging uses reweighting for each training instance, pursuing the effect of bagging

in a different way. Webbin a number of experiments, showed that MultiBoost achieved

greater mean error reductions than any of AdaBoost or bagging decision trees in both

committee sizes that were investigated (10 and 100).Another meta-learner, DECORATE

(Diverse Ensemble Creation by Oppositional Relabeling of Artificial Training Examples),

was presented. This method uses a learner (one that provides high accuracy on the training

data) to build a diverse committee(Melville & Mooney, 2003). This is accomplished by

adding different randomly constructed examples to the training set when building new

committee members. These artificially constructed examples are given category labels that

disagree with the current decision of the committee, thereby directly increasing diversity

when a new classifier is trained on the augmented data and added to the committee.

Voting denotes the simplest method of combining predictions from multiple classifiers (Roli,

Giacinto, & Vernazza, 2001). In its simplest form, called plurality or majority voting, each

classification model contributes a single vote (Hall, Bowyer, Kegelmeyer, Moore, & Chao,

2000). The collective prediction is decided by the majority of the votes, i.e., the class with the

most votes is the final prediction. In weighted voting, on the other hand, the classifiers have

varying degrees of influence on the collective prediction that is relative to their predictive

accuracy. Each classifier is associated with a specific weight determined by its performance

(e.g., accuracy, cost model) on a validation set. The final prediction is decided by summing

up all weighted votes and by choosing the class with the highest aggregate. Kotsiantis and

Pintelas combined the advantages of classifier fusion and dynamic selection. The algorithms

that are initially used to build the ensemble are tested on a small subset of the training set

and, if they have statistically worse accuracy than the most accurate algorithm, do not

participate in the final voting(Kotsiantis, Zaharakis, & Pinteals, 2004).Except for voting,

26

stacking aims to improve efficiency and scalability by executing a number of learning

processes and combining the collective results(Ting & Witten, 1999). The main difference

between voting and stacking is that the latter combines base classifiers in anon-linear fashion.

The combining task, called a meta-learner, integrates the independently computed base

classifiers into a higher-level classifier, a meta-classifier, by relearning the meta-level

training set. This meta-level training set is created by using the base classifiers ‟predictions

on the validation set as attribute values and the true class as the target. Ting and Witten have

shown that successful stacked generalization requires the use of output class distributions

rather than class predictions. In their experiments, only the MLR algorithm (a linear

discriminant) was suitable for use as a level-1 classifier. Cascade Generalization (Gama &

Brazdil, 2000)is another algorithm that belongs to the family of stacking algorithms. Cascade

Generalization uses the set of classifiers sequentially, at each step performing an extension of

the original data by the insertion of new attributes. The new attributes are derived from the

probability class distribution given by a base classifier. This constructive step extends the

representational language for the high-level classifiers, reducing their bias.

2.2.8 Review of Previous works

The previous related studies primarily involved research on various application of machine

learning in crime prevention and counterterrorism. Sachan and Roy (2012) in their study

developed Terrorist Group Prediction Model (TGPM) to identify the responsible terrorist

group by using historical data. TGPM uses the concept of Crime Prediction Model (CPM),

Group Detection Model (GDM) and Offender Group Detection Model (OGDM).TGPM uses

various parameters like attack type, location, target type, weapon type, hostage/kidnapping

and suicide attack, terrorist corpus, parameter‟s value and parameters weight as input. After

pre-processing of database, percentage of attacks of each group is calculated based on input

parameters. Each parameter is assigned a weight based on its impact over the incident. The

group weight is calculated by using the percentage of attacks of each group and the

parameters weight. Different clusters are created. Association between these clusters is

performed and highest value from these associations is obtained. Group name corresponding

to the highest value may be the most probable responsible terrorist group. The model realized

more 80% accuracy in identifying the terrorist group involved in an attack in India from the

year 1998 to 2008. The study neither used classification nor hybrid of classifier algorithms.

In a study, Rizwan, Masrah, Aida, Payam, & Nasim (2013),presented a comparison between

two classification algorithms namely, Decision Tree and Naïve Bayesian for predicting the

27

„Crime Category‟ attribute, having labels, namely „Low‟, „Medium‟, and „High‟. For

Decision Tree, the Accuracy, Precision and Recall were 83.95%, 83.5% and 84%. On the

other hand, Accuracy, Precision and Recall values for Naïve Bayesian were 70.8124%,

66.4% and 70.8%, respectively. Experimental results for both the algorithms manifest that,

Decision Tree performed better than the Naïve Bayesian for the crime dataset, using WEKA

and 10-fold cross validation (Rizwan, Masrah, Aida, Payam, & Nasim, 2013). This

experiment was performed using 10-fold cross- validation. This experiment was a

comparisons of two individual classifier algorithms and not a hybrid combination.

Khorsid, Abou, & Soliman (2015), conducted a study in which A supervised standard,

ensemble, and hybrid machine learning classification algorithms and models are compared in

identification of the terrorist groups responsible of terrorist attacks in Middle East and North

Africa from year 2009 up to 2013, by conducting different experiments, the data used in the

experimental study was based on real data represented by Global terrorism Database (GTD)

from National Consortium for the study of terrorism and Responses of Terrorism (START).

To achieve the goal of this research; two different experiments are conducted on the used

data, as well as using Litwise deletion approach to handle the missing data and provide a

detailed comparative study of the used classification algorithms between 10 different

classifiers which categorize into four main types namely, standard classification algorithms,

hybrid classifiers, ensemble classifiers, and ensemble hybrid classifiers. The study used

WEKA software and evaluated the obtained results via two different test options which are

evaluation on training set, and 10- fold cross-validation during the experiments. The results

from the first experiment conducted using the whole training data showed that KNN yielded

accuracy of 100% and SVM yielded accuracy of 95% outperformed the other standard

classifiers, FT hybrid yielded accuracy of 99% was more accurate and outperformed other

hybrid classifier, In Ensemble Method(s); Random Forests (RFs) with accuracy of 99% was

more accurate. In hybrid Ensemble classifiers, stacking classifier with accuracy of 20%

performed badly and not accurate. The overall results showed that hybrid machine learning

classifiers demonstrated good and proved obvious improvement in predictive accuracy over

some standard comprehensible and ensemble methods. The results obtained from the second

experiment which based on using 10-fold cross validation showed that: C45 67% and NB

63% standard classifier were almost good; FT with accuracy of 65% and DTNB with

accuracy of 63% hybrid classifiers were good Machine Learning hybrid classifiers. And so

the overall performance of the different types of classifiers used proved that hybrid machine

28

learning classifiers perform accurate and in some cases it could outperformed the single

classifiers with some enhancement, but ensemble methods are more accurate and

outperformed the hybrid ensemble methods in their prediction of terrorist groups‟ attacks

results.

In a study by Tolan & Soliman(2015), a data mining classification ensemble approach was

introduced in this paper research for the classification and prediction of the terrorist groups in

Egypt from 1970 to 2013,the data used in the experimental study was based on real data

represented by Global terrorism Database (GTD) from National Consortium for the study of

terrorism and Responses of Terrorism (START). To achieve the goal of the research; two

different approaches were implemented to handle the missing data namely; Mode-Imputation,

and Litwise-Deletionas well as a detailed comparative study of the used classification

algorithms by using WEKA software and results evaluated via the two different test options

which are; evaluation on test split of the input data set into66% for the training data and 34%

for the test set, and 10-fold cross-validation during the experiments. Five main classification

algorithms were used in the study, those classification algorithms are: Naïve Bayes, K-

Nearest Neighbour, Tree Induction C4.5, Iterative Dichotomiser, and Support Vector

Machine. These classification algorithms were evaluated and compared according to four

performance measures namely, classification accuracy, precision, recall and F-measure. The

experiment conducted during the mode-imputation approach, in case of test split of the input

data with splits 66%for training data, and 34% for testing data showed that SVM with

accuracy of 71.83% was more accurate than other classifiers especially NB with accuracy of

69.01%, and KNN with accuracy of 72.54%,the overall performance of NB and KNN is

almost the same.ID3 with accuracy of 21.13% has the lowest accuracy, but it performs well

in other measures. In 10-fold cross validation case; KNN with accuracy of 73.03% classifier

is near the SVM 75.42% accuracy, precision, and F-measure. ID3 26.01% accurate, NB

classifier performs as KNN in most measures, and C4.5 performs badly than other classifiers

in precision, recall, and f-measure. The experiment conducted during Litwisedeletion

approach, in case of test split showed that KNN outperformed the other classifiers in its

accuracy especially SVM that proved successful in the mode imputation approach. C4.5had

lowest precision, recall, and F-measure results. KNN and SVM performed almost the same in

precision, recall, and F-measure as they perform effectively in the first approach. In10- fold

cross validation case; SVM was more accurate than other classifiers. KNN, and SVM are

almost the same in their results, NB precision, recall, and F-measures are near KNN

29

c1assifier. C4.5 had the lowest precision, recall, and F-measure in contrast with ID3 which

had highest results in precision, recall, and F-measure although it was not accurate.

Gundabathula & Vaidhehi (2018), conducted a study on efficient modeling of behavior of

terrorist groups in India, the study presented machine learning models that can be employed

on terrorism related data to identify the most accurate terrorist group responsible for an attack

based on historic data. The study analyses terrorism challenges faced in India by modelling

the behavior of terrorist groups using famous machine learning algorithms like J48, IBK,

Naive Bayes and ensemble approach using majority voting combination method. The

SMOTE (Synthetic Minority Over-Sampling Technique) algorithm is used to perform the

oversampling and the hybrid sampling procedures as a solution to class imbalance problem.

The results of the evaluation of the models show the accuracy percentage of various models

employed and their relevance to the dataset. It was found that when the classification models

are created on a data that has class imbalance problem the percentage of correctly classified

instances will be very less with the following results for the classifier models: Decision

Trees (J48) 66.13%, NB 64.64%, KNN(IBK) 55.71% and Ensemble 66.17%. The study

established that sampling plays a main role in determining the accuracy percentage of

classifier models and gives better results J48 98.79%, NB 88.06%, KNN 95.44% and

Ensemble 88.70%. The study also shows the accuracy percentage of correctly classified

instances for various algorithms and shows the ideal one for the dataset was DT.

2.2.9 Approaches to Classifier Algorithm Models Evaluation and Comparison

Cross-Validation is a statistical method of evaluating and comparing learning algorithms by

dividing data into two segments: one used to learn or train a model and the other used to

validate the model(Refaeilzadeh, Tang, & Liu, 2007). In typical cross-validation, the training

and validation sets must cross-over in successive rounds such that each data point has a

chance of being validated against. The basic form of cross-validation is k-fold cross-

validation. Other forms of cross-validation are special cases of k-fold cross-validation or

involve repeated rounds of k-fold cross-validation (Refaeilzadeh, Tang, & Liu, 2007).In k-

fold cross-validation the data is first partitioned into k equally (or nearly equally) sized

segments or folds. Subsequently k iterations of training and validation are performed such

that within each iteration a different fold of the data is held-out for validation while the

remaining k-1 folds are used for learning. In data mining and machine learning 10-fold cross

validation (k = 10)is the most common. Cross-validation is used to evaluate or compare

30

learning algorithms as follows: in each iteration, one or more learning algorithms use k-1

folds of data to learn one or more models, and subsequently the learned models are asked to

make predictions about the data in the validation fold. The performance of each learning

algorithm on each fold can be tracked using some predetermined performance metric like

accuracy. Upon completion, k samples of the performance metric will be available for each

algorithm. Different methodologies such as averaging can be used to obtain an aggregate

measure from these sample, or these samples can be used in a statistical hypothesis test to

show that one algorithm is superior to another(Refaeilzadeh, Tang, & Liu, 2007).In statistics

or data mining, a typical task is to learn a model from available data. Such a model may be a

regression model or a classifier. The problem with evaluating such a model is that it may

demonstrate adequate prediction capability on the training data but might fail to predict future

unseen data. Cross-validation is a procedure for estimating the generalization performance in

this context(Refaeilzadeh, Tang, & Liu, 2007). The idea for cross-validation originated in the

1930s.Larson used one sample for regression and a second for prediction (Larson, 1931).

Mosteller and Turkey and various other people further developed the idea (Mosteller &

Turkey, 1968). A clear statement of cross-validation, which is similar to current version of k-

fold cross-validation, first appeared in 1968 (Mosteller & Turkey, 1968). In 1970s, both

Stone and Geisser employed cross-validation as means for choosing proper model

parameters, as opposed to using cross-validation purely for estimating model

performance(Stone, 1974), (Geisser, 1975).Currently, cross-validation is widely accepted in

data mining and machine learning community and serves as a standard procedure for

performance estimation and model selection(Refaeilzadeh, Tang, & Liu, 2007).There are two

possible goals in cross-validation: To estimate performance of the learned model from

available data using one algorithm. In other words, to gauge the generalizability of an

algorithm and to compare the performance of two or more different algorithms and find out

the best algorithm for the available data, or alternatively to compare the performance of two

or more variants of a parameterized model. The above two goals are highly related, since the

second goal is automatically achieved if one knows the accurate estimates of performance.

Given a sample of N data instances and a learning algorithm A, the average cross-validated

accuracy of A on these Ninstances may be taken as an estimate for the accuracy of A on

unseen data when A is trained on all Ninstances. Alternatively if the end goal is to compare

two learning algorithms, the performance samples obtained through cross-validation can be

used to perform two-sample statistical hypothesis tests, comparing a pair of learning

algorithms(Dietterich, 1998).

31

In re-substitution validation, the model is learned from all the available data and then tested

on the same set of data. This validation process uses all the available data but suffers

seriously from over-fitting. That is, the algorithm might perform well on the available data

yet poorly on future unseen test data(Refaeilzadeh, Tang, & Liu, 2007).To avoid over-fitting,

an independent test set is preferred. A natural approach is to split the available data into two

non-overlapped parts: one for training and the other for testing. The test data is held out and

not looked at during training. Hold-out validation avoids the overlap between training data

and test data, yielding more accurate estimate for the generalization performance of the

algorithm. The downside is that this procedure does not use all the available data and the

results are highly dependent on the choice for the training/test split (Dietterich, 1998). The

instances chosen for inclusion in the test set may be too easy or too difficult to classify and

this can skew the results. Furthermore, the data in the test set may be valuable for training

and if it is held out prediction performance may suffer, again leading to skewed results. These

problems can be partially addressed by repeating hold-out validation multiple times and

averaging the results, but unless this repetition is performed in a systematic manner, some

data may be included in the test set multiple times while others are not included at all, or

conversely some data may always fall in the test set and never get a chance to contribute to

the learning phase. To deal with these challenges and utilize the available data to the

maximum-fold cross-validation is used. In k-fold cross-validation the data is first partitioned

into k equally (or nearly equally) sized segments or folds. Subsequently k iterations of

training and validation are performed such that within each iteration a different fold of the

data is held-out for validation while the remaining k _ 1 folds are used for learning. Data is

commonly stratified prior to being split into kfolds. Stratification is the process of rearranging

the data as to ensure each fold is a good representative of the whole(Kohavi, 1995). For

example, in a binary classification problem where each class comprises 50% of the data, it is

best to arrange the data such that in every fold, each class comprises around half the

instances.

Leave-one-out cross-validation (LOOCV) is a special case of k-fold cross-validation where k

equals the number of instances in the data. In other words, in each iteration nearly all the data

except for a single observation are used for training and the model is tested on that single

observation. An accuracy estimate obtained using LOOCV is known to be almost unbiased,

but it has high variance, leading to unreliable estimates (Efron, 1983). It is still widely used

when the available data are rare, especially in bioinformatics where only dozens of data

32

samples are available. However, this method has not been widely adopted in data mining

field either and 10-fold cross-validation remains the most widely used validation

procedure(Refaeilzadeh, Tang, & Liu, 2007).Two factors affect the performance measure: the

training set, and the test set. The training set affects the measurement indirectly through the

learning algorithm, whereas the composition of the test set has a direct impact on the

performance measure (Dietterich, 1998). A reasonable experimental compromise may be to

allow for overlapping training sets, while keeping the test sets independent. K-fold cross-

validation does just that. Now the issue becomes selecting an appropriate value for k. A large

k is seemingly desirable, since with a larger k there are more performance estimates, and the

training set size is closer to the full data size, thus increasing the possibility that any

conclusion made about the learning algorithm(s) under test will generalize to the case where

all the data is used to train the learning model. As the value of k increases, however, the

overlap between training sets also increases (Kohavi, 1995). For example, with 5-fold cross-

validation, each training set shares only 3∕4 of its instances with each of the other four

training sets whereas with 10-fold cross validation, each training set shares 8 ∕ 9 of its

instances with each of the other nine training sets. Furthermore, increasing k shrinks the size

of the test set, leading to less precise, less fine-grained measurements of the performance

metric. For example, with a test set size of10 instances, one can only measure accuracy to the

nearest 10%, whereas with 20 instances the accuracy can be measured to the nearest 5%.

These competing factors have all been considered and the general consensus in the data

mining community seems to be that k = 10 is a good compromise (Refaeilzadeh, Tang, &

Liu, 2007). This value of k is particularity attractive because it makes predictions using 90%

of the data, making it more likely to be generalizable to the full data. Cross-validation can be

applied in three contexts: performance estimation, model selection, and tuning learning

model parameters (Refaeilzadeh, Tang, & Liu, 2007). Using 10-fold cross-validation one

repeatedly uses 90% of the data to build a model and test its accuracy on the remaining 10%.

The resulting average accuracy is likely somewhat of an underestimate for the true accuracy

when the model is trained on all data and tested on unseen data, but in most cases this

estimate is reliable, particularly if the amount of labeled data is sufficiently large and if the

unseen data follows the same distribution as the labeled examples. Alternatively, cross-

validation may be used to compare a pair of learning algorithms. This may be done in the

case of newly developed learning algorithms, in which case the designer may wish to

compare the performance of the classifier with some existing baseline classifier on some

benchmark dataset, or it may be done in a generalized model-selection setting(Boukaert,

33

2003). In generalized model selection one has a large library of learning algorithms or

classifiers to choose from and wish to select the model that will perform best for a particular

dataset. There is no easy way of learning the best value for the soft margin parameter for a

particular dataset other than trying it out and seeing how it works. In such cases, cross-

validation can be performed on the training data as to measure the performance with each

value being tested. Alternatively, a portion of the training set can be reserved for this purpose

and not used in the rest of the learning process. But if the amount of labeled data is limited,

this can significantly degrade the performance of the learned model and cross-validation may

be the best option(Kohavi, 1995).Cross validation is a technique for assessing how the

statistical analysis generalizes to an independent data set(Refaeilzadeh, Tang, & Liu, 2007).

2.3 Classifier Algorithm Performance Evaluation and Comparison Metrics

Usually, the problem of evaluating a new classifier is tackled by using the score that try to

summarize the specific conditions of interest. Classification error and accuracy are widely

used scores in the classification problems. In practice, classification error must be estimated

from all the available samples. Thek-fold cross-validation, for example, is one of the most

frequently used such estimation methods. Then, questions are whether such a new, proposed

classifier (or enhancement of the existing one) yields an improved score over the competitor

classifier (or classifiers) or the state of the art. It is almost impossible now to do any research

work without an experimental section where the score of anew classifier is tested and

compared with the scores of the existing ones. This last step also requires the selection of

datasets on which the compared classifiers are learned and evaluated. The purpose of dataset

selection step should not be to demonstrate classifiers superiority to another in all cases, but

rather to identify its areas of strengths with respect to domain characteristics. The whole

evaluation process of a classifier should include the following steps (Santafe, 2015):choosing

an evaluation metric (i.e. a score) according to the properties of aclassifier, deciding the score

estimation method to be used, checking whether the assumptions are fulfilled, running the

evaluation method and interpret the results with respect to the domain, and compare a new

classifier with the existing ones selected according to the different criteria, for example

problem dependent; this step requires selection of datasets. Typical scores for measuring the

performance of a classifier are accuracy and classification error, which for a two-class

problem can be easily derived from a 2×2 confusion matrix as shown in the table below

These scores can be computed as:

34

Accuracy = (TP+TN)/(TP +FN+TN+FP)…………………………………..2.4

Error = (1-Acc)………………………………………………………….2.5

When both class labels are relevant and the proportion of data samples for each class is

similar, these scores are a good choice. Unfortunately, equally class proportions are quite rare

in real problems. This situation is known as the imbalance problem(Japkowicz & Stephen,

2002),(Sun, 2007).Empirical evidence shows that accuracy and error rate are biased with

respect to data imbalance: the use of these scores might produce misleading conclusions since

they do not take into account misclassification costs, the results are strongly biased to favor

the majority class, and are sensitive to class skews. The comparison of the scores obtained by

two or more classifiers in a set of problems is a central task in machine learning, so it is

almost impossible to do any research work without an experimental section where the score

of a new classifier is tested and compared with the scores of the existing ones. When the

differences are clear (e.g., when the classifier is the best in all the problems considered), the

direct comparison of the scores may be enough. But in most situations, a direct comparison

may be misleading and not enough to draw sound conclusions. In such situations, the

statistical assessment of the scores such as hypothesis testing is required. Statistical tests arise

with the aim of giving answers to the above-mentioned questions, providing more precise

assessments of the obtained scores by analyzing them to decide whether the observed

differences between the classifiers are real or random. However, although the statistical tests

have been established as a basic part of classifier comparison task, they are not a definitive

tool, we have to be aware about their limitations and misuses. The statistical tests for

comparing classifiers are usually bound to a specific estimation method of classifier score.

Better differentiation of algorithms can be obtained by examining computational performance

metrics such as build time and classification speed (Williams, Zander, & Armitage, 2006).

Although training time varies according to the nature of the application task and dataset,

specialists generally agree on a partial ordering of the major classes of learning algorithms.

For instance, lazy learning methods require zero training time because the training instance is

simply stored. NB methods also train very quickly since they require only a single pass on the

data either to count frequencies (for discrete variables) or to compute the normal probability

density function (for continuous variables under normality assumptions). Univariate DT are

also fast, several orders of magnitude than neural networks and SVM (Kotsiantis, Zaharakis,

& Pinteals, 2004).

35

2.4 Data Mining Tools

There are various tools available that have been developed for various usage, examples are:

Waikato Environment for Knowledge Analysis (WEKA), Rapid miner, Knostanz Information

Miner (KNIME), Clementine, etc. They provide a set of methods and algorithms that help in

better utilization of data information available to users; that is data analysis, cluster analysis,

genetic algorithms, nearest neighbor, data visualization, regression analysis, decision trees,

predictive analytics, text mining among others (Wahbeh, Al-Radaideh, Al-Kabi, & Al-

Shawakfa, 2008)

2.4.1 Waikato Environment for Knowledge Analysis

It is an open source software that contains a collection of visualization tools and algorithms

for data analysis and predictive modeling together with graphical user interface for easy

access to this functionality. It supports several standard data mining tasks like data

processing, clustering, classification, regression, visualization, and feature selection. WEKA

through its workbench provides a collection of state-of-the-art machine learning algorithms

and data pre-processing tools. It includes virtually all algorithms in data mining thus its

diverse functionality characteristic, so one can quickly try out existing methods on new

datasets in flexible ways. It also provides extensive support for the whole process of

experimental data mining, including preparing the input data, evaluating learning schemes

statistically and visualizing the input data and the results of learning. WEKA capabilities

include API, database system support, visualization capabilities, PMML support and

statistical analysis capabilities (Gundabathula & Vaidhehi, 2018).

2.4.2 Knostanz Information Miner

KNIME is an open source data analytics, reporting and integration platform, as it integrates

various components for machine learning and data mining through its modular data

pipelining concept. Mostly has been used in pharmaceutical research, customer data analysis,

business intelligence and financial data (Tiwaria, Abhishek, Sekhar, & Arvind, 2007).Its

capabilities includes; API, database system support, visualization, statistical analysis

capabilities among others (Kavoc, 2012)

2.4.3 Rapid Miner

The capabilities are same as for WEKA and KNIME, but the variation comes in on rapid

miner an advanced user will be able to achieve more functions compared to less advanced

user (Gikaru, 2012)

36

2.4.4 Orange

It is similar with the other data mining tools mentioned above on functions that can be

performed. Though for one to achieve full functionality additional add-ons, widgets have to

be obtained and added to the program as it is a library of objects and routines written in C++.

This may have some effect on the software‟s functionality and performance. It has no

additional functionality that seems relevant for the end user, as it‟s quite basic in its

performance and operations (Kavoc, 2012).

2.5 Data Mining Methodologies

As in data mining there are various methodologies and no standard one for applying. Thus,

several vendors have created their own proprietary methodologies where the approaches are

strongly correlated with the design of their own software packages and solutions. The popular

methodologies include Sample Explore Modify Model and Assess (SEMMA) and Cross

Industry Standard Process for Data Mining (CRISP-DM) as shown in fig. 2.6. SEMMA may

contain essentials elements of data mining project that is statistical, modeling and data

manipulation but it lacks some fundamental parts of any information systems project like

analysis, design, and implementation phase. While CRISP-DM comprises of six (6) phases

which are not rigid, and they include business understanding, data understanding, data

preparation, modeling, evaluation and deployment much emphasis is on data which must be

divided into training and Test/validation sets. But it is limiting as techniques are selected

according to data available only and not on organization goals and requirements(Chawla,

2005).

37

Figure 2.6: CRISP-DM(Rahim, 2014)

2.6 Feature Selection

Feature subset selection is the process of identifying and removing as many irrelevant and

redundant features as possible (Yu & Liu, 2004). This reduces the dimensionality of the data

and enables data mining algorithms to operate faster and more effectively. Feature selection

methods can be classified in a number of ways. The most common one is the classification

into filters, wrappers, embedded, and hybrid methods (Hoque, Bhattachryya, & Kalita, 2014).

The abovementioned classification assumes feature independency or near independency.

Additional methods have been devised for datasets with structured features where

dependencies exist and for streaming features (Tang, Aleylani, & Liu, 2014).Filter methods

select features based on a performance measure regardless of the employed data modeling

algorithm. Only after the best features are found, the modeling algorithms can use them.

Filter methods can rank individual features or evaluate entire feature subsets. We can roughly

classify the developed measures for feature filtering into information, distance, consistency,

similarity, and statistical measures. Wrapper methods consider feature subsets by the quality

of the performance on a modelling algorithm, which is taken as a black box evaluator. Thus,

for classification tasks, a wrapper will evaluate subsets based on the classifier performance

(e.g. Naïve Bayes or SVM) (Bradley & Mangasarian, 1998),(Maldonado, Weber, & Famili,

2014), while for clustering, a wrapper will evaluate subsets based on the performance of a

clustering algorithm (e.g. K-means)(Kim & Street, 2002). The evaluation is repeated for each

subset, and the subset generation is dependent on the search strategy, in the same way as with

38

filters. Wrappers are much slower than filters in finding sufficiently good subsets because

they depend on the resource demands of the modeling algorithm. The feature subsets are also

biased towards the modelling algorithm on which they were evaluated (even when using

cross-validation). Therefore, for a reliable generalization error estimate, it is necessary that

both an independent validation sample and another modeling algorithm are used after the

final subset is found. On the other hand, it has been empirically proven that wrappers obtain

subsets with better performance than filters because the subsets are evaluated using a real

modelling algorithm. Practically any combination of search strategy and modelling algorithm

can be used as a wrapper, but wrappers are only feasible for greedy search strategies and fast

modelling algorithms such as Naïve Bayes (Cortizo & Giraldez, 2006), linear SVM(Liu,

Tiang, & Yang, 2014), and Extreme Learning Machines (Benoit, Van Heeswijk, Miche,

Verleysan, & Lendasse, 2013).Embedded and hybrid methods perform feature selection

during the modelling algorithm's execution. These methods are thus embedded in the

algorithm either as its normal or extended functionality.

2.7Class Imbalance Problem

There can be an imbalance dataset provided for classification. Imbalance dataset means that

one of the two classes has very a smaller number of samples compared to number of samples

in the other class, |C2| << |C1|.Then C2 is called the minority class, and C1 is called the

majority class. The minority class is of our interest. The machine learning algorithm always

performs well if it is given balanced dataset, but this is not always the case , as an example

the dataset for fraud detection ,will have a smaller number of fraud transactions than genuine

transaction. Anomaly detection, medical diagnostic and fault monitoring are other examples.

The prediction in case of unbalanced dataset is biased towards majority class. The approach

to solve this problem is sampling based approach (Verma, 2019). Sampling based approach

also known as data level approach works by artificially balancing the instances of class in the

dataset. To artificially balance the class we apply resampling technique, such as random

under sampling the majority class, random oversampling of minority class, and Synthetic

Minority Over-Sampling Technique (SMOTE)(Verma, 2019). Random under sampling of

majority class balances the class distribution in the dataset by randomly throwing away some

data samples from majority class. Although it balances class distribution, but it leads to losing

some important characteristics in dataset, due to removal of some samples, this is a

disadvantage of this approach (Verma, 2019). Random oversampling of minority class

balances the class distribution by the random replication of minority class instances, to

39

increase their number. There is no information loss in this case. The problem with this

approach is that it leads to overfitting (Verma, 2019). Synthetic minority oversampling

technique (SMOTE) reduces the problem of overfitting a method of by creating synthetic

instances of minority class. This technique is known as the synthetic minority over-sampling

technique (SMOTE). In this the training set is altered by adding synthetically generated

minority class instances, causing the class distribution to become more balanced. The

instances are said to be synthetic, as they are new minority instances that has being created

out of existing minority class instances. In order to create the new synthetic minority class

instances, SMOTE first selects an instance of minority class at random say „x‟ and proceeds

by finding its k nearest minority class neighbors. The synthetic instance is then created by

choosing one of the k nearest neighbors say „y‟ at random and connecting „x‟ and „y‟ to form

a line segment in the feature space. The synthetic instance say „z‟ is generated as a convex

combination of the two chosen instances „x‟ and „y‟. z.attribute=x.attribute+(y.attribute-

x.attribute)*rand(0,1)(Verma, 2019).

2.8 Chapter Summary and Gap

From the literature review it is established that various data mining techniques such as

clustering, asocial rule mining, social network analysis, and classification have been used to

model frameworks and implement various models in identification of terrorist groups.

However, the studies have not sufficiently evaluated the effect of resampling for class

imbalance on various hybrid bagging combinations of KNN, NB, DT, SVM, and MLP using

10-fold cross validation test option and test split in WEKA data mining software

environment. This would provide guidance for building optimally performing hybrid

classifier algorithm model for identification of terrorist groups.

40

CHAPTER THREE

RESEARCH METHODOLOGY

This chapter consists of research design, data mining methods and tools, terrorism dataset and

collection methodology, data pre-processing, resampled dataset instances, building and

evaluating base classifier algorithm models, building, and evaluating hybrid classifier

algorithm models and the architecture of the hybrid model.

3.1Research Design

The study adopted an experimental research design in form of a randomized block design.

The term “experimental research design” is centrally concerned with constructing research

that is high in causal (or internal) validity. Causal validity concerns the accuracy of

statements regarding cause and effect relationships

(Alexandrie, 2017). Experimental research is a study in which participants are randomly

assigned to groups that undergo various researcher-imposed treatments or interviews,

followed by observations or measurements to assess the effects of the treatments. The

noteworthy key to an experiment is the researcher‟s complete control over the research that

enables him or her to randomize the study participants in order to provide better assessment

of the treatments provided(Leedy & Ormrod, 2010).The experiment adopted a randomized

block design. A block can contain a single participant who is observed under all p treatment

levels or p participants (experimental units) who are similar with respect to a variable that is

positively correlated with the dependent variable. If each block contains one participant, the

order in which the treatment levels are administered is randomized independently for each

block, assuming that the nature of the treatment permit this. If a block contains p matched

participants, the participants in each block are randomly assigned to the treatment levels. The

use of repeated measures or matched participants does not affect the statistical analysis. To be

able to average out the effect of randomness and hence arrive at conclusions deemed

statistically significant, the training and validation is done multiple times

randomly(randomization), run the algorithms many times(replication) and compare the

distributions of results rather than single values(Irsoy, Yildiz, & Alpaydin, 2012). All the

algorithms used the same training and validation splits to ensure that any difference is due to

the algorithm and not due to the split of the data; that is the idea behind paired tests

(blocking). Stratification is also required, that is, the proportion of positive to negative

41

instances is respected in all parts so that the prior class probabilities do not change between

fold. Two null hypotheses were tested.

H0 : μ.100= μ.200= μ.300… μ.1300 (treatment population means are equal)

H1: μ100.≠μ200. ≠. . . ≠μ.1300

H0 : μ1. = μ2. = . . . = μ.9 (block population means are equal)

H1: μ1.≠μ2. ≠. . . ≠μ.9

Table 3.1: Randomized block experiment design with experimental units, control

experiment and treatment levels

 Experimental treatment levels with varying resample sample size percent

Experime

ntal units

of

different

classifier

algorithm
s

 Control

experiment

with none

resampled

dataset

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

DT X1

KNN

NB

SVM

MLP

KNMS

D

KNSD

KND

KD X9

 Y¯ Y¯1 Y2 Y¯3 Y¯4 Y¯13

 Treatment means

Layout for a randomized block design with p = 14 treatment levels and n = 9 blocks

(experimental units). In the experiment, the p participants in each experimental unit/block

were randomly assigned to the treatment levels. The means of treatment are denoted by Y¯
1
,

Y¯
2
, and Y¯

3 ……
;Y¯

13
.The means of the experimental units are denoted by x

1
., … , x

9.

42

The experiment was set up to examine whether resample sample size percent has an effect on

the classification accuracy of machine learning classifier algorithms (base and combination of

the bases). The dependent variable is the accuracy and the independent variable is the sample

size percent, which consists of fourteen (14) treatment levels (representing 14 datasets). The

experiment was set up for 9 experimental units (9 classifier algorithms). To test whether

sample size percent has an effect on accuracy, we built classifier algorithms which were

evaluated on 14 datasets. For consistency, the evaluation environment was maintained the

same for all the datasets. In a random order, each group (classifier algorithm) was evaluated

on datasets(treatments) as follows: none resampled dataset (as the control

experiment/baseline), dataset resample sample size percent as follows at 100, dataset

resampled at 200, dataset resampled at 300,dataset resampled at 400,dataset resampled at

500, dataset resampled at 600,dataset resampled at 700, dataset resampled at 800, dataset

resampled at 900,dataset resampled at 1000, dataset resampled at 1100, dataset resampled at

1200, dataset resampled at 1300. The following classifier algorithms were used Decision

Trees(DT), K-Nearest Neighbor(KNN), Naïve Bayes(NB), Support Vector Machine(SVM),

Multi-layer perceptron (MLP),hybrid KNMSD (combination of KNN, NB,MLP,SVM,DT),

Hybrid KNSD (combination of KNN, NB,SVM,DT), hybrid KND (combination of KNN,

NB,DT), and hybrid KD (combination of KNN, DT).The hybrid machine learning classifier

algorithms for the control experiments are also used to check on the effect of hybrid classifier

algorithm components on performance. The experiments were setup on Lenovo Ideapad 320

machine running Intel core i5, 1 terabyte HDD, 4GB RAM, Windows 10 pro and WEKA

3.8.3 explorer environment.

3.2 Data Mining Methodology and Tools

The data mining framework methodology followed in this study is the Cross-Industry

Standard Process for Data Mining (CRISP-DM), a non-proprietary hierarchical process

model designed by practitioners from different domains. It has proven to be the most

commonly preferred framework (Piatestsky, 2014).The framework breaks down the data

mining process into six phases: understanding the business process and determining the

ultimate data mining goals; identifying, collecting, and understanding key data sources;

preparing data for data mining; selecting modelling techniques to use; evaluating and

comparing results of different models against the initial goals and deploying the model. It

also emphasizes on data which must be divided into training and test/validation sets(Chawla,

2005). WEKA is used as a data mining tool because of its support for experimental data

43

mining tasks and virtually all algorithms (Witten, Frank, & Hall, 2011).This enables one to

quickly try out existing methods on new datasets in flexible ways. It also provides extensive

support for the whole process of experimental data mining, including preparing the input

data, evaluating learning schemes statistically and visualizing the input data and the results of

learning.

3.3 Terrorism Dataset and Collection Methodology

The GTD data set is an open source, most comprehensive and world‟s largest dataset

available on terrorism incidents used for the experiment, taken from an open source of the

National Consortium for the study of terrorism and Responses of Terrorism (START)

initiative at University of Maryland USA, which broadcasts the terrorism incidents report

about the globe from 1970 to 2017, and includes information about more than 87,000 terrorist

events as well as the vast information on 134 variables, and contain information over than

13,000 eliminations, 38,000 bombing and 4,000 kidnappings(START, 2018).For the hybrid

classifier modeling, Global Terrorism Database (GTD) was used as the data set source. The

data base is obtained from the National Consortium for the Study of Terrorism and Responses

to Terrorism (START) initiative at University of Maryland, from their online interface at

http://www.start.umd.edu/gtd/ as an open source database. The researcher was allowed access

to the database vide authorization as shown in appendix D. The study also complied with the

national regulatory requirements by seeking approval from National Commission for Science,

technology, and Innovation (NACOSTI) and Maseno University Ethical Review Committee

(MUERC) refer to appendices C and B respectively

3.4 Data Pre-processing

The dataset for the study was 1999-2017 dataset for sub-Saharan Africa region from the

GTD. The data set used for our study consists of a total of15, 022 terrorist events (instances),

and 23 attributes, the attribute group consists of 25 diverse terrorist groups. Before applying

classification algorithm(s) usually some pre-processing is performed on the data set. In order

to perform data processing, it is essential to improve the data(Han & Kamber, 2006). There

are a few number of techniques used for the purpose of data pre-processing as data

aggregation, data sampling, dimension reduction, feature creation, data discretization,

variable transformation, and dealing with missing values(Hongbo, 2010).

The attribute Group name was identified as the class label. All the instances with unknown

class values were removed. Class label that had less than three frequency of occurrence was

44

also eliminated. This meant that the instances in which a terrorist group had participated in an

incident less than three times for the whole time period of 1999-2017 had been removed. The

column Group name which indicates the perpetrator group responsible for an incident

consisted of apostrophes which were not accepted by WEKA for constructing the

classification models. Therefore, these apostrophes from the group names were replaced by

spaces and duplicate instances were removed. In this study the WEKA remove duplicates

filter was used to remove duplicate instances. Feature selection/ dimension reduction was

addressed through data approach method by use of WEKA supervised filter method. Feature

selection refers to retaining only those features that are “meaningful” or relevant in building a

good classifier. It is based on domain knowledge and careful exploratory analyses. In the

filter approach, features are selected before running a machine learning algorithm. The main

reason of feature selection is to remove noise, increase computational efficiency and to avoid

over fitting. WEKA provides a supervised attribute filter allows various search and

evaluation methods to be combined. The attribute evaluator is the technique by which each

attribute in the dataset (also called a column or feature) is evaluated in the context of the

output variable (e.g. the class). The search method is the technique by which to try or

navigate different combinations of attributes in the dataset in order to arrive on a short list of

chosen features (Patil & Sane, 2014). Filter techniques examine the significance of features

by investigating the real characteristics of the data. In most cases feature rank is calculated,

and low-ranking features are ignored during the learning process. Afterwards, the high-

ranking subset of features is used as training set to the classification algorithm (Kiage, 2015).

The 23 features in the dataset were subjected to the inbuilt WEKA attribute evaluator and

search methods after which six attributes were ranked more relevant in the context of the

output variable (class label).Data obtained after reduction was both in numerical as well as

textual nominal, only nominal numbers were considered. Attributes selected for the

identification of terrorist groups are listed below:

i. Country (This attribute represents the country or location where the incident has

happened)

ii. Region (It is a categorical variable and it represents the region in which the incident

occurred)

iii. Attack type (It is a categorical variable and shows which kind of attack types executed

e.g. assassination, bombing, kidnapping etc. there are total of 9 kinds of attack types

recorded)

45

iv. Target type (This attribute represents the target category)

v. Group name (This attribute represents the group that is responsible for attack)

vi. Weapon type (This attribute shows the type of weapon used in an attack)

The major pre-processing to be done was to solve the class imbalance problem in the data.

Class imbalance problem is a situation in which the observations that belong to one class are

significantly lower when compared to the observations of other classes. This causes biasness

towards the classes with higher observations. In the final dataset WEKA resampling filter

was applied to solve the class imbalance problem. This reduces class skew before applying a

base classifier. It also ensures that the sub-sample is stratified so that the original class

distribution is preserved in the sub-sample. WEKA Resampling filter produces a random sub-

sample of dataset using either sampling with replacement or without replacement for

imbalanced dataset, to achieve oversampling of the minority class, rather than under sampling

of the majority class, so that both classes have the same numbers of instances(Gundabathula

& Vaidhehi, 2018).The pre-processed dataset was converted to. ARFF to be used by WEKA.

3.5 The Flow of Building the Hybrid Classifier Model for Identification of Terrorist

groups

Building the hybrid classifier model is in two phases. The first phase is the building of base

classifiers. The second phase is the integration and evaluation of different combination of

selected base classifiers through bagging majority voting ensemble technique with the aim of

yielding optimum accuracy rates for the available dataset. Bagging combines them by

majority voting and the most voted class is predicted. Majority voting is a bagging technique

recommended for use if the output consists of class labels(Breiman, 2001). The flow of the

process of building the hybrid classifier algorithm model is shown in fig. 3.1.

46

Figure 3.1:The hybrid classifier algorithm model process flow

DATA GATHERING

(GTD)

DATASET

DATA

DATA PREPROCESSING

Feature Selection Missing

Values

Nominal Conversion Threshold

New Data

DATA PARTITIONING

Training Dataset Testing Dataset

CLASSIFIER BUILDING

NB KN

N

DT SVM MLP

NB

KNN DT SVM MLP

Majority Voting Combiner

TESTING/EVALUATION

Validation

47

3.5.1 Build and Evaluate Base Classifier Algorithm Models for Identification of

Terrorist Groups

The classification models were built for the control and resampled dataset using these

machine learning classification algorithms Decision Trees, Naive Bayes, K-Nearest

Neighbour, Support Vector Machines and Multi-Layer Perceptron and evaluated using 10-

fold cross validation and Test split test.

In 10-fold cross validation method data set is divided randomly into 10 parts. 9 of those parts

are used for training and reserved one tenth for testing. The procedure is repeated 10 times

each time reserving a different tenth for testing. The aim is to overcome the problem of

overfitting and make prediction more general. The advantage of this method is that all

observations are used for both training and validation, and each observation is used for

validation exactly once(Krogh & Vedelshy, 1995).10-fold cross validation makes predictions

using 90% of data, making it more likely to generalize to the full dataset(Refaeilzadeh, Tang,

& Liu, 2007). In test split test option data set is split into 66% train set for training the

classifier and 33% test for testing the classifier. The experiments were conducted as shown

below.

J48 algorithm belongs to the Decision trees family which is used to generate decision trees.

Naive Bayes is a probabilistic classifier which belongs to the Bayes family. IBK is a lazy

learning algorithm which is the implementation of K-nearest neighbor‟s algorithm, SMO and

MLP are function algorithms for the implementation of SVM and MLP, respectively. 10

experiments were set up, two for each different machine learning classifier model as follows:

i. Naive Bayes calculates the posterior probability for each class and makes a prediction

for the class with the highest probability. As such, it supports both binary

classification and multi-class classification problems. A Naïve Bayes classifier model

was built with WEKA configurations as shown in fig. 3.2. The resulting classifier

model was evaluated using 10-fold cross validation and test split (66%/34%) options.

The rate of classification accuracy and build time tabulated. The process was repeated

for all resampled datasets.

48

Figure 3.2: NB Configuration setup(author)

ii. K-Nearest Neighbor classifier model was developed. For this purpose, pre-processed

dataset was loaded and split for testing and training purpose and a model was created

using training dataset on IBK model. The model was then evaluated using 10- fold

cross validation and test split options. Accuracy build time and classification error

tabulated. K-Nearest Neighbor classifier is a simple algorithm, but one that does not

assume very much about the problem other than that the distance between data

instances is meaningful in making predictions. As such, it often achieves particularly

good performance. When making predictions on classification problems, KNN will

take the mode (most common class) of the k most similar instances in the training

dataset. IBK (instanced based learner k) is the WEKA implementation of K-nearest

neighbor‟s algorithm. An IBK classifier model was built with WEKA configurations

as shown in fig. 3.3. The resulting classifier model was evaluated using 10- fold cross

49

validation and test split (66%/34%) options. The rate of classification accuracy and

build time tabulated. The process was repeated for all resampled datasets.

Figure 3.3: KNN configuration setup (author)

iii. Decision Trees work by creating a tree to evaluate an instance of data, start at the root

of the tree and moving town to the leaves (roots) until a prediction can be made. The

process of creating a decision tree works by greedily selecting the best split point in

order to make predictions and repeating the process until the tree is a fixed depth.

After the tree is constructed, it is pruned in order to improve the model‟s ability to

generalize to new data. A C4.5 (J48) is an algorithm used to generate a decision tree.

It is the WEKA implementation of decision trees. J48 classifier model was built with

50

WEKA configurations as shown in fig. 3.4. The resulting classifier model was

evaluated using 10- fold cross validation and test split(66%/34%) options. The rate of

classification accuracy and build time tabulated. The process was repeated for all

resampled datasets.

Figure 3.4: DT (J48) configuration setup (author)

51

iv. SVM works by finding a line that best separates the data into the two groups. This is

done using an optimization process that only considers those data instances in the

training dataset that are closest to the line that best separates the classes. The instances

are called support vectors, hence the name of the technique. In almost all problems of

interest, a line cannot be drawn to neatly separate the classes, therefore a margin is

added around the line to relax the constraint, allowing some instances to be

misclassified but allowing a better result overall. Finally, few datasets can be

separated with just a straight line. Sometimes a line with curves or even polygonal

regions need to be marked out. This is achieved with SVM by projecting the data into

a higher dimensional space in order to draw the lines and make predictions. Different

kernels can be used to control the projection and the amount of flexibility in

separating the classes. SMO refers to the specific efficient optimization algorithm

used inside the SVM implementation, which stands for Sequential Minimal

Optimization. It is the WEKA implementation of support vector machines). SMO

classifier model was built with WEKA configurations as shown in fig.3.5. The

resulting classifier model was evaluated using 10- fold cross validation and test split

(66%/34%) options. The rate of classification accuracy and build time tabulated. The

process was repeated for all resampled datasets.

52

Figure 3.5: SVM(SMO) configuration setup (author)

v. A multilayer perceptron (MLP) is a class of feed forward artificial neural network.

MLP utilizes a supervised learning called back propagation for training. Its multiple

layers and non-linear activation distinguish MLP from a linear perceptron. It can

distinguish data that is not linearly separable. SMO classifier model was built with

53

WEKA configurations as shown in fig.3.6. The resulting classifier model was

evaluated using 10- fold cross validation and test split (66%/34%) options. The rate of

classification accuracy and build time tabulated. The process was repeated for all

resampled datasets

Figure 3.6: MLP(back propagation) configuration setup

54

3.5.2 Build and Evaluate Hybrid Classifier algorithm models for Identification of

Terrorist Groups

The hybrid classifier algorithm models were built for the control and resampled dataset by

combining different machine learning classification algorithms Decision Trees, Naive Bayes,

K-Nearest Neighbour, Support Vector Machines and Multi-Layer Perceptron and evaluated

using 10-fold cross validation and Test split test.

In 10-fold cross validation method data set is divided randomly into 10 parts. 9 of those parts

are used for training and reserved one tenth for testing. The procedure is repeated 10 times

each time reserving a different tenth for testing. The aim is to overcome the problem of

overfitting and make prediction more general. The advantage of this method is that all

observations are used for both training and validation, and each observation is used for

validation exactly once(Krogh & Vedelshy, 1995).10-fold cross validation makes predictions

using 90% of data, making it more likely to generalize to the full dataset(Refaeilzadeh, Tang,

& Liu, 2007). In test split test option data set is split into 66% train set for training the

classifier and 33% test for testing the classifier. The experiments were conducted as shown

below.

Experiments were set up for various optimum combinations of base classifiers based on the

classifier model accuracy and build time as follows:

i. KNMSD hybrid classifier was built by combining concurrently through bagging all

the developed base classifiers: KNN, NB, MLP, SVM and DT. In the concurrent

ensemble methodology, the original dataset was partitioned into several subsets from

which multiple classifiers were induced concurrently. A majority voting combining

procedure was then applied in order to produce a single classification for a given

instance. The configuration for combination of the base classifiers is shown in fig.3.7.

This model was then evaluated using 10-fold cross validation test option and test split

test option. Classification accuracy and build tabulated. The process was repeated for

all the datasets.

55

Figure 3.7: KNMSD configuration setup(author)

ii. KNSD hybrid classifier was built by combining concurrently through bagging four

base classifiers KNN, NB, SVM and DT which outperformed MLP at the identified

resample rate for optimum performance. In the concurrent ensemble methodology, the

original dataset was partitioned into several subsets from which multiple classifiers

were induced concurrently. A majority voting combining procedure was then applied

in order to produce a single classification for a given instance. The configuration for

combination of the base classifiers is shown in fig. 3.8. This model was then

evaluated using 10-fold cross validation test option and test split test option.

Classification accuracy and build tabulated. The process was repeated for all the

datasets

56

Figure 3.8: KNSD configuration setup (author)

iii. KND hybrid classifier was built by combining concurrently through bagging three

base classifiers KNN, NB, and DT which outperformed MLP and SVM at the

identified resample rate for optimum performance. In the concurrent ensemble

methodology, the original dataset was partitioned into several subsets from which

multiple classifiers were induced concurrently. A majority voting combining

procedure was then applied in order to produce a single classification for a given

instance. The configuration for combination of the base classifiers is shown in fig.3.9.

This model was then evaluated using 10-fold cross validation test option and test split

test option. Classification accuracy and build tabulated. The process was repeated for

all the datasets

57

Figure 3.9: KND configuration setup(author)

iv. KD hybrid classifier was built by combining concurrently two base classifiers KNN,

and DT which outperformed MLP, DT and SVM at the identified resample rate for

optimum performance. In the concurrent ensemble methodology, the original dataset

was partitioned into several subsets from which multiple classifiers were induced

concurrently. A majority voting combining procedure was then applied in order to

produce a single classification for a given instance. The configuration for combination

of the base classifiers is shown in fig.3.10. The model was then evaluated using 10-

fold cross validation test option and test split test option. Classification accuracy and

build tabulated. The process was repeated for all the datasets

58

Figure 3.10: KD configuration setup(author)

3.5.3 The KD Hybrid Architecture

The hybrid KD which is a combination of the KNN, and DT has outperformed other hybrid

in classification accuracy. The general architecture of the hybrid is shown in fig.3.11.

59

Figure 3.11: Architecture of the KD hybrid classifier algorithm model (Author)

The hybrid classifier algorithm has the following components

Sampled datasets 1 and 2 is made of bootstrapped samples, sampled randomly from the

original dataset with replacement.

A set of diverse classifiers KNN and DT are selected after outperforming NB, MLP and

SVM, trained on each of these different subsets of the original datasets balanced by

resampling at the sample size percent of 1000 for optimum performance of the classifier

algorithm models.

Aggregation stage where all the predictions of all the base classifier algorithm models are

combined. This is a classification problem and therefore majority voting is used. The

evaluation is done in 10-fold cross validation and test split test options.

The outputs of the KNN and DT are combined together to predict the output of the final

model. The output with the majority vote is predicted.

Training

dataset

Sampled

dataset 2

sampled

dataset 1

KNN

DT

Majority

Vote

Final

prediction

H(X)

H1(X)

H2(X)

60

CHAPTER FOUR

RESULTS & DISCUSSIONS

In this chapter data is presented and analysed. The aim of the study was to build and evaluate

hybrid classifier algorithm models for identification of terrorist groups in the aftermath of an

attack. Several experiments were conducted, and the purpose was to determine the

approaches to be used to build and evaluate base and hybrid classifier algorithms and

compare performance of the classifier algorithms. Data mining and prediction toolWEKA

used in this study and the model building and evaluation has proved to be very efficient in

prediction from the big data available in GTD. The results of the study are organised in sub-

topics focusing on answering research questions.

4.1 Build and Evaluate Base Classifier algorithm models for the Identification of

Terrorist Group

The study sought to establish what approach to be used to build and evaluate base classifier

algorithm models in the identification of terrorist group in the aftermath of an attack.

4.1.1 Decision Tree

Table 4.1 shows tabulated accuracy results for 10-foldcross validation and test split test

option. The accuracy rate in percentage for the control experiment is for dataset with no

resample at 77.42for 10-fold cross validation and 77.54 for test split, respectively. As the

resample sample size percent increases so does the accuracy rate to a Resample sample size

percent of 1000 and accuracy rate in percentage of 87.53 for 10-fold cross validation and

86.68 for test split respectively, and accuracy rate starts to fall with further increase in the

resample sample size percentage. At resample sample size percent of 1300, the accuracy rate

in percentage is 86.93 for 10-fold cross validation and 85.40 for test split, respectively. This

can be attributed to the fact that the dataset is initially imbalanced without resampling, as the

dataset is resampled at different rates, it becomes balanced and optimizes performance at

resample sample size percent rate of 1000 and starts to suffer again from overfitting with

increasing resample sample size percent eventually affecting the rate of accuracy of the

classifier model. The accuracy rates for 10-fold cross validation is generally higher than those

for test split even though with a small margin as shown in fig. 4.1. Both 10-fold cross

validation and test split yield optimum accuracy results at the resample sample size percent of

1000.

61

Table 4.1: DT Accuracy

Classifier model rate of accuracy (%)

Resample (%) 10-foldCross Validation Test Split

None 77.42 77.53

100 79.08 77.85

200 82.46 82.74

300 83.72 83.55

400 85.59 84.62

500 86.31 84.62

600 86.40 85.07

700 86.42 86.01

800 86.89 86.02

900 87.34 86.50

1000 87.53 86.68

1100 87.45 86.55

1200 87.13 85.90

1300 86.93 85.40

62

Figure 4.1: DT Accuracy

Table 4.2 shows tabulated build time results for 10-foldcross validation and test split test

option. Build time for test split are generally longer than build time for 10-fold cross

validation and increases with the resample sample size percent as shown in fig.4.2.This is

attributed to more instances in resampled datasets that increase the computational cost of the

classifier algorithm models. The build time in seconds for the control experiments is 0.01 for

10-fold cross validation, and 0.01 for test split. The build time in seconds at the resample

sample size percentage of 1000 is 0.02 for 10-fold cross validation and 0.05 for test split,

respectively. The build time in seconds at the resample sample size percentage of 1300 is

0.04 for 10-fold cross validation and 0.02 for test split, respectively.

72

74

76

78

80

82

84

86

88

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
cc

u
ra

cy
 (

%
)

Resample sample size percent(x100)

10-foldCross Validation Test Split

63

Table 4.2: DT build time

Classifier model build time (sec)

Resample (%) 10-fold Cross Validation Test Split(66/34)

None 0.01 0.01

100 0.01 0.01

200 0.02 0.02

300 0.02 0.03

400 0.01 0.03

500 0.03 0.03

600 0.03 0.02

700 0.02 0.02

800 0.04 0.04

900 0.04 0.06

1000 0.02 0.05

1100 0.02 0.06

1200 0.03 0.04

1300 0.04 0.02

64

Figure 4.2: DT build time

4.1.2 K-Nearest Neighbor

Table 4.3 shows tabulated accuracy results for 10-foldcross validation and test split test

option. The accuracy rate in percentage for the control experiment is for dataset with no

resample at 72.70 for 10-fold cross validation and 70.41 for test split, respectively. As the

resample sample size percentage increases so does the accuracy rate to a Resample sample

size percentage of 1000and accuracy rate in percentage of 87.73 for 10-fold cross validation

and 87.06 for test split respectively, and accuracy rate starts to fall with further increase in the

resample sample size percent. At resample sample size percent of 1300, the accuracy rate in

percentage is 87.52 for 10-fold cross validation and 86.70 for test split, respectively. This can

be attributed to the fact that the dataset is initially imbalanced without resampling, as the

dataset is resampled at different rates, it becomes balanced and optimizes performance at a

resample sample size percent of 1000 and starts to suffer again from overfitting with

increasing resample sample size percent eventually affecting the rate of accuracy of the

classifier model. The accuracy rates for 10-fold cross validation is generally higher than those

for test split even though with a small margin as shown in fig. 4.3.Both 10-fold cross

validation and test split yield optimum accuracy results at the resample sample size percent of

1000.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

B
u

ild
 t

im
e(

se
c)

Resample sample size percent(x100)

10-fold Cross Validation Test Split(66/34)

65

Table 4.3: KNN Accuracy

Classifier model rate of accuracy (%)

Resample (%) 10-fold Cross Validation Test Split

None 72.70 70.41

100 73.34 71.16

200 75.89 75.42

300 80.10 79.38

400 82.62 80.49

500 86.24 82.37

600 86.37 83.38

700 86.44 85.96

800 86.66 85.98

900 87.56 87.01

1000 87.73 87.06

1100 87.63 87.02

1200 87.54 86.81

1300 87.52 86.70

66

Figure 4.3: KNN Accuracy

Table 4.4 shows tabulated build time results for 10-foldcross validation and test split test

option. Build time for test split and generally longer than build time for 10-fold cross

validation and increase with the resample sample size percent as shown in fig.4.4.This is

attributed to more instances in resampled datasets that increase the computational cost of the

classifier algorithm models. The build time in seconds for the control experiments is 0.01 for

10-fold cross validation, and 0.02 for test split. The build time in seconds at the resample

sample size percent of 1000 is 0.01 for 10-fold cross validation and 0.89 for test split,

respectively. The build time in seconds at the resample sample size percentage of 1300 is

0.01 for 10-fold cross validation and 1.45 for test split, respectively.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
cc

u
ra

cy
 (

%
)

Resample sample size percent(x100)

10-fold Cross Validation Test Split

67

Table 4.4: KNN Build Time

Classifier model Build time (sec)

Resample (%) 10-fold Cross Validation Test Split(66%/34%)

None 0.01 0.02

100 0.01 0.02

200 0.01 0.08

300 0.01 0.13

400 0.01 0.19

500 0.01 0.28

600 0.01 0.39

700 0.01 0.51

800 0.01 0.65

900 0.01 0.77

1000 0.01 0.89

1100 0.01 1.01

1200 0.01 1.26

1300 0.01 1.45

68

Figure 4.4: KNN build time

4.1.3 Support Vector Machine

Table 4.5 shows tabulated accuracy results for 10-fold cross validation and test split test

option. The accuracy rate in percentage for the control experiment is for dataset with no

resample at 76.15 for 10-fold cross validation and 77.90 for test split, respectively. As the

resample sample size percent increases so does the accuracy rate to a Resample sample size

percent of 1000 and accuracy rate in percentage of 86.17 for 10-fold cross validation and

86.57 for test split respectively, and accuracy rate starts to fall with further increase in the

resample sample size percent. At resample sample size percent of 1300, the accuracy rate in

percentage is 85.6 for 10-fold cross validation and 85.00 for test split, respectively. This can

be attributed to the fact that the dataset is initially imbalanced without resampling, as the

dataset is resampled at different rates, it becomes balanced and optimizes at a resample

sample size percent rate of 1000 and starts to suffer again from overfitting with increasing

resample sample size percent eventually affecting the rate of accuracy of the classifier

algorithm model. The accuracy rates for 10-fold cross validation are slightly better than test

split as resample sample size percent increases to 1000 and starts to be slightly lower than the

accuracy rates for test split as the resample sample size percent exceeds 1000 to 1200 and

0.01

0.21

0.41

0.61

0.81

1.01

1.21

1.41

1 2 3 4 5 6 7 8 9 10 11 12 13 14

B
u

ild
 t

im
e

(s
ec

)

Resample sample size percent(x100)

10-fold Cross Validation Test Split(66%/34%)

69

rises slightly above the accuracy rate for test split as shown in fig.4.5.The performance of

test split test option is at its peak and better than that of 10-fold cross validation at the

resample sample size percent of 1000. Both 10-fold cross validation and test split yield

optimum accuracy results at the resample sample size percent of 1000.

Table 4.5: SVM Accuracy

Classifier model rate of accuracy (%)

Resample (%) 10-fold Cross Validation Test Split

None 76.15 77.90

100 80.10 77.15

200 83.61 81.80

300 83.93 82.38

400 84.02 82.55

500 84.55 83.96

600 84.89 84.62

700 85.42 84.64

800 85.48 84.99

900 85.63 85.54

1000 86.17 86.57

1100 86.01 86.39

1200 85.96 85.89

1300 85.60 85.00

70

Figure 4.5: SVM accuracy

Table 4.6 shows tabulated build time results for 10-foldcross validation and test split test

option. Build time for test split and generally longer than build time for 10-fold cross

validation and increase with the resample sample size percent as shown in fig.4.6.This is

attributed to more instances in resampled datasets that increase the computational cost of the

classifier algorithm models. The build time in seconds for the control experiments is 4.27 for

10-fold cross validation, and 4.30 for test split. The build time in seconds at the resample

sample size percent of 1000 is 17.08 for 10-fold cross validation and 18.37 for test split,

respectively. The build time in seconds at the resample sample size percent of 1300 is 36.58

for 10-fold cross validation and 28.53 for test split, respectively.

70

72

74

76

78

80

82

84

86

88

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
cc

u
ra

cy
(%

)

Resample sample size percent(x100)

10-fold Cross Validation Test Split

71

Table 4.6: SVM build time

Classifier model Build time (sec)

Resample (%) 10-fold Cross Validation Test Split(66/34)

None 4.27 4.30

100 4.05 4.22

200 3.76 4.19

300 4.77 5.29

400 7.33 6.55

500 8.74 7.89

600 18.82 11.99

700 21.22 13.29

800 13.32 14.04

900 14.16 14.44

1000 17.08 18.37

1100 30.97 23.72

1200 25.66 24.59

1300 36.58 28.53

72

Figure 4.6: SVM build time

4.1.4 Multi -Layer Perceptron

Table 4.7 shows tabulated accuracy results for 10-fold cross validation and test split test

option. The accuracy rate in percentage for the control experiment is for dataset with no

resample at 68.62 for 10-fold cross validation and 69.66 for test split, respectively. As the

resample sample size percent increases so does the accuracy rate to a Resample sample size

percent of 1000 and accuracy rate in percentage of 87.06 for 10-fold cross validation and

87.58 for test split respectively, and accuracy rate starts to fall with further increase in the

resample sample size percent. At resample sample size percentage of 1300, the accuracy rate

in percentage is 86.41 for 10-fold cross validation and 85.67 for test split respectively. This

can be attributed to the fact that the dataset is initially imbalanced without resampling, as the

dataset is resampled at different rates, it becomes balanced and optimizes performance at a

resample sample size percent rate of 1000 and starts to suffer again from overfitting with

increasing resample sample size percent eventually affecting the rate of accuracy of the

classifier model. The accuracy rates for10-fold cross validation are slightly better than test

split as resample sample size percent increases to 500 and starts to be slightly lower than the

accuracy rates for test split as the resample sample size percent exceeds 1200 and rises

1 2 3 4 5 6 7 8 9 10 11 12 13 14

B
u

ild
 t

im
e(

se
c)

Resample sample size percent(x100)

10-fold Cross Validation Test Split(66/34)

73

slightly above the accuracy rate for test split as shown in fig.4.7. The performance of test

split test option is at its peak and better than that of 10-fold cross validation at the resample

sample size percent of 1000. Both 10-fold cross validation and test split yield optimum

accuracy results at the resample sample size percent of 1000.

Table 4.7: MLP accuracy

Classifier models rate of accuracy (%)

Resample (%) 10-fold Cross Validation Test Split

None 68.62 69.66

100 80.23 76.40

200 82.27 81.61

300 84.53 84.00

400 85.20 85.27

500 85.90 85.90

600 86.12 86.18

700 86.34 87.26

800 86.73 87.32

900 86.77 87.46

1000 87.09 87.58

1100 86.55 86.70

1200 86.47 85.68

1300 86.41 85.50

74

Figure 4.7: MLP accuracy

Table 4.8 shows tabulated build time results for 10-foldcross validation and test split test

option. Build time for test split and generally longer than build time for 10-fold cross

validation and increase with the resample sample size percent as shown in fig.4.8.This is

attributed to more instances in resampled datasets that increase the computational cost of the

classifier algorithm models. The build time in seconds for the control experiments is 54.34

for 10-fold cross validation, and54.06 for test split. The build time in seconds at the resample

sample size percent of 1000 is 530.40 for 10-fold cross validation and 543.30 for test split,

respectively. The build time in seconds at the resample sample size percent of 1300 is 674.80

for 10-fold cross validation and 698.40 for test split, respectively.

65

70

75

80

85

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
cc

u
ra

cy
 (

%
)

Resample sample size percent(x100)

10-fold Cross Validation Test Split

75

Table 4.8: MLP build time

Classifier model build time (sec)

Resample (%) 10-fold Cross Validation Test Split(66/34)

None 54.34 54.06

100 53.42 52.67

200 107.40 106.90

300 157.80 155.90

400 212.90 213.90

500 270.60 269.00

600 318.40 319.60

700 365.00 371.30

800 413.10 421.80

900 473.80 466.90

1000 530.40 543.30

1100 569.10 567.30

1200 630.40 622.90

1300 674.80 698.40

76

Figure 4.8: MLP build time

4.1.5 Naïve’ Bayes

Table 4.9 shows tabulated accuracy results for 10-fold cross validation and test split test

option. The accuracy rate in percentage for the control experiment is for dataset with no

resample at 76.66 for 10-fold cross validation and 77.15 for test split, respectively. As the

resample sample size percent increases so does the accuracy rate to a Resample sample size

percent of 1000 and accuracy rate in percentage of 83.61 for 10-fold cross validation and

82.86 for test split respectively, and accuracy rate starts to fall with further increase in the

resample sample size percentage. At resample sample size percent of 1300, the accuracy rate

in percentage is 82.61 for 10-fold cross validation and 82.02 for test split, respectively. This

can be attributed to the fact that the dataset is initially imbalanced without resampling, as the

dataset is resampled at different rates, it becomes balanced and optimizes performance at a

resample sample size percent rate of 1000 and starts to suffer again from overfitting with

increasing resample sample size percent eventually affecting the rate of accuracy of the

classifier model. The accuracy rates for 10-fold cross validation is generally higher than those

for test split even though with a small margin as shown in fig. 4.9. Both 10-fold cross

validation and test split yield optimum accuracy results at the resample sample size percent of

1000.

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14

B
u

ild
 t

im
e

(s
ec

)

Resample sample size percent(x100)

10-fold Cross Validation Test Split(66/34)

77

Table 4.9: NB accuracy

Classifier model rate of accuracy (%)

Resample (%) 10-fold Cross Validation Test Split

None 76.66 77.15

100 79.08 77.15

200 78.95 78.99

300 80.57 81.13

400 80.68 81.14

500 81.30 81.50

600 81.91 81.95

700 82.45 82.05

800 82.60 82.40

900 82.96 82.62

1000 83.61 82.86

1100 82.75 82.77

1200 82.66 82.68

1300 82.61 82.02

78

Figure 4.9: NB accuracy

Table 4.10 shows tabulated build time results for 10-foldcross validation and test split test

option. Build time for test split and generally longer than build time for 10-fold cross

validation and increase with the resample sample size percentage as shown in fig.4.10.This is

attributed to more instances in resampled datasets that increase the computational cost of the

classifier algorithm models. The build time in seconds for the control experiments is 0.01 for

10-fold cross validation, and0.01 for test split. The build time in seconds at the resample

sample size percentage of 1000 is 0.01 for 10-fold cross validation and 0.06 for test split,

respectively. The build time in seconds at the resample sample size percentage of 1300 is

0.01 for 10-fold cross validation and 0.08 for test split, respectively.

72

74

76

78

80

82

84

86

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
cc

u
ra

cy
 (

%
)

Resample sample size percent(x100)

10-fold Cross Validation Test Split

79

Table 4.10: NB Build Time

Classifier model Build time (sec)

Resample (%) 10-fold Cross Validation Test Split(66/34)

None 0.01 0.01

100 0.01 0.01

200 0.02 0.01

300 0.01 0.02

400 0.01 0.03

500 0.01 0.03

600 0.01 0.05

700 0.01 0.05

800 0.01 0.05

900 0.01 0.05

1000 0.01 0.06

1100 0.01 0.08

1200 0.01 0.08

1300 0.01 0.08

80

Figure 4.10: NB build time

From the experimental results, 10-fold cross validation test option yield higher accuracy rates

for KNN, DT and NB, as compared to test split test options for a resample sample size

percent of 1000. Test split on the other hand yields better accuracy for MLP and SVM as

compared to 10-fold cross validation for a resample sample size percent of 1000. The study

demonstrates that the resample sample size percent for optimum percentage accuracy is at

1000 for the dataset for all base classifier algorithm models. An insight we can draw from the

results is that class imbalance affects accuracy of classifiers. The results are consistent with

studies which show that imbalanced data set reduces performance and demonstrating the

gains of using resampling in imbalanced data set (Garcia, Marques, & Sanchez, 2012). For

10-fold cross validation NB performed worst with the lowest accuracy percentage rate of

83.61 and build time of 0.01 seconds, followed by MLP with accuracy percentage rate of

87.09 and build time of 530.4 seconds, SVM with accuracy percentage rate of 86.17 and

build time of 17.08 seconds, DT with accuracy percentage rate of 87.53and build time of 0.02

seconds and KNN outperformed all the base classifiers with accuracy percentage rate of

87.78, build time of 0.01 seconds. For test split NB performed worst with the lowest accuracy

percentage rate of 82.86 and build time of 0.06 seconds, followed by SVM with accuracy

percentage rate of 86.57 and build time of 18.37 seconds, DT with accuracy percentage rate

of 86.68 and build time of 0.05 seconds, KNN with accuracy percentage rate of 87.06 and

build time of 0.89 seconds and MLP outperformed all the base classifiers with accuracy

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 3 4 5 6 7 8 9 10 11 12 13 14

B
u

ild
 t

im
e

(s
ec

)

Resample sample size percent(x100)

10-fold Cross Validation Test Split(66/34)

81

percentage rate of 87.58, build time of 543.30 seconds. Test split avoids the overlap between

training data and test data, yielding more accurate estimate for the generalization

performance of the algorithm. The downside is that this procedure does not use all the

available data and the results are highly dependent on the choice of the training/test split

(Dietterich, 1998). The instances chosen for inclusion in the test set may be too easy or too

difficult to classify and this can skew the results. Furthermore, the data in the test set may be

valuable for training and if it is held out prediction performance may suffer, again leading to

skewed results. In typical cross validation, the training and validation sets must cross-over in

successive rounds such that each data points has a chance of being validated against. 10-fold

cross validation is a good compromise in data mining. It is particularly attractive because it

makes predictions using 90% of data, making it more likely to be generalizable to the full

data(Refaeilzadeh, Tang, & Liu, 2007). The study answers the research question by

determining the optimal design parameters for respective base classifiers and fit with the

theory that different machine learning algorithms make different assumptions about the shape

and structure of the function and how best to optimize a representation to approximate it, and

why it is important to try a suite of different algorithms on a classification problem. The key

question when dealing with classification is not whether a learning algorithm is superior to

others, but under which conditions a particular method can significantly outperform others on

a given application problem, and that KNN, NB, & DT take shortest Build time, SVM and

MLP take longer Build time (Kotsiantis, Zaharakis, & Pinteals, 2004).Generalizability of the

results of the experiment is limited by resample technique as a data approach to solving class

imbalance.

4.2 Build and Evaluate Hybrid Classifier Algorithm Models for the Identification of

Terrorist Groups

The study sought to establish what approaches to be used to build and evaluate hybrid

classifier models for identification of terrorist groups in the aftermath of an attack.

82

4.2.1 Hybrid KNMSD

Table 4.11 shows tabulated accuracy results for 10-fold cross validation and test split test

option. The accuracy rate in percentage for the control experiment is for dataset with no

resampling at 77.17 for 10-fold cross validation and 77.53 for test split, respectively. As the

resample sample size percent increases so does the accuracy rate to a Resample sample size

percentage of 1000 and accuracy rate in percentage of 87.83 for 10-fold cross validation and

87.36 for test split respectively, and accuracy rate starts to fall with further increase in the

resample sample size percent. At resample sample size percent of 1300, the accuracy rate in

percentage is 87.25 for 10-fold cross validation and 86.20 for test split, respectively. This can

be attributed to the fact that the dataset is initially imbalanced without resampling, as the

dataset is resampled at different rates, it becomes balanced and optimizes performance at a

resample sample size percent rate of 1000 and starts to suffer again from overfitting with

increasing resample sample size percentage eventually affecting the rate of accuracy of the

classifier model. The accuracy rates for 10-fold cross validation is generally higher than those

for test split even though with a small margin as shown in fig. 4.11.Both 10-fold cross

validation and test split yield optimum accuracy results at the resample sample size percent of

1000.

83

Table 4.11: Hybrid KNMSD accuracy

Classifier model rate of accuracy (%)

Resample (%) 10-fold Cross Validation Test Split

None 77.17 77.53

100 79.60 75.28

200 83.48 82.93

300 84.23 84.00

400 85.78 84.90

500 86.40 85.37

600 86.82 85.83

700 86.93 86.66

800 87.04 86.87

900 87.54 86.99

1000 87.83 87.36

1100 87.47 87.34

1200 87.44 86.34

1300 87.25 86.20

84

Figure 4.11: Hybrid KNMSD Accuracy

Table 4.12 shows tabulated build time results for 10-foldcross validation and test split test

option. Build time for test split and generally longer than build time for 10-fold cross

validation and increase with the resample sample size percent as shown in fig.4.12 This is

attributed to more instances in resampled datasets that increase the computational cost of the

classifier algorithm models. The build time in seconds for the control experiments is 66.91

for 10-fold cross validation, and 57.70 for test split. The build time in seconds at the resample

sample size percent of 1000 is 577.90 for 10-fold cross validation and 575.6 for test split,

respectively. The build time in seconds at the resample sample size percent of 1300 is 741.80

for 10-fold cross validation and 730.40 for test split, respectively.

68

70

72

74

76

78

80

82

84

86

88

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
cc

u
ra

cy
 (

%
)

Resample sample size percent(x100)

10-fold Cross Validation Test Split

85

Table 4.12: Hybrid KNMSD build time

Classifier model Build time (sec)

Resample (%) 10-fold Cross Validation Test Split(66/34)

None 66.91 57.70

100 56.67 58.50

200 113.20 114.30

300 168.20 168.40

400 222.60 233.80

500 276.80 279.80

600 335.10 341.20

700 393.80 389.90

800 437.50 465.10

900 516.70 513.40

1000 577.90 575.60

1100 622.20 648.10

1200 672.10 673.00

1300 741.80 730.40

86

Figure 4.12: Hybrid KNMSD build time

4.2.2 Hybrid KNSD

Table 4.13 shows tabulated accuracy results for 10-fold cross validation and test split test

option. The accuracy rate in percentage for the control experiment is for dataset with no

resample at 77.93 for 10-fold cross validation and 77.53 for test split, respectively. As the

resample sample size percent increases so does the accuracy rate to a Resample sample size

percent of 1000 and accuracy rate in percentage of 87.98 for 10-fold cross validation and

87.21 for test split respectively, and accuracy rate starts to fall with further increase in the

resample sample size percent. At resample sample size percent of 1300, the accuracy rate in

percentage is 87.33 for 10-fold cross validation and 86.24 for test split, respectively. This can

be attributed to the fact that the dataset is initially imbalanced without resampling, as the

dataset is resampled at different rates, it becomes balanced and optimizes performance at a

resample sample size percent rate of 1000 and starts to suffer again from overfitting with

increasing resample sample size percent eventually affecting the rate of accuracy of the

classifier model. The accuracy rates for 10-fold cross validation is generally higher than those

for test split even though with a small margin as shown in fig. 4.13.Both 10-fold cross

validation and test split yield optimum accuracy results at the resample sample size percent of

1000.

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14

B
u

ild
 t

im
e

(s
ec

)

Resample sample size percent(x100)

10-fold Cross Validation Test Split(66/34)

87

Table 4.13: Hybrid KNSD accuracy

Classifier model rate of accuracy (%)

Resample (%) 10-fold Cross Validation Test Split

None 77.93 77.53

100 77.93 77.90

200 83.16 82.74

300 83.80 83.75

400 85.71 84.30

500 86.59 85.00

600 86.86 85.18

700 86.93 85.91

800 87.27 86.44

900 87.60 87.04

1000 87.98 87.21

1100 87.62 86.92

1200 87.50 86.59

1300 87.33 86.24

88

Figure 4.13: Hybrid KNSD Accuracy

Table 4.14 shows tabulated build time results for 10-foldcross validation and test split test

option. Build time for test split and generally longer than build time for 10-fold cross

validation and increases with the resample sample size percent as shown in Fig.4.14. This is

attributed to more instances in resampled datasets that increase the computational cost of the

classifier algorithm models. The build time in seconds for the control experiments is 1.97 for

10-fold cross validation, and 4.02 for test split. The build time in seconds at the resample

sample size percent of 1000 is 17.83 for 10-fold cross validation and 21.61 for test split,

respectively. The build time in seconds at the resample sample size percent of 1300 is 26.27

for 10-fold cross validation and 27.17 for test split, respectively.

72

74

76

78

80

82

84

86

88

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
cc

u
ra

cy
 (

%
)

Resample sample size percent(x100)

10-fold Cross Validation Test Split

89

Table 4.14: Hybrid KNSD build time

Classifier model build time (sec)

Resample (%) 10-fold Cross Validation Test Split(66/34)

None 1.97 4.02

100 1.94 3.61

200 3.37 4.26

300 4.85 5.37

400 7.58 6.58

500 9.63 8.46

600 10.42 10.2

700 11.37 11.05

800 13.34 14.72

900 13.34 15.58

1000 17.83 21.61

1100 22.71 22.52

1200 24.80 26.25

1300 26.27 27.17

90

Figure 4.14: Hybrid KNSD build time

4.2.3 Hybrid KND

Table 4.15 shows tabulated accuracy results for 10-fold cross validation and test split test

option. The accuracy rate in percentage for the control experiment is for dataset with no

resampling at 78.57 for 10-fold cross validation and 77.90 for test split, respectively. As the

resample sample size percent increases so does the accuracy rate to a Resample sample size

percent of 1000 and accuracy rate in percentage of 87.93 for 10-fold cross validation and

86.95 for test split respectively, and accuracy rate starts to fall with further increase in the

resample sample size percent .At resample sample size percent of 1300, the accuracy rate in

percentage is 87.37 for 10-fold cross validation and 86.26 for test split respectively. This can

be attributed to the fact that the dataset is initially imbalanced without resampling, as the

dataset is resampled at different rates, it becomes balanced and optimizes performance at a

resample sample size percentage rate of 1000 and starts to suffer again from overfitting with

increasing resample sample size percent eventually affecting the rate of accuracy of the

classifier model. The accuracy rates for 10-fold cross validation is generally higher than those

for test split even though with a small margin as shown in fig. 4.15.Both 10-fold cross

validation and test split yield optimum accuracy results at the resample sample size percent of

1000.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
cc

u
ra

cy
 (

%
)

Resample sample size percent(x100)

10-fold Cross Validation Test Split(66/34)

91

Table 4.15: Hybrid KND accuracy

Classifier model rate of accuracy (%)

Resample (%) 10-fold Cross Validation Test Split

None 78.57 77.90

100 79.21 78.21

200 81.95 81.99

300 83.21 83.00

400 85.33 83.93

500 85.80 84.77

600 86.50 85.50

700 86.66 86.01

800 86.80 86.54

900 87.60 86.80

1000 87.93 86.95

1100 87.50 86.56

1200 87.39 86.37

1300 87.37 86.26

92

Figure 4.15: Hybrid KND Accuracy

Table 4.16 shows tabulated build time results for 10-fold cross validation and test split test

option. Build time for test split and generally longer than build time for 10-fold cross

validation and increase with the resample sample size percent as shown in Fig4.16. This is

attributed to more instances in resampled datasets that increase the computational cost of the

classifier algorithm models. The build time in seconds for the control experiments is 0.01 for

10-fold cross validation, and 0.03 for test split .The build time in seconds at the resample

sample size percent of 1000 is 0.03 for 10-fold cross validation and 1.03 for test split

respectively. The build time in seconds at the resample sample size percent of 1300 is 0.05

for 10-fold cross validation and 1.58 for test split, respectively.

72

74

76

78

80

82

84

86

88

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
cc

u
ra

cy
 (

%
)

Resample sample size percent(x100)

10-fold Cross Validation Test Split

93

Table 4.16: Hybrid KND build time

Classifier model Build time (sec)

Resample (%) 10-fold Cross Validation Test Split(66/34)

None 0.01 0.03

100 0.01 0.05

200 0.01 0.07

300 0.02 0.14

400 0.02 0.27

500 0.03 0.32

600 0.03 0.42

700 0.01 0.55

800 0.01 0.71

900 0.02 0.85

1000 0.03 1.03

1100 0.03 1.18

1200 0.05 1.35

1300 0.05 1.58

94

Figure 4.16: Hybrid KND build time

4.2.4 Hybrid KD

Table 4.17 shows tabulated accuracy results for 10-fold cross validation and test split test

option. The accuracy rate in percentage for the control experiment is for dataset with no

resampling at 77.81 for 10-fold cross validation and 77.40 for test split, respectively. As the

resample sample size percent increases so does the accuracy rate to a resample sample size

percent of 1000 and accuracy rate in percentage of 88.18 for 10-fold cross validation and

87.66 for test split respectively, and accuracy rate starts to fall with further increase in the

resample sample size percentage. At resample sample size percent of 1300, the accuracy rate

in percentage is 87.35 for 10-fold cross validation and 86.35 for test split, respectively. This

can be attributed to the fact that the dataset is initially imbalanced without resampling, as the

dataset is resampled at different rates, it becomes balanced and optimizes performance at a

resample sample size percent rate of 1000 and starts to suffer again from overfitting with

increasing resample sample size percent eventually affecting the rate of accuracy of the

classifier model. The accuracy rates for 10-fold cross validation is generally higher than those

for test split even though with a small margin as shown in fig. 4.17.Both 10-fold cross

validation and test split yield optimum accuracy results at the resample sample size percent of

1000.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

B
u

ild
 t

im
e(

se
c)

Resample sample size percent(x100)

10-fold Cross Validation Test Split(66/34)

95

Table 4.17: Hybrid KD Accuracy

Classifier model rate of accuracy (%)

Resample (%) 10-fold Cross Validation Test Split

None 77.81 77.40

100 79.85 77.15

200 82.78 82.93

300 84.23 83.63

400 86.72 85.00

500 87.45 86.50

600 87.50 86.87

700 87.54 87.35

800 87.68 87.55

900 87.98 87.62

1000 88.18 87.66

1100 88.08 87.56

1200 87.35 86.44

1300 87.35 86.35

96

Figure 4.17: KD accuracy

Table 4.18 shows tabulated build time results for 10-fold cross validation and test split test

option. Build time for test split and generally longer than build time for 10-fold cross

validation and increase with the resample sample size percent as shown in Fig4.18. This is

attributed to more instances in resampled datasets that increase the computational cost of the

classifier algorithm models. The build time in seconds for the control experiments is 0.01 for

10-fold cross validation, and 0.01 for test split .The build time in seconds at the resample

sample size percent of 1000 is 0.03 for 10-fold cross validation and 1.03 for test split

respectively. The build time in seconds at the resample sample size percent of 1300 is 0.03

for 10-fold cross validation and 1.65 for test split, respectively.

70

72

74

76

78

80

82

84

86

88

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
cc

u
ra

cy
(%

)

Resample sample size percent(x100)

10-fold Cross Validation Test Split

97

Table 4.18: Hybrid KD Build Time

Classifier model Build time (sec)

Resample (%) 10-fold Cross Validation Test Split(66/34)

None 0.01 0.01

100 0.01 0.03

200 0.01 0.12

300 0.02 0.14

400 0.03 0.23

500 0.03 0.34

600 0.03 0.46

700 0.03 0.60

800 0.03 0.75

900 0.02 0.86

1000 0.03 1.03

1100 0.03 1.20

1200 0.03 1.38

1300 0.03 1.65

98

Figure 4.18: Hybrid KD build time

From the experimental results, 10-fold cross validation test option yield higher accuracy rates

for all the hybrid classifier algorithm models, as compared to test split test options for a

resample sample size percent of 1000. The study establishes that the resample sample size

percent for optimum percentage accuracy is at 1000 for the dataset for all the hybrid classifier

algorithm models. At resample sample size percent of 1000,Hybrid KNMSD performed

worst with the lowest accuracy rate of 87.83%, and longest build time of 577.9 seconds,

followed by hybrid KND with accuracy rate of 87.93%, and build time of 0.03 seconds,

hybrid KNSD with accuracy rate of 87.98%, and build time of 17.83 seconds, and the best

was a hybrid KD with 88.18% accuracy rate, and 0.03 seconds build time. The results fit with

the theory that for good ensembles, base learners should be as more accurate as possible

(Krogh & Vedelshy, 1995) and reinforces the belief “many could be better than all” theorem

may not be the fact(Zhou, Wu, & Tang, 2002). The study demonstrates that hybrid methods

combine both selection and fusion techniques. The main idea is to use selection only and only

if the best classifier is good enough to classify, otherwise a combination method is

used(Vladislav, 2014).The results show that errors made by classifiers are independent and,

and therefore the reason for majority vote hybrid outperform the best single classifier(Kim,

Kim, Moon, & Ahn, 2011). The study suggests that resample sample size percent affects

accuracy and that a resample sample size percent of 1000 for the dataset and a combination of

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

B
u

ild
 t

im
e(

se
c)

Resample sample size percent(x100)

10-fold Cross Validation Test Split(66/34)

99

KNN and DT through bagging majority voting yields optimum hybrid rate of accuracy. The

study results are constrained by bagging as an ensemble combination technique.

4.3ComparePerformance of Classifier Algorithm Models in the Identification of

Terrorist Groups

The study sought to compare optimum performance levels of the classifier algorithm models

and identify the best classifier algorithm model for the identification of terrorist groups in the

aftermath of an attack. This was done using test split/hold out validation and 10-fold cross

validation. Hold out validation is also called test split and avoids the overlap between training

data and test data, yielding more accurate estimate for the generalization performance of the

algorithm. The downward is that the procedure does not use all the available data and the

results are highly dependent on the choice of the training/test split(Dietterich, 1998). The

instances chosen for inclusion in the test set may be too easy or too difficult to classify and

this can skew the results. Furthermore, the data in the test set may be valuable for training

and if it is held out prediction performance may suffer, again leading to skewed results.

Cross validation is a statistical method of evaluating and comparing learning algorithms. It is

used to evaluate learning algorithms as follow: in each iteration, one or more learning

algorithms use k-1 fold of data to learn one or more models. And subsequently the learned

models are asked to make predictions about the data in the validation fold. The performance

of each learning algorithm on each fold can be tracked using some predetermined metric like

accuracy. Upon completion k samples of the performance metric will be available for each

algorithm. These samples can be used in a statistical hypothesis to show that an algorithm is

superior to another (Refaeilzadeh, Tang, & Liu, 2007). Cross validation is used to gauge the

generalizability of an algorithm and to compare the performance of two or more different

algorithms and to find the best algorithm for the available data, or alternatively compare more

variants of a parameterized model (Refaeilzadeh, Tang, & Liu, 2007). The above two goals

are highly related, since the second goal is automatically achieved if one knows the accurate

estimates of performance. Given a sample N data instances and a learning algorithm A, the

average cross validated accuracy of A on these N instances may be taken as estimates of

accuracy of A on unseen data when A is trained on all N instances. Alternatively if the end

goal is to compare two learning algorithms, the performance samples obtained through cross

validation can be used to perform two sample statistical hypothesis test, comparing a pair of

learning algorithms(Dietterich, 1998).Currently, cross-validation is widely accepted in data

100

mining and machine learning community and serves as a standard procedure for performance

estimation and model selection(Refaeilzadeh, Tang, & Liu, 2007). 10- fold cross validation is

a good compromise in data mining. It is particularly attractive because it makes predictions

using 90% of data, making it more likely to be generalizable to the full data (Refaeilzadeh,

Tang, & Liu, 2007).

4.3.1 Compare Error Rate Percentage and Build Time for 10-Fold Cross Validation

Table 4.19 shows results of 10-fold cross validation percentage error rate comparison. The

percentage error rate generally decreases as the resample sample size percent increases to

1000 and starts to rise, hybrid KD generally outperforms all other classifiers and NB

performs worst for the dataset as shown in fig.4.19.Without resample, i.e. the control

experiment yields the following percentage error rates with MLP yielding the highest 31.38,

KNN 27.3, SVM 23.85, NB 23.34, hybrid KNMSD22.83, DT 22.58, hybrid KD22.19, hybrid

KNSD 22.07 and hybrid KND with the lowest21.43. The optimum performance rate for

every classifier algorithm for the dataset was achieved at resample sample size percent of

1000 with respective classifier algorithm model yielding the lowest error rate percentages

with NB yielding the highest error rate of 16.39, SVM 13.83, MLP 12.91, DT 12.47,

KNN12.27, hybrid KNMSD12.27, hybrid KND12.07,hybrid KNSD12.02 and hybrid KD

with the lowest error rate of11.82.Error rate percentage sat resample sample size percent of

1300 are NB 17.39,SVM14.4,MLP 13.59,DT 13.37,hybrid KNMSD 12.75,hybrid KNSD

12.67,hybrid KND 12.63,hybrid KD 12.65KNN with the lowest 12.48.

101

Table 4.19: 10-foldcross validation percentage error rate comparison

Resample

(%)

DT KNN NB SVM MLP KNMSD KNSD KND KD

None 22.58 27.3 23.34 23.85 31.38 22.83 22.07 21.43 22.19

100 20.92 26.66 20.92 19.9 19.77 20.4 22.07 20.79 20.15

200 17.54 24.11 21.05 16.39 17.73 16.52 16.84 18.05 17.22

300 16.28 19.9 19.43 16.07 15.47 15.77 16.2 16.79 15.77

400 14.41 17.38 19.32 15.98 14.8 14.22 14.29 14.67 13.28

500 13.69 13.76 18.7 15.45 14.1 13.6 13.41 14.2 12.55

600 13.6 13.63 18.09 15.11 13.88 13.18 13.14 13.5 12.5

700 13.58 13.56 17.55 14.58 13.66 13.07 13.07 13.34 12.46

800 13.11 13.34 17.4 14.52 13.27 12.96 12.73 13.2 12.32

900 12.66 12.44 17.04 14.37 13.23 12.46 12.4 12.4 12.02

1000 12.47 12.27 16.39 13.83 12.91 12.17 12.02 12.07 11.82

1100 12.55 12.37 17.25 13.99 13.45 12.53 12.38 12.5 11.92

1200 12.87 12.46 17.34 14.04 13.53 12.56 12.5 12.61 12.65

1300 13.37 12.48 17.39 14.4 13.59 12.75 12.67 12.63 12.65

102

Figure 4.19: 10-fold cross validation error rate comparison

Table 4.20 shows 10- fold cross validation time comparison in seconds as follows without

resampling, KNN, NB, DT, hybrid KD and hybrid KND all have shortest build time of 0.01

each. Hybrid of KNSD takes 1.97, SVM takes 4.27, MLP takes 54.34 and hybrid KNMSD

the longest 66.91 seconds. Generally, at resample sample size percent of 1000, KNN& NB

0.01 seconds, DT 0.02 seconds, Hybrid KD and hybrid KND 0.03 seconds, hybrid of KNSD

17.83 seconds, SVM21.03 seconds , MLP 530.4 seconds and hybrid KNMSD the longest

577.9 seconds. Fig. 4.20 shows how build time for the classifiers with change in resample

sample size percent.

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Er
ro

r
ra

te
(%

)

Resample sample size percent(x100)

DT KNN NB SVM MLP

KNMSD KNSD KND KD

103

Table 4.20: Comparison of build time in seconds

Resample

(%)

DT KNN NB SVM MLP KNMSD KNSD KND KD

None 0.01 0.01 0.01 4.27 54.34 66.91 1.97 0.01 0.01

100 0.01 0.01 0.01 4.05 53.42 56.67 1.94 0.01 0.01

200 0.02 0.01 0.02 3.76 107.4 113.2 3.37 0.01 0.01

300 0.02 0.01 0.01 4.77 157.8 168.2 4.85 0.02 0.02

400 0.01 0.01 0.01 7.33 212.9 222.6 7.58 0.02 0.03

500 0.03 0.01 0.01 8.74 270.6 276.8 9.63 0.03 0.03

600 0.03 0.01 0.01 18.82 318.4 335.1 10.42 0.03 0.03

700 0.02 0.01 0.01 21.22 365 393.8 11.37 0.01 0.03

800 0.04 0.01 0.01 13.32 413.1 437.5 13.34 0.01 0.03

900 0.04 0.01 0.01 14.16 473.8 516.7 13.34 0.02 0.02

1000 0.02 0.01 0.01 21.03 530.4 577.9 17.83 0.03 0.03

1100 0.02 0.01 0.01 30.97 569.1 622.2 22.71 0.03 0.03

1200 0.03 0.01 0.01 25.66 630.4 672.1 24.8 0.05 0.03

1300 0.04 0.01 0.01 36.58 674.8 741.8 26.27 0.05 0.03

104

Figure 4.20: 10-fold cross build time comparison

4.3.2 Compare Error Rate and Build Time for Test Split

Table 4.21 shows results of test split percentage error rate comparison. The percentage error

rate generally decreases as the resample sample size percent increases to 1000 and starts to

rise, hybrid KD generally outperforms all other classifiers and NB performs worst for the

dataset as shown in fig.4.20 .Without resample, i.e. the control experiments yield the

following percentage error rates with MLP yielding the highest30.34, KNN 29.59, hybrid

KNMSD 22.47, DT 22.47, NB 22.85,hybrid KD 22.60, hybrid KNSD 22.47,SVM 22.10and

hybrid KND 22.10. The optimum accuracy rates for every classifier algorithm for the dataset

was achieved at resample sample size percent of 1000 with respective classifier algorithms

yielding the following error rate percentages NB yielding the highest error rate of 17.14,

SVM 13.43, DT 13.32, hybrid KND 13.05, KNN 12.94, hybrid KNSD 12.79,hybrid KNMSD

12.64,MLP 12.42,hybrid KD with the lowest12.34. Error percentage rates at resample sample

size percent of 1300 are NB 17.98 , SVM 15.00, MLP 14.50, DT 14.60, hybrid KNMSD

13.80, hybrid KNSD 13.76, hybrid KND 13.74, hybrid KD 13.65 and KNN with the

lowest13.30.

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14

B
u

ild
 t

im
e(

se
c)

Resample sample size percent(x100)

DT KNN NB SVM MLP KNMSD KNSD KND KD

105

Table 4.21: Test split percentage error rate comparison

Resample

(%)

DT KNN NB SVM MLP KNMSD KNSD KND KD

None 22.47 29.59 22.85 22.1 30.34 22.47 22.47 22.1 22.6

100 22.15 28.84 22.85 22.85 23.6 24.72 22.1 21.79 22.85

200 17.26 24.58 21.01 18.2 18.39 17.07 17.26 18.01 17.07

300 16.45 20.62 18.87 17.62 16 16 16.25 17 16.37

400 15.38 19.51 18.86 17.45 14.73 15.1 15.7 16.07 15

500 15.38 17.63 18.5 16.04 14.1 14.63 15 15.23 13.5

600 14.93 16.62 18.05 15.38 13.82 14.17 14.82 14.5 13.13

700 13.99 14.04 17.95 15.36 12.74 13.34 14.09 13.99 12.65

800 13.98 14.02 17.6 15.01 12.68 13.13 13.56 13.46 12.45

900 13.5 12.99 17.38 14.46 12.54 13.01 12.96 13.2 12.38

1000 13.32 12.94 17.14 13.43 12.42 12.64 12.79 13.05 12.34

1100 13.45 12.98 17.23 13.61 13.3 12.66 13.08 13.44 12.44

1200 14.1 13.19 17.32 14.11 14.32 13.66 13.41 13.63 13.56

1300 14.6 13.3 17.98 15 14.5 13.8 13.76 13.74 13.65

106

Figure 4.21: Test Split Error rate comparison

Table 4.22 shows test split build time comparison in seconds as follows without resample,

DT, NB, and hybrid KD all have shortest build time of 0.01 seconds each. KNN 0.02

seconds, hybrid KND 0.03 seconds, hybrid KNSD 4.02 seconds, SVM 4.30 seconds, MLP

54.06 seconds, and hybrid KNMSD 57.70seconds. Generally, at resample sample size percent

of 1000, DT 0.05 seconds, ND 0.06 seconds, KNN 0.89 seconds, hybrid KD &hybrid KND

1.03 seconds each, SVM 18.37 seconds, hybrid KNSD 21.61 seconds, MLP 543.30 seconds,

and hybrid KNSD 575.60 seconds. Fig. 4.22 shows build time for the classifiers with change

in resample sample size percent.

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Er
ro

r
ra

te
(%

)

Resample sample size percent(x100)

DT KNN NB SVM MLP

KNMSD KNSD KND KD

107

Table 4.22: Test Split build time Comparison

Resample

(%)

DT KNN NB SVM MLP KNMSD KNSD KND KD

None 0.01 0.02 0.01 4.30 54.06 57.70 4.02 0.03 0.01

100 0.01 0.02 0.01 4.22 52.67 58.50 3.61 0.05 0.03

200 0.02 0.08 0.01 4.19 106.90 114.30 4.26 0.07 0.12

300 0.03 0.13 0.02 5.29 155.90 168.40 5.37 0.14 0.14

400 0.03 0.19 0.03 6.55 213.90 233.80 6.58 0.27 0.23

500 0.03 0.28 0.03 7.89 269.00 279.80 8.46 0.32 0.34

600 0.02 0.39 0.05 11.99 319.60 341.20 10.02 0.42 0.46

700 0.02 0.51 0.05 13.29 371.30 389.90 11.05 0.55 0.60

800 0.04 0.65 0.05 14.04 421.80 465.10 14.72 0.71 0.75

900 0.06 0.77 0.05 14.44 466.90 513.40 15.58 0.85 0.86

1000 0.05 0.89 0.06 18.37 543.30 575.60 21.61 1.03 1.03

1100 0.06 1.01 0.08 23.72 567.30 648.10 22.52 1.18 1.20

1200 0.04 1.26 0.08 24.59 622.9 673.00 26.25 1.35 1.38

1300 0.02 1.45 0.08 28.53 698.40 730.40 27.17 1.58 1.65

108

Figure 4.22: Test split build time comparison

0.01

100.01

200.01

300.01

400.01

500.01

600.01

700.01

800.01

1 2 3 4 5 6 7 8 9 10 11 12 13 14

B
u

ild
 t

im
e(

se
c)

Resample sample size percent(x100)

DT KNN NB SVM MLP

KNMSD KNSD KND KD

109

4.3.3 Statistical Test of Significance for Optimum Accuracy Averages

The comparison of accuracy for statistical significance was calculated between the control

experiment (non-resampled dataset) accuracy averages and the resampled sample size percent

of 1000 (optimum) accuracy averages for both base classifiers and hybrid classifier

algorithms as shown in table 4.23 for 10-fold cross validation and table 4.25 for test split

respectively. Two null hypotheses as set out in the experimental design were tested.

H0 : μ.1= μ.2 (treatment population means are equal)

H1: μ1.≠μ2.

H0 : μ1. = μ2. = . . . = μ.9 (block population means are equal)

H1: μ1.≠μ2. ≠. . . ≠μ.9

When comparing more than two algorithms, on each dataset there is no win/loss/tie; instead,

each algorithm assumes a rank between 1 and L in terms of its performance (averaged over

different folds)(Irsoy, Yildiz, & Alpaydin, 2012). We then use non-parametric tests to check

for significant difference in average ranks over M data sets. Friedman‟s test is a non-

parametric version of ANOVA and uses ranks instead of absolute performance(Demsar,

2006).

Table 4.23: 10-fold cross validation optimum accuracy comparison between control and

optimum

Classifier Control 1000

DT 77.42 87.53

KNN 72.70 87.73

NB 77.66 83.61

SVM 76.15 86.17

MLP 68.62 87.09

KNMSD 77.17 87.83

KNSD 77.93 87.98

KND 78.57 87.93

KD 77.81 88.18

Table 4.24: AVOVA test for 10-fold cross validation accuracy

Anova: Single Factor

110

SUMMARY

 Groups Count Sum Average Variance
 Column 1 9 683.03 75.89222 10.33739

 Column 2 9 784.05 87.11667 2.098375

 ANOVA

 Source of

Variation SS df MS F P-value F crit

Between Groups 566.9466889 1 566.9467 91.17999 5.2E-08 4.493998

Within Groups 99.48615556 16 6.217885

 Total 666.4328444 17

The F-value is greater than the F-critical value for the alpha level selected (0.05) as shown in

table 4.24. Therefore, we have evidence to reject the null hypothesis and say that at least one

of the samples have significantly different means. Another measure is the p-value. The p-

value 5.2E-08 is less than the alpha level 0.05, we therefore reject the null hypotheses.

Table 4.25: Test split comparison between control and optimum accuracy

Classifier Control 1000

DT 77.53 86.68

KNN 70.41 87.06

NB 77.15 82.86

SVM 77.90 86.57

MLP 69.66 87.58

KNMSD 77.53 87.36

KNSD 77.53 87.21

KND 77.90 86.95

KD 77.40 87.66

Table 4.26: ANOVA test for test split

Anova: Single Factor

 SUMMARY

 Groups Count Sum Average Variance

 Column 1 9 683.01 75.89 11.1075

 Column 2 9 780.2 86.68889 2.221861

111

ANOVA
 Source of

Variation SS df MS F

P-

value F crit

Between Groups 524.772 1 524.772 78.73926

1.41E-

07 4.493998

Within Groups 106.6349 16 6.664681

 Total 631.4069 17

The F-value is greater than the F-critical value for the alpha level selected(0.05) as shown in

table 4.26. Therefore, we have evidence to reject the null hypothesis and say that at least one

of the samples have significantly different means. Another measure is the p-value. The p-

value 1.41E-07 is less than the alpha level 0.05, we therefore reject the null hypotheses.

Generally, the hybrid classifier algorithm models outperform all base classifiers at resample

sample size percent rate of 1000 for both 10-fold cross validation and test split test option.

The study confirms that hybrid classifiers improve performance accuracy perform better than

base classifiers(Gundabathula & Vaidhehi, 2018).The accuracy rates improve with the

resample sample size percent up to a resample sample size percent of 1000 and starts to

decline. Class imbalance in a dataset affects accuracy rates and optimum accuracy is attained

wit balanced datasets. The study is consistent with the opinion that data imbalance affects

classification accuracy (Garcia, Marques, & Sanchez, 2012). KNN, DT, NB, hybrid KD,

hybrid of KND have generally taken relatively shorter build time of between 0.01 and 0.03

seconds. SVM has a build time of 21.03 seconds MLP hybrid KNMD have the longest build

time. The results confirm that better differentiation of classifiers can be done by examining

the build time (Williams, Zander, & Armitage, 2006). The inclusion of either an either MLP

or SVM increases the overall build time of a hybrid classifier. Increased computation is a

weakness of ensembles, because in order to classify an input query, all component classifiers

must be processed (Dietterich, 2000).the study is limited by rate of accuracy, and build time

as performance measure indicators. Performance of various combinations of the hybrid

perform differently in varying situations, confirming that generally, there is no ensemble

method which outperforms other ensembles consistently(Ting & Witten, 1999). DT performs

better than NB confirming the results of a classification study between NB and DT (Rizwan,

Masrah, Aida, Payam, & Nasim, 2013). The research establishes that the hybrid KD

outperforms all other classifier algorithm models under the study in the identification of

terrorist groups in the aftermath of an attack for the available dataset.

112

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

This chapter consists conclusion to the study, recommendation, and future work

5.1 Conclusion

In this study the problem of terrorism is addressed by using machine learning techniques. The

GTD for sub Saharan Africa for the period 1999-2017 dataset is used to build and evaluate

machine learning classifier algorithms KNN, NB, DT, SVM and MLP. The dataset was

processed by using various pre-processing techniques and the class imbalance problem

solved and feature selection were done by using WEKA Resample filter and attribute

selector. The hybrid classifier algorithm models were built by combining base classifier

algorithm models using bagging and majority voting technique. The models were evaluated

on classification accuracy and build time using 10-fold cross validation and Test split

option.The key question when dealing with classification is not whether a learning algorithm

is superior to others, but under which conditions a particular method can significantly

outperform others on a given application problem(Kotsiantis, Zaharakis, & Pinteals, 2004).

The performance of hybrid/ensemble depends on accuracy of base classifiers, diversity

among the base classifiers, decision making strategy(aggregation technique) and the number

of the base classifiers among other factors(Vladislav, 2014).

The study sought to establish what approach to be used to build and evaluate base classifier

algorithm models of KNN, NB, DT, SVM and MLP. The study concluded that for WEKA

default configuration set up of the base classifier algorithm models the resample size percent

for optimum performance is 1000 which is a balanced dataset on both 10-fold cross

validation and test split test options.

The study sought to establish what approach to be used to build and evaluate hybrid classifier

algorithm models built from the base classifier algorithm models and concluded that hybrid

KD (combination of KNN and DT using bagging and majority voting) at a resample sample

size percent of 1000 achieved optimum performance on 10- fold cross validation and test split

test options.

The study sought to find the outcome of analysis of performance of classifier algorithm

models. The study concluded that hybrid KD outperformed all other classifier algorithm

models in the identification of terrorist groups in the aftermath of an attack with an accuracy

113

percentage of 88.18 and build time of 0.03 seconds on 10-fold cross validation, accuracy

percentage of 87.66 and build time of 1.03 seconds for test split.

5.2 Recommendation

The performance of a hybrid machine learning classifier model depends largely on the

accuracy and diversity of base classifiers and availability of balanced terrorist dataset from

GTD. The researcher recommends that the performance of the ensemble members in a hybrid

and data imbalance issues be fully addressed for better accuracy rates.Imbalance dataset

means that one of the two classes has very a smaller number of samples compared to number

of samples in the other class,|C2| << |C1|.Then C2 is called the minority class, and C1 is

called the majority class. The minority class is of our interest. The classification in case of

unbalanced dataset is biased towards majority class. The approach to solve this problem is

sampling based approach (Verma, 2019). Sampling based approach also known as data level

approach works by artificially balancing the instances of class in the dataset. To artificially

balance the class we apply resampling technique, such as random under sampling the

majority class, random oversampling of minority class, and Synthetic Minority Over-

Sampling Technique (SMOTE)(Verma, 2019). RANDOM UNDERSAMPLING OF

MAJORITY CLASS balances the class distribution in the dataset by randomly throwing

away some data samples from majority class. Although it balances class distribution, but it

leads to losing some important characteristics in dataset, due to removal of some samples,

this is a disadvantage of this approach (Verma, 2019). RANDOM OVERSAMPLING OF

MINORITY CLASS balances the class distribution by the random replication of minority

class instances, to increase their number. There is no information loss in this case. The

problem with this approach is that it leads to overfitting (Verma, 2019). SYNTHETIC

MINORITY OVERSAMPLING TECHNIQUE (SMOTE) reduces the problem of overfitting

a method of by creating synthetic instances of minority class. This technique is known as the

synthetic minority over-sampling technique (SMOTE). In this the training set is altered by

adding synthetically generated minority class instances, causing the class distribution to

become more balanced. (Verma, 2019).

114

5.3 Future Work

This work can further be extended by applying other approaches of solving class imbalance

problem in the terrorist dataset, using other forms of ensemble combination techniques such

as stacking and boosting or in cooperating other genetic algorithm machine learning

classifiers.

115

REFERENCES

Alexandrie, G. (2017). Surveillance cameras and crime: a review of randomized and natural

experiments. Journal of Scandinavian Studies in Criminology and Crime Prevention,

210.

Asmita , S., & Shukla, K. K. (2014). Review on the Architecture, Algorithm and Fusion

Strategies in Ensemble Learning. International Journal of computer applications, 21-

28.

Baba, N. M., Makhtar, M., Fadzili, S. A., & Awang, M. K. (2015). Current issues in

ensemble methods and its application. Journal of Theoretical and Applied

Information Technology(JATIT), 266-272.

Banfielf, R. E., Hall, L. O., Bowyer, K., & Kegelmeyer, w. P. (2002). Ensemble Diversity

Measures and Their Application to thinning. Journal of Information fusion, 49-62.

Barth, J. R., Tong, L., McCarthy, D., Phumiwasana, T., & Yago, G. (2006). Economic Impact

of global Terrorism: From Munich to Bali. 203-212: Milken Institute.

Batch, V., & Aravindan, D. J. (2011). A classification based dependent approach for

suppressing data. IJCA proceedings on Wireless information Networks & Business

Information Systems. Lahore: WINBIS 2012.

Bauer, E., & Kohavi, R. (1999). An emperical comparison of voting classification algorithms:

Bagging, Boosting ans variants. Machine Learning, 105-139.

Benoit, F., Van Heeswijk, M., Miche, Y., Verleysan, M., & Lendasse, A. (2013). Feature

selection for non-linear models with extreem learning machines. Journal of

Neurocomputing, 111-124.

Boukaert, B. R. (2003). Choosing between two learning algorithms based on calibrated tests.

Journal of Machine Learning, 51-58.

Bouziane, H., Messabih, B., & Chouarfia, A. (2011). profiles and majority voting based

ensemble method for protein secondary structure prediction. Evolutionary

Bioinformatics, 171-189.

116

Bradley, P. S., & Mangasarian, O. L. (1998). Feature Selection by concave minimization and

support vector machines in. International Conference on Machine Learning(ICML-

1998) (pp. 82-90). Madison, Winscosin, USA: Morgan Kaufmann.

Breiman. (1996). Bagging predictors. Machine Learning, 123-140.

Breiman. (2001). Random forests. Machine Learning, 5-32.

Brown, G., Wyatt, J. L., & Tino, P. (2005). Managing Diversity in regression Ensembles. The

Journal of machine learning Research, 1621-1650.

Camargo, L. S., & Yoneyama, T. (2001). Specification of training sets and the number of

hidden neurons for Multi-layer perceptrons. Journal of Neural Networks, 2673-2680.

Castellano, G., Fanelli, A., & Pelillo, M. (1997). An iterative pruning algorithm for

feedforward neural networks. IEEE Trans neural Networks journal, 519-531.

Chawla, N. V. (2005). Data mining for imbalanced datasets: An overview . In Data mining

and knowledge discovery handbook. Springer US.

Chen, D., & Liu, Z. (2010). An optimized algorithm of decision tree based on rough sets

model. international conference on Electrical and Control Engineering. NY:

Springer.

Cortes, C., & Vapnic, V. (1995). Support vector networks. Journal of machine learning, 273-

279.

Cortizo, J. C., & Giraldez, I. (2006). Multi criteria wrapper improvement to Naive Bayes

learning. LNCS, 419-426.

Demsar, J. (2006). Statistical comparison of classifiers over multiple data sets. Journal of

Machine Learning Research, 1-30.

Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification

learning algorithms. Neural Computing, 1895-1924.

Dietterich, T. G. (2000). An experimental comparison of three methods for constructing

ensembles of Decision tress: bagging, boosting, and randomization. Mach Learn, 139-

159.

117

Efron, B. (1983). Estimating the error rate of a prediction rule: improvement on cross-

validation. Journal of American Statisticians Association , 316-331.

Farysal, G., Wasi, B. H., & Usman, Q. (2014). Terrorist group prediction using data

classification. International Conferences of Artificial Intelligence and Pattern

Recognition (pp. 17-19). Malaysia: Researchgate.

Foster, D. (2017). Global Terrorist Operations. 25-30: Springer.

Freitas, C. O., deCarvalho, J. M., & Oliveira, J. J. (2007). Confusion matrix disagreement for

multiple classifiers. Progress in Pattern Recognition. Image Analysis and Application.

Freund, Y., & Schapire, R. E. (1997). A decision theoretic generalization of online learning

and an application to Boosting. Journal of Computer and System Sciences, 119-139.

Gama, J., & Brazdil, P. (2000). Cascade generalization. Machine Learning, 315-343.

Garcia, V., Marques, A., & Sanchez, J. (2012). Improving Risk Prediction by Pre processing

imbalanced credit data.

Geisser, S. (1975). The predictive sample reuse method with applications. Journal of

American association of Statisticians, 320-328.

Genton, M. (2001). Classes of kernels for machine learning: a statistics perspective . journal

of machine learning research, 299-322.

Gikaru, J. W. (2012). Predicting Recidivism among inmates population using artificial

intelligent(AI) techniques: A case study of Kenya Prisons Department. Nairobi: UON.

GTI. (2018). Global Terrorism Index. 8-12: Institute for Economics and Peace.

Gundabathula, V. T., & Vaidhehi, V. (2018). An Efficient Modelling of Terrorist Groups in

India using Machine Learning Algorithms. India Journal of Science and Technology,

1-3.

Guo, G., Wang, H., Bell, D., & Greer, K. (2003). KNN model-based approach in

classification. Lecture notes computer science(2888), 986-996.

118

Hall, L., Bowyer, K., Kegelmeyer, W., Moore, T., & Chao, C. (2000). Distributed Learning

on very Large datasets. Procceedings of the sixth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 79-84.

Han, J., & Kamber, M. (2006). Data Mining: Concepts and techniques. San Francisco:

Morgan Kaufmann.

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE trans

pattern analysis machine intelligence, 832-844.

Hongbo, D. (2010). Data mining techniques and applications: An introduction. LA: Cenage

learning EMEA.

Hoque, N., Bhattachryya, D. K., & Kalita, J. K. (2014). MIFS-ND: A mutual information

based feature selection method. Joural of Expert Systems with Applications, 6371-

6383.

Hui, Z. (2013). Intrusion Detection ensemble Algorithm based on Bagging and Neighborhood

Rough set. International Journal of Security and its Applications IJSIA, 193-204.

Irsoy, D., Yildiz, D. T., & Alpaydin, E. (2012). Design and Analysis of Classifier learning

Experiments in Bioinformatics: Survey and case studies. Journalof IEEE, 1-12.

Isson, J. P. (2012, Decemeber 25 November 2018). What is predictive analystics. Retrieved

from The Knowledge Exchange: http://www.sas.com/knowledge-

exchange/businessanalytics/uncategorized/what-is-predictive-analytics/index.html

Jantan, H., Hamdan, A. R., & Othman, Z. A. (2009). Classification for talent management

using decision tree induction techniques.

Japkowicz, N., & Stephen, N. (2002). The class imbalance problem: a systematic study.

Jouran of Intelligence and Data Analysis, 40-49.

Kainulainen, L. (2010). Ensemble of locally linear models: Application to bankcruptcy

prediction. Data Mining, 280-286.

119

Kalpana, R., & Bansa, K. L. (2014). A comparative study of data mining tools. International

Journal of Advanced Research in Computer Science and Software Engineering, 50-

60.

Kavoc, S. (2012). Suitability analysis of data mining tools and methods. Retrieved from

Degree thesis:

Availablehttp://is.muni.cz/th/255695/fi_b/suitability_analysis_of_data_mining_tools.

pdf[Accessed on 10 May 2017]

Keerthi, S., & Gilbert, E. (2002). Convergence of a generalized SMO algorithm for SVN

classifier design. Journal of machine learning, 351-360.

Khorsid, M. M., Abou, T. H., & Soliman, G. M. (2015). Hybrid classification Algorithms for

Terrorism prediction in Middle East and North Africa,. International Journal of

Emerging Trends & technology in Computer Science, 23-29.

Kiage, B. N. (2015). A datamining approach for forecasting cancer threats. Nairobi: JKUAT.

Kim, H., Kim, H., Moon, H., & Ahn, H. (2011). A weight adjusted voting algorithm for

ensemble of classifiers. KoreanStatistical Society, 437-449.

Kim, Y. S., & Street, W. N. (2002). Evolutionary model selection in unsupervised learning.

Journal of Intelligent Data Analysis, 531-556.

Kohavi, R. (1995). A study of cross validation and bootstrap for accuracy estimation and

model selection. Journal of Artificial intelligence, 1137-1145.

Kon, M., & Plaskota, L. (2000). Information complexity of neural networks. Journal of

neural networks, 365-375.

Kotsiantis, S., Zaharakis, I. D., & Pinteals, P. E. (2004). Machine learning: A review of

classification and combining techniqies. springer, 23-32.

Krogh, A., & Vedelshy, J. (1995). Neural network ensembles, cross validation and active

learning. (G. Tesauro, D. S. Touretzky, & T. K. Leen, Eds.) Cambridge: MIT Press.

Kuncheva. (2004). Combining Pattern Classifier: Methods and Algorithms. New York: John

Wiley.

120

Kuncheva, L. I., & Whitaker, C. J. (2003). Measures of diversity in classifier ensembles and

their relationship with ensemble accuracy. Machine learning, 181-207.

Larson, S. (1931). The shrinkage of the coefficient of multiple correlation. Journal of

educational psychology, 45-55.

Leedy, P. D., & Ormrod, J. E. (2010). Practical research: planning and design (9th ed.).

Upper Saddle River NJ: Prentice Hall.

Liu, C., Tiang, D., & Yang, W. (2014). Global geometric similarity scheme for feature

selection in fault diagnosis. Journal of expert systems with applications, 3585-3595.

Magogo, S. (2017). The Effectiveness of Counter Terrorism Strategies in Kenya: A case

Study of Eastleigh Location, Nairobi County. Nairobi: University of Nairobi.

Makhtar, M., Yang, L., Neagu, D., & Ridley, M. (2012). Optimization of Classifier Ensemble

for Predictive Toxicology Applications. Journal of Computer Modelling and

Applications, 236-241.

Maldonado, S., Weber, R., & Famili, F. (2014). Feature selection fo high dimensional class-

imbalanced data sets using support vector machines. Journal of Information services,

228-246.

Melville, P., & Mooney, R. (2003). Constructing Diverse Classifier Ensembles Using

Artificial training examples. IJCA, 505-510.

Mitchel, T. M. (1997). Machine learning. MA: McGraw-Hill Science/Engineering /Math.

Mosteller, F., & Turkey, J. W. (1968). Including statistics. In Handbook of socila psychology

. Reading, MA: Addison-Wesley.

Neocleous, C., & Schizas, C. (2002). Artificial neural network learning: a comparative

review, LNAI 2308. Springer-Verlag, 300-313.

Neto, A. A., & Canuto, A. M. (2004). Meta -Learning and Multi-objective optimization to

design ensemble of classifiers. 2004 Brazillian Conference on Intelligent Systems

IEEE, 91-96.

121

Optiz, D., & Maclin, R. (1999). popular ensemble methods: An emperical study. Journal of

Artificial Intelligence Research, 169-198.

Osemengbe, O., & Uddin, P. S. (2014). Data Mining: An activ solution for crime

investigation. IJCST, 53-61.

Ozekes, S., & Osman, O. (2003). Classification and prediction in data mining with neural

networks. Journal of Electrical and Electronic Engineering, 707-712.

Piatestsky, G. (2014, 12 14). CRISP-DM, still the top methodology for analytics, data mining,

or data science projects. Retrieved from Retrieved from KDnuggets:

https://www.kdnuggets.com/2014/10/crisp-dm-top-methodology-analytics-data-

mining-data-science-projects.html): Retrieved from KDnuggets:

https://www.kdnuggets.com/2014/10/crisp-dm-top-methodology-analytics-data-

mining-data-science-projects.html)

Pillry, P. H., & Sikchi, S. S. (2014). Review of group prediction model for counterterrorism

usingCLOPE algorithm. International Journal of Advance Research in Computer

Science and Management Studies, 8-12.

Platt, J. (1999). Using sparseness and analytic QP for speed training of support vector

machines. In Kearns.M, Sollas.S & Cohn. D(eds) Advances in neural information

processing systems. MA: MIT Press.

Polikar, R. (2012). Ensemble Learning in Zhang, C & Ma.D(eds) Ensemble machine

learning: Methods and Applications. Springer Science + Business, 1-34.

Popp, R., Armour , T., Senator, T., & Numrych. (2004). "Countering Terrorism through

Information Technology". Communications of the ACM, 36-43.

Prasad, S. S., Sonali, M., & Sonali, S. (2014). Border security up gradation using data

mining. International journal of soft Computing and Engineering, 42-46.

Quinlan, J. R. (1996). Bagging, Boosting and C4.5. Proceedings of the thirteenth national

Conference on Artificial Research , 725-730.

122

Rahim, A. (2014, 11 21). "Best practices for Business intelligence and predictive analytics".

Retrieved from Available at: http://www.informationbuilders.com/new/newsletter/13-

04/3ali: Available at: http://www.informationbuilders.com/new/newsletter/13-04/3ali

Refaeilzadeh, P., Tang, L., & Liu, H. (2007). On comparison of feature selection algorithms .

Journal of Machine learning, 5-23.

Ricardo, G. O. (2014). Ensemble learning CSCE 66 Pattern Analysis. Lecture notes, 1-15.

Rizwan, I., Masrah, A., Aida, A. M., Payam, H., & Nasim, K. (2013). An experimental study

of classification algorithms for crime prediction. Indian Journal of Science and

Technology, 250-263.

Robert, J., & Howlet, L. C. (2001). Radial basis function networks: new advances in design.

Physica-Verlag Heidelberg, ISBN 3790813680, 42-45.

Robert, L., & Johnson, A. (2016). Terrorist Attacks in the West.

Roli, F., Giacinto, G., & Vernazza, G. (2001). Methods of designing multiple classifier

systems. Lecture Notes Computer Science, 78-87.

Roy, A. (2000). On connectionism, rule extraction, and brain-like learning. IEEE Trans Fuzzy

System, 222-227.

Rushita, F. (2017). Terrorist Groups in Africa. Cairo: EMZ.

Saad, D. (1998). Online learning in neural networks. london: Cambridge University Press.

Sachan, A., & Roy, D. (2012). TGPM: Terrorist group prediction model for counterterrorism.

International journal of Computer Applications, 44(10), 49-52.

Santana, L. E., Siva, L., Canuto, A. M., Pintro, F., & Vale, K. O. (2010). A comparative

Analysis of Genetic Algorithms and Ant colony Optimisation to select attribute for an

heterogeneous Ensembles of classifiers. Journal of Evolutionary Computation, 1-8.

Scholkopf, C., Burges, J. C., & Smola, A. J. (1999). Advances in Kernel Methods. MA: MIT

Press.

123

Setiono, R., & Loew, W. K. (2000). FERNN: an algorithm for fast extraction of rules from

neural networks. Applied Artificial Intelligence journal, 15-25.

Shafer, G. (1976). A mathematical Theory of Evidence. Princeton: Princeton University Press.

Sohini, C. B., & Shaikh, M. Z. (2014). A comprehensive and relative study of detecting

deformed identity crime with different classifier algorithms and multilayer mining

algorithm,”. International Journal of Advanced Research in Computer and

Communication Engineering, 453-460.

START. (2018, 11 02). National Consortium for the Study of Terrorism and Responses to

Terrorism. Retrieved from Global Terrorism Database: https://www.start.umd.edu/gtd

Tang, J., Aleylani, S., & Liu, H. (2014). Feature selection for classification: A review in.

Jouranl of Algorithm Application, 4-9.

Tang, K., Suganthan, P. N., & Yao, X. (2006). An Analysis of Diversity Measures. Journal of

Machine learning, 247-271.

Tao, C. (2003). selective SVM Ensemble Based on Accelarating Genetic Algorithm. Journal

of Application Research of Computers, 139-141.

Ting, K. M., & Witten, I. H. (1999). Issues in stacked generalization. Journal of Artificial

Intelligence, 271-289.

Tiwaria, Abhishek, Sekhar, & Arvind, K. T. (2007). Workflow based framework for life

science informatics. Computational Biology and Chemistry, 305-319.

Tolan, G., & Soliman, O. (2015). An Experimental Study of Classification Algorithms for

Terrorism Prediction,. International Journal of Knowledge engineering, 107-112.

Verma, A. (2018). Study and Evaluation of Classification Algorithms in Data Mining”.

International Research Journal of Engieneering and Technology.

Verma, A. (2019). Evaluation of Classification Algorithms with Solutions to Class Imbalance

Problem on Bank Marketing Dataset using WEKA. International Research Journal of

Engineering and Technology, 54-60.

124

Veropoulos, K., Campbell, C., & Cristianini, N. (1999). Controlling the sensitivity of support

vector machines. International joint conference on Artificial Intelligence IJCAI99, 89-

96.

Villada, R., & Drissi, Y. (2002). A perspective view and survey of meta-learning. Artificial

intelligence, 77-95.

Vivarelli, F., & Williams, C. (2001). Comparing Bayesian neural network algorithms fo

classifying segmented outdoor images. journal of neural networks, 427-437.

Vladislav, M. (2014). Machine leearning of hybrid classification models for decision support,

the use of the internet and development perspectives. NY: Adisson Wesley.

Wahbeh, A. H., Al-Radaideh, Q. A., Al-Kabi, M. N., & Al-Shawakfa, E. M. (2008). A

comparison Study between Data mining Tools over some Classification Methods.

Retrieved from http://www.thesai.org/downloads/SpecialIssueNo3/Paper%204-

A%20Comparison%20Study%20between%20Data%20Mining%20Tools%20over%2

0some%20Classification%20Methods.pdf [accessed on 10 December 2017]

Wang. (2008). Some fundamental issues in Ensemble Methods. Neural Networks, IJCNN.

IEEE World Congress on Computational Intelligence, 2243-2250.

Wang. (2010). Heterogeneous Bayesian Ensembles for Classifying spam E-mails. The 2010

International Joint Conference on Neural Networks IJCNN, 1-8.

Webb, I. G. (2000). Multiboosting: a technique for combining boosting and wagging.

Machine learning, 159-196.

Wettschereck, D., Aha, D. W., & Mohrit, T. (1997). A review and emperical evaluation of

feature weighting methods for a class of lazy learning algorithms. Artificial

Intelligence, 10, 1-37.

Williams, N., Zander, S., & Armitage, G. (2006). A preliminary perofrmance comparison of

five Machine learning algorithms for practical IP traffic flow classification. ACM

SIGCOMM Communication Review, 5-16.

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining practical machine learning tools

and techniques. Burlington: Morgan Kaufmann.

125

Yam, J., & Chow, W. (2001). Feedforward netwoks training speed enhancement by optimal

initialization of the synaptic coeficients. IEEE Trans Neural netwoks, 430-434.

Yen, G. G., & LU, H. (2000). Hierarchical genetic algorithm based neural network design.

IEEE symposium on combinations of evolutionary computation and neural networks,

168-175.

Yu, L., & Liu, H. (2002). Efficient feature selection via analysis of relevance and

redundancy. JMLR, 1205-1224.

Yu, L., & Liu, H. (2004). Efficient feature selection via analysis of relevance and

redundancy. JMLR, 1205-1224.

Zhou, Z. H., & Tang, W. (2003). Selective Ensemble of Decision Trees. Rough sets, Fuzzy

sets, Data mining, and Granular computing, lecture notes in computer Science , 476-

483.

Zhou, Z. H., Wu, J., & Tang, W. (2002). Ensembling neural networks: many could be better

than all. Artificial Intelligence, 239-263.

126

APPENDICES

Appendix A: SGS Approval

127

Appendix B: MUERC Approval

128

Appendix C: NACOSTI Approval

129

Appendix D: GTD Distribution Letter

130

Appendix E: Sample Dataset

131

Appendix F: WEKA URL

