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ABSTRACT

The transport of solutes through porous media where chemicals undergo adsorption or change
process on the surface of the porous materials has been a subject of research over years. Usage
of pesticides has resulted in production of diverse quantity and quality for the market and
disposal of excess material has also become an acute problem. The concept of adsorption is
essential in determining the movement pattern of pesticides in soil since it helps in assessing
the effect of migrating chemical from their disposal sites on the quality of groundwater. Most
studies done on the movement of pesticides in the ground environment in terms of
mathematical models have so far been simulated and emphasis given to axial movement and in
a few cases both axial and radial movements. Soil processes have a 3D (three dimensional)
character; modeling therefore in principle, should employ three dimensions. It should also be
noted that the appropriate number of dimensions is closely related to the required accuracy of
the research question. The 1D (one dimension) and 2D (two dimension) approaches are
limited since they are not capable of giving dependable regional influence of pesticides
movement in the porous media and groundwater. They give only theoretical results which are
devoid of the reality in the field due to lumping of parameters. In this study, 3D formula is
derived so that it can enhance our capacity to analyze the realistic regional impact of
adsorption of pesticides in a porous media and groundwater in the field condition since there is
no lumping of parameters. In most cases we are supposed to adopt an existing equation and
use it to solve the problem of research but given the many equations, it is wise to derive from
the first principle in order to be sure of applicability of the equation to the research problem.
The objective of this study is to develop a mathematical model which can be used to determine
the combined 3D movement of pesticides with steady - state water flow in a porous media.
The methodology involves determining the comprehensive dispersion equation accounting for
3D movement of solutes in the porous media and finding the solution of the governing
equation using unconditionally stable finite difference 3D equation. The experimental results
based on 1D are applied to 3D based on the dispersion constant being the same longitudinally
and laterally at low flow rate in the porous media as informed by Reynold’s number being less
than 2300 for laminar flows. The equation is applied on the experiment done on adsorption of
pesticide through a porous media. The results are applied to the equation and solved up to ten
steps in order to test equation’s suitability.
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Chapter 1

Introduction

1.1 Mathematical Background

There are great challenges associated with farming due to increase of pests oun both aii-
mals and plants. This has created room for manufacturers to cash in on this high demand
of pesticides thus leading to increase in quantity and different quality of these pesticides
in our markets. The disposal of the surplus and waste pesticide materials has become an
acute challenge. The practiced disposal optious arc incineration. cucapsulation, isolation
in underground caves and mines. chemical stabilization, land spreading and land filling.
Safe disposal of pesticides has an Economic implication, the most economical methods of
disposals of pesticides is by landfills and land spread [24]. The contamination of ground
water by migration of inorganic and organic pesticides from dumping sites has become an
issue of increased concern in years. The concept of adsorption is essential in determining
the movement patterns of pesticides in the soil because it helps in assessment of the effect
of migrating chemicals on the quality of the groundwater environment [3]. Chemicals de-
grade ground water quality when they migrate from their disposal sites to the aquifers. The
study of migration of pesticides from their disposal sites to the underground aquifer has to
be understood well so that we can come up with effective ways of protecting groundwater
resources from pollution. Predictions of the fate of ground-water contaminants can then be
made in order to assess the effect of these chemicals on local water resources and to evaluate

the effectiveness of remedial actions.

Two physical processes that govern the movement of ground water solutes are:

1. Advection, which describes the transport of solutes by bulky motion of flowing water

in the ground due to pressure and gravitational energy [21].



2. Hydrodynamic dispersion. which describes the spread of solutes along and transverse
to the direction of flow resulting from both mechanical mixing and molecular diffusion

[16).

This mixing depends on molecular diffusion. geometry of the pores, and distribution of
soil water velocity which equally depends on water in the medium. If the velocity of water
1s zero, the process of wixing occurs purely as a result of diffusion only.

Chemical reaction, including those mediated by micro-organisms or caused by interaction
with aquifer material or other materials may also affect the concentration of solute.

These processes are described quantitatively by a derived 3-dimension partial differential
equation referred to as "advective-dispersive solute transport equation”™ in this study. This
cquation yiclds the concentration as a function of time and distance from the contaminant
source in 3D. 1.e. x. y and z directions. This equation is applied to a particular ground water
contaminant problem, data is required detailing the ground water velocity, coefficients of
hydrodynamic dispersiou, rate of chemical reactions. initial concentrations of solutes in the
damping site. configuration of solute source and bhoundaries of pesticides movements in the
ground fHow system. Quantitative characterization of 3D material microstructure is essential
for understanding relationships between microstructure and material properties.

In the ground flow system having irregular geometry and non-uniform media properties,
numerical techniques are used to approximate solutions to the solute cquation. The 3D
analysis will provide details relevant to providing the details of study [25].

Porous media are made up of pore space and a solid matrix. The pore spaces are typ-
1cally connected, which allows transport processes such as fluid flow, mass trausfer. and
heat transfer to take place inside. Transport in porous media is an important part of many
engineering processes such as chromatography, reactor design, environmental remediation,
petroleum recovery. catalysis, ion exchange etc. The structure of porous media is usually
complex. so it is customwary to model porous wedia by iguoring the micro mechanical details
within the pores and instead to work with the volume-averaged laws that treat a porous
medium as a macroscopically uniform continuum. At this scale, porous media are described
by parameters such as permeability. and dispersion coeflicients [8].

I most cases of practical interest. analytic solutions of the mathematical models are not
possible. the mathematical models are transformed into numnerical models. which, in turn,
are solved by specially designed computer programs. Advantages of munerical approaches

are; they can easily deal with variability in the flow transport parameters and there is flex-
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ibility in representing parameters that facilitate modeling of layers or other more complex
geometries i two and three dimensions [8].

Disadvantages of numerical approaches arc; when doing numeric for a PDE that has un-
known properties numeric are elusive, bug-prone, and sometimes just plainly wrong. In
solving Ordinary Differential Equations. some methods are stable (backward Euler), some
methods are unstable (forward Euler) and some have less glohal errors than others.

A modeling task can be subdivided into several steps:

e Preprocessing (transformation of data into a format appropriate for the numerical

algorithm. including grid generation)

Numerical calculation (direct modeling)

Calibration (inverse modeling)

Post-processing

Today’s software packages or codes assist in all of these modeling steps [16. 28]

1.2 Basic Concepts

1.2.1  Steady Flow and Unsteady Flow

Steady-state flow refers to the condition where the fluid properties at a point in the system

do not change over time. Thme dependent fows are unsteady (also called transient)

1.2.2 Mass Balance

The conservation of mass principle gives the total amount of mass entering a control volume

equal to the total mass leaving it.

Zm,i = Z'rm (1.2.1)

where. i=inlet and e=exit. Now. let m,be mass of the control volume. then ‘)—’(’7‘% = 0. for

steady flow.




1.2.3 Energy balance

Also, for energy balance for a process
E'i,n = Lout (122)

(’)Esyxfev‘u

e = 0, for steady How Eeris energy in the control volume for a steady flow

process, the total energy content of a control volume remains constant.

The total energy E of a simple compressible system cousists of three parts; Internal energy

U, Rinetic Energy K.E. and Potential Energy P.E. i.e. E=U+KE+PE

For Unit mass,
2
v
€:u+ke+pe:u+72—+g::, (1.2.3)

where. e=total energy per unit mass, u=internal energy, v=velocity of the systeni, gz=unit

gravitational potential energy, g -is the acceleration due to gravity.
For a general steady-flow process. the energy balance can be written as,
J U

2

. .
v 'lx'e ;
Qin + Wi + E Mip [hm + 5 + gzm} = Qout + Wout + E Me [he + 5 + g:e} (1.2.4)

From a closed thermodynamic system, the first law may be stated as:
0Q = oW + U

or equivalently
oU = 0Q — oW,

where 0Q) -is the quantity of energy added by heating the process,0W -Energy lost due to

work, OU -is the change in internal energy.

2 2

aQ — oW = Z Me [h,e + %’" + g::e} — Z’m.,; [h,.,; + & + g:,} (1.2.5
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where W-Is work due to expansion=Pressure multiplied by volume and Q-Is internal

energy



1.2.4  Peclets Number in mass transfer

Peclet Number,

= (1.2.6)

where. u -average velocity, L —characteristic length, D,,-molecular diffusion coefficient

The longitudinal dispersion coefficient. Dy . is lower than D,, for Pe <1, where Dp ~ B¢

with, aj ~ 1.2 for experiments on bead packs. sand packs and homogeneous stones.

For mechaunical dispersion regime with D,, ~ P, the transverse dispersion coefficient. Dr,

however is lower than Dy and typical scale approximately linearly with P. [14]

For longitudinal dispersion iu the absence of advection (Low Pe) molecular ditfusion 1s the
only mechanism for fluid mixing. This diffusion is restricted as the porous matrix acts as a
barrier to molecules, thus reducing the mean free path of molecules which result in the ratio
%f; being smaller than unity [24]. The first effect of advection on dispersion are observed
at P, =0.1.

At P. = 10. advection starts to have a much-pronounced contribution on mixing but diffusion
effect are still present. The Dest fit of the results Dy ~ P.“% in the regime 10 < P, < 400, 1s
with power law cocfficient, ap = 1.2. where a-Longitudinal dispersivity[14]. The magnitude
of transverse dispersion is much smaller than longitudinal dispersion and the power law
coefficient to fit Dp ~ P.""is ar = 0.94 < « indicating a weaker transverse ar dispersion

dependent on P, than longitudinal dispersion [24]. ar-Traverse dispersivity.

D, or Dp (I*T™Y). Be ~ P, £ ~ P, for all Pe >> 1
D, Doy,

1.2.5 Mechanical Dispersion

The process where ground water velocity inereases. the fluid mixing rate caused by differ-
ence of velocity in individual soil pore is a phenomenon is called mechanical or convective
dispersion.

The mechanical dispersion account for: [4].

1. Micro scale spreading because of the parabolic velocity distribution in single pores.

9. Variability in velocities between different pores, and

3. The tortuousity, branching and interfingering of pore chanmnels.




Hydrodynamic dispersion coefficient, D in a porous medium is the sum of mechanical dis-
persion coefficient D,,, and molecular diffusion coefticient D, expressed as; D = D, + Dy
Molecular Diffusion Coefficient in the soil is given by: Dy = D.4.7 where, D,4-is diffusion
2
coeflicient in water and 7 -is tortuosity of porous medium is given by. 7 = (f—) < 1, L-is
the straight line distance of a diffusing particle. L.-is the real distance covered by diffusing
particle moving through pores among solid particles of the soil.
Here the longitudinal dispersion is a result of differences in travel time along fowlines,
which split at grain boundaries (or large obstacles)., whereas transversal dispersion applies
to dispersion perpendicular to that direction and is caused by variatious in the microscopic
velocity within cach flow channel and from one channel to another. Vertical transverse dis-
persion is usually smaller than horizontal transverse dispersion. Microscopically there is no
mixing; however. if the average concentration of a given volume of fluid is considered an
apparcnt dilution or spreading is present. The mechanical dispersion in a variable aperture
fracture is caused by Taylor dispersion, which results from velocity variations across the
fracture aperture, and macro/geometric dispersion, which is caused by velocity variations
in the planar of the fracture because of aperture variability [8]. Since Taylor dispersion is
proportional to v¥ and macro dispersion is lincar proportional to v, where v is the mean flux
[LTY, mechanical dispersion will be negligible at Peclet numnbers << 1. Dispersion takes
effect at many scales. from pore-scale to larger scale. Variability in groundwater velocities
may increase at larger scales for two reasons — cither new, infrequently spaced, pore clements
with higher-than-average velocitie’s may be countered as scale is increased. as in fractured
media. or there may be continuous variations in ensemble means from place to place. as in
cases where Darcian pereability is inhomogeneous.
In 1D transport models, the approximations are mostly related with the averaging of radial
porosity, velocity profiles, and dispersion coefficients. In 2D models, the approximation in-
cludes decoupling of flow fields from those of concentrations by assuming prescribed velocity
profiles, which are radial or symmetric. As a consequence, these models cannot describe, in
p‘chtic.ular, the effects of flow or circulation within the voids between the particles or those
of the stagnant zones around the particles or in the vicinity of the walls of the adsorber,
ou the concentration profiles. Similarly. the spatial variation in bed-porosity and dispersion
cocfficient in 2D models is incorporated via various empirical correlations reported in the
literature. There is another limitation of the existing 1D or 2D models for packed beds
having small d/d, ratio in predicting concentration profiles within the voids. In principle,

if the non-dimensional groups in different sets of cquations for the conservation of species




and momentum and the corresponding non-dimensional boundary conditions are identical,
the non-dimensional solutious should also be the same. although actual solutions for the
velocity and concentration profiles will be different due to scaling effect. The situation,
Lowever, becomes rather non-trivial in packed beds due to different packing arrangements
possible for the same d/d, ratio. in which case overall bed-porosity may be the same but the
local porosity vary from one arrangement to the other. As a conscquence, the concentration
profiles are different. This is one of the reasons why the existing literature correlations may
not be realistic for calculating effective Pe for packed beds having low d/d, ratio (<10).
since concentration profiles will be significantly influenced by the packing arrangements. In
such a case it would be more realistic to solve full 3D profiles without using any existing
correlations, [8].

Langmuir [17] in 1915 came up with a model, which is also called ideal localized monolayer

model, which was based on the following assumptioﬁs:

(1) Adsorption takes place only at specific localized sites on the swrface and saturation
coverage correspond to complete occupancy of these sites.

(i1) Each site can accommodate one and only one molecule or atom,

(iii) The arca of each site is fixed quantity determine solely by the geometry of the surface,

(iv) The adsorption energy is the same at all site, and

(v) The adsorbed molecules cannot migrate across the surface or interact with neighboring

molecules.

The instantancous cquilibrivi reaction between the amount of chemical in solution and that
sobbed by the solid phase i1s generally represent by one of the following three adsorption

1sotlierims
i The simplest chemical reaction model is the linear adsorption equation
9. = B0 (1.2.7)

where K is referred to as the distribution coefficient (slope of the adsorption isotherm),

C is the concentration of solute in the solution.



ii Equation (1.2.7) is a special case of the Freundlich equation

S, = K,CV (1.2.8)
where N is a fitting parameter.
iii The Lagmuir adsorption equation.
aC
8y = 128
£ 1+C (1.2.9)

where a and b are curve fitting parameters.

1.2.6 Water flow

Darcy’s Law: in 1856 Darcy [9] found that the rate of flow Q (volume/unit time) 1s

i Proportional to the cross-sectional area A of the soil under consideration;

ii Proportional to the difference in total head Ah= (h;-hy), over the length L over which

fluid flow takes place, and

iii Inversely proportional to that length L. The ratio Ah/L is known as hydraulic gradient

i. Thus, Darcy’s law 1s

Q hl —hv‘z .
V)= — = —K _ == — . .L 1
v=g =" - ki (1.2.10)

where the ratio Q/A is the ‘effective” or Darcy velocity v. This phenomenological or ex-
perimentally derived law can be generalized for an isotropic 3D porous medium as v=-kVi,
where v is the effective velocity vector with components v, vy and v, corresponding to
the Cartesian x. v and z coordinates, and Vi is the hydraulic gradient with components
— O ; _ Ok 6

2= gty = By and ¢, = ())—" The “total head’ I arises from the pressure potential P/ V- the

i
clevation z, and the kinetic energy % where z is the clevation head with respect to some
fixed reference datwn, p is pressure, 7, is the unit weight of the fluid (usually water) and
g is the acceleration due to gravity. However. for a porous medium. the fluid velocity 13
usually low and changes in the piczometric head are much larger than the fraction of kinetic
energy; so. the later contribution is usually neglected. leading to b h & p/~, + z. This leads
to the equation below which is reformulated in terms of elevation z and fluid pressure (30]:

Vp

k K
v= =k (;— + Vz) = == (Vp+ pgVz) = = (Vp+ pgVz) (1.2.11)




Vp -Pressure gradient operator for 3D. V= Hydraulic head gradient operator for 3D

where p,, is the fuid density, 7. is the Huid dynamics viscosity. and A 1s the intrinsic per-

ke

meability of the granular medium linked to the hydraulic conductivity k as K = =

A mass balance must be performed, and used along with Darcy’s law, to arrive at the tran-
sient groundwater flow equation. This balance is analogous to the energy balance used in
heat transfer to arrive at the heat equation. It is simply a statement of accounting. that for a
given control volume, aside from sources or sinks. mass cannot be created or destroyed. The
conservation of mass states that for a given increment of time (At) the difference between
the mass flowing in across the boundaries, the mass flowing out across the boundaries. and

the sources within the volume, is the change in storage.

Aj\[wim- o A[m - Afml,t N AMge'n (1 9 17)
At At At At o

Although Darcy’'s law (an expression of conservation of momentum) was determined
experimentally by Darcy, it has since been derived from the Navier-Stokes equationus via
homogenization. It is analogous to Fourier’s law in the ficld of heat conduction, Ohm's
law in the field of electrical networks, or Fick’s law in diffusion theory [3]. One application
of Darcy’s law is to water flow through an aquifer. Darcy’s laws along with the equation
of conservation of mass are equivalent to the groundwater How equation. one of the hasic
relationships of hydrogeology. Darcy’s law is also used to describe oil, water, and gas flows
through petrolewin reservoirs.

The original expression of Darcy’s equation and a schematic is included below [9].

where. u =flow velocity in cui/second, Ah =difference in manometer level. cin (water equiv-
alent), [ =total length of sand pack. cm. and £ =Constant of permeability,

Q-discharge; 1 and 2 are corresponding inlet and outlet respectively in the equation below.
Darcy’s law [18] is a simple proportional relationship between the instantaneous discharge

rate through a porous medium, the viscosity of the fluid and the pressure drop over a given

distance.
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Q= bkt ol Tl (1.2.13)

where P, is the atmospheric pressure at hy and P, is the atmospheric pressure at hy. The
total discharge, @ (units of volume per time. e.g.. m/s) is equal to the product of the
permeability (x units of area. e.g. m) of the medium. the cross-sectional area (A) to flow,
and the pressure drop, all divided by the dynamic viscosity g (in SI units c.g. kg/(1ms)
or Pas), and the length L the pressure drop is taking place over. The negative sign is
needed because fluids flow from high pressure to low pressure. So if the change in pressure
is negative (in the z-direction) then the fow will be positive (in the z-direction). Dividing

both sides of the equation by the arca and using more general notation leads to

g=yp_¥ (1.2.14)
L A

where ¢ is the flux (discharge per unit area, with units of length per time, m/s) and VP is
the pressure gradient vector. This value of flux, often referred to as the Darcy flux, is not the
velocity which the water travelling through the pores is experiencing [5]. The pore velocity
(v) is related to the Darcy flux (g) by the porosity (@). The flux is divided by porosity to
account for the fact that only a fraction of the total formation volume is available for flow.

The pore velocity is, v = { where. ® is porosity

In 3D dimensions

In three dimensions, gravity must be accounted for, as the flow is not affected by the vertical
pressure drop caused by gravity when assuming hydrostatic conditions. The solution is to
subtract the gravitational pressure drop from the existing pressure drop in order to express
the resulting flow.

7 = ——;[ﬁ (VP — pgé.) (1.2.15)

where the flux q is a vector quantity. k(L*T~1!) is a tensor of permeability, V is the
eradient operator in 3D. gis the acceleration due to gravity, €z is the unit vector in the
vertical direction. pointing downwards and p is the density.
Effects of anisotropy in three dimensions are addressed using a symmetric second-order ten-

sor of permeability: [19]

11



K:c:c K:ty Ka'z
K

K=| K Ky

yT yz

Kz:z: sz Kzz
where the magnitudes of permeability in the z, y. and 2 component directions are specified.
Since this is a symmetric matrix. there are at most six unique values. If the permeability 1s

isotropic (equal magnitude in all directions), then the diagonal values are equal. S, [~]

In general. for a given porous medium K. K,and K. do not need to be the same, in which
case, the mediun is called anisotropic. On the other hand, if K, = K, = K. the medium 1s

called 1sotropic.

In general, x, y, z can have any orientation. but it is common to set z vertical and x and
y horizontal. In three dimensions, all fluxes (Q.q.v) are vector quantities (3 components),

2 1Q N s i o Y6 o & . _ Oh _ Oh _Oh N , s
as is the hydraulic gradient I= [l : 1y : L], Uz = 5ily = (,),—y,l_Z = 5). The hydraulic

head is still a scalar (1 component). while the hydraulic conductivity is a tensor quantity (9

components)
The most general 3D Darcy’s law is written as: [18]
q=-KI, T is the gradient head

Or more explicitly,

q, | = | Ky Kyy Ky Oh/0y | (1.2.6.2)
q; Kz:z sz K,—:z 8’1/82

We can easily verify that previous 3D Darcy's law (with 3 principal components: (K, K, K.)

is just a reduced form of the above equation when K is a diagonal tensor (under the condition

that the coordinate axcs are aligned with the principal axes of K).

1.2.7 Assumptions

Darcy’s law [11] is a simple mathematical statement which neatly sumnarizes several famil-

jar properties that groundwater flowing in aquifers exhibit, including:

e If there is no pressure gradient over a distance. no flow oceurs (this is hydrostatic

conditions).




e If there is a pressure gradient, low will occur from high pressure towards low pressure

(opposite the direction of increasing gradient - hence the negative sign in Darcy’s law).,

e The greater the pressure gradient (through the same formation material). the greater
the discharge rate, and the discharge rate of fluid will often be different — through dif-
ferent formation materials (or even through the same material, in a different direction)

— even if the same pressure gradient exists in both cases.

A graphical illustration of the use of the steady-state groundwater flow equation (based on
Darcy’s law and the conservation of mass) is in the construction of flow nets, to quantify the
amount of groundwater flowing under a dam. Flow nets are commonly used in the design
of earth dams.

Darcy’s law is only valid for slow. viscous flow; fortunately. most groundwater flow cases
fall in this category. Typically, any flow with a Reyvnolds nmunber less than one is clearly
laminar, and it would be valid to apply Darcy’s law. Experimental tests have shown that
for flow regimes with values of Reynolds number up to 10 may still be Darcian. Reynolds

number (a dimensionless parameter) for porous media flow is typically expressed as

~ pudsg
o

Re (1.2.16)

where p is the density of the fluid (units of mass per volume), v is the specific discharge (not
the pore velocity — with units of length per time), dsy is a representative grain diameter
for the porous medium (often taken as the 30% passing size from a grain size analysis using

sieves), aud p is the dynamic viscosity of the fluid.

1.2.8 Solute transport

Solute-spreading mechanisms Three physically based mechanisms have been proposed to
explain spreading of solutes as they travel through the soil with the moving liquid phase:
travel-time variations within the population of stream tubes, the analogy with molecular
diffusion, and Levy processes. Sorption and transformation processes can be cqually well
implemented in models based on any of these three spreading mechanisms. Other concepts
have emerged, such as the mobile-immobile solute trahsport model [12] for an overview
of early work. but these are typically based on oue of the three fundamental spreading
mechanisis. For instance. some formulations of the mobile-imimobile How model assume

the liquid phase in a soil to be partitioned 1 a mobile domain where flow occurs. and an

13




immobile domain in which the soil solution is stagnant. Usually, the Convection Dispersion
Equation (CDE) is valid in the mobile domain, and diffusion is asswned in the inmnobile
domain. A fourth mechanism has a less obvious physical connotation but merits attention
because of its extraordinary generality: solute spreading by a Continuous-Time Random-
Walk process (CTRW). CTRW describes solute movement in terms of the probability of a
random displacement with a random travel time. It is distinet from random-walk models
in which particle paths follow stream lines perturbed by random excursions [11].  This
mechanism too can be implemented in derived modeling concepts. as was demonstrated by

Dentz and Berkowitz [11] who included CTRW in a mobile-immobile model.
Brief information listed below can explain the basics.
Travel time variation within the population of stream of tubes:

This modeling concept views a soil voluine as a population of streamn tubes with randomly
distributed travel times. The travel-time probability density function (pdf) is often assmmned
to be lognormal [11], resulting in the Convective Lognormal Transfer function model (CLT).
In Stochastic-Convective Movement, solutes do not move with respect to the water which
carries them: a solute particle never leaves the stream tube into which it entered at the
inlet boundary of the soil volume, and at all times its velocity is equal to that of the
water surrounding it. During stochastic-convective solute transport the degree of solute
spreading in nou-layered soils is proportional to the distance traveled. and the standard
deviation of the travel time incroésos lincarly with the travel distance [11]. For steady-state
flow, the standard deviation of the travel distance icreases linearly with time. Because
solute particles are assumed not to leave their stream tubes, the SCM can only model the
longitudinal spreading within the entire soil volune and cannot handle non-uniform solute

applications at the inlet boundary.
Analogy with molecular diffusion:

The solute transport concept implemented in most solute transport models is the Convection-
Dispersion Equation (CDE), which assues a macroscopic uniform flow in which solutes are
spread by a dispersive flux that is analogous to diffusion (i.c.. proportional to the concen-

tration gradient) and hence obeys Fick's law. The CDE reads:

‘()HC/'[ . o T ¢
L=V (6DVe) - V (7“,(.,) (1.2.17)

Here, D(L?T~1) is a tensor cousisting of effective dispersion coefficients. 7.“. 1s the vec-

14




tor of water flux densities (LT ') in the principal directions, ¢ is the solute concentration
(ML™3). subscript { indicates the coucentration relates to dissolved rather than sorbed so-
lutes. and superscript » indicates a resident concentration. The water flux densities in 7w
are macroscopic, in the sense that local variations need not be explicitly accounted for.
Instead, the effect these local variations in 7 » have on solute spreading is reflected in the
values of the clements of D. For soils this means that soil layers are usually assumed to
be uniform, resulting in essentially parallel, vertical flow lines for many applications. The
tensor D is often simplified. with & scalar longitudinal dispersion coefficient Dy on the di-
agonal element correspouding to the axis parallel to the main flow direction. lateral Dp
dispersion cocfficients (L*T~') on the remaining diagonal clements corresponding to the
axes perpendicular to the main flow direction, and all off-diagonal elements equal to zero.
According to the Stochastic-Convective Motion (SCM). solutes remain within the flow tube
in which they entered at the soil surface. The Convection Dispersion Equation (CDE) as-
sumes solutes continuously change flow tubes through Brownian motion. The Fractional
Advection-Dispersion Equation (FADE) allows for periods of Brownian motion interspersed

with periods during which solute particles do not leave their flow vessel.

The element of mechanical dispersion tensor D,,, for our study, can be expressed in terms
of longitudinal, «y. and traverse dispersivities, ay. the magnitude of velocity vector, V. and

the magnitude of its components v, v, and v, [5] as.

ol + oy (V2 + 02)

Dm:m' - ‘/7
N SRS S
b = oy + oy (Vg + v3)
Mlyy ™ %
[y — o) v,y ]
Dmm/ = Dmu;,,- = i V |
[ (2 — o) vyv. ]
D,,,_y: = Dm?,, = "‘,
[ (a; — ) vpv- |
D'Ill,v: - Dm:;,- = _#_
2y (a2 1 o2
av? + oy (V2 +02)
Dm:z =

v

(1.2.18)

If a coordinate system is chosen, such that the direction of the average groundwater



velocity is aligned with the x-direction (V=v, and v,=v.=0), the ofl-diagonal terms in
the dispersion teusor (1.2.8.2) will equal zero. and the wechanical dispersion tensor can be
simplified to,

Drl‘l,;[ - Dmm.,. = CX[V

D,., = Dy, = oV

DIN; - Dm:: = u,V
(1.2.19)

From a geological point of view, the subsurface is divided into aquifers and aquitards. The
three-dimension equation problem of equation holds in aquifers. But in aquitards. there is
no horizoutal low hecause the permeability is zero. Since the intrinsic permeability in the

horizontal direction of Darcy’s law arc:

bovw = by = Kpo = ko = k;

wy = Yy

Heuce the transport equation for geological aquitards becomes

aC 0q,.C

06— = V. (0DVC) — — 5O 1.2.2
= V. {IDVE) ~ =+l (1.2.20)
D,. 0 0
with D = 0 D, 0
0 0 D

(1.2.21)
and Dy, = apqy, Dyy = arqe, D, = arg,

The effective dispersion coeflicient tensor D, referred in this context is hydrodynamic disper-
sion coefficient. Hydrodynamic dispersion consists of mechanical dispersion and molecular
diffusion. Hydrodynamic dispersion is the flux of solute. Solute flux. J, is given by Fick’s

first Law as

J=-6D.C . (1.2.22)

0

In a flow system having uniform flow aligned with the x-axis, the coefficients of the hydro-
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dynamic dispersion tensor, D,. D, and D. are given by
D:I: = Dm:,. I Dr[

Dy - Dllly + DII
D: = Dm: + Dr[
(1.2.23)

D,., Dy, . and D, are corresponding mechanical dispersion coefficients in x. y and z direc-

tions

In low flow, the dispersion due to diffusion is very low. It also depends on the scale How

being considered [3].

1.2.9 Levy Process

. The fractional advection-dispersion equation (FADE) represents the intermediate stages
between the SCM and the CDE and includes the CDE as a special case. While the de-
velopment of the SCM was triggered by the inability of the CDE to reproduce field-scale
solute leaching it was found that assuining no dispersion at all was too strict. For flow
processes in other fields of physics, Fokker-Planck equations have been developed that use
fractional derivatives to account for non-Brownian movements with long-range spatial depen-
dence (memory effect) or high velocity variability [8]. In its simplest form (one dimensional
uniform flow, symmetric dispersion. uniforn, conservative tracer), the fractional advection-

dispersion equation is [7]

A three-dimensional (3D) analysis of transport and macrodispersion at the macrodispersion
experiment (MADE) site [8] using the Fractional Advection-Dispersion Equation (FADE)
developed [8] shows that the Levy dispersion process is scale dependent. Levy dispersion may
be superior to Gaussian dispersion on a sufficiently small scale: on larger scales. both theories
are likely to suffer from the fact that because of depositional structures most flow fields
display an evolving, nonstationary structure. Motion in such fields is advection dominated,
displays a lot of memory and thercfore is not modeled well by Markov random processes
which underlie the derivation of both the Gaussian and Levy advection dispersion equations
[6, 27]. To improve plume simulation of an advection-dominated transport process, one

would have to bring i more advective irregularity while snnultaneously decreasing the Levy
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dispersion coefficient. Therefore, on a 3-D basis. first-order Levy dispersion has limitations
siinilar to Gaussian dispersion. However, this and related theories. such as the continuous
time random walk (CTRW) formalism, are in the early stages of development and thus
may be fruitful areas for further. While a three-dimensional theory of fractional (Levy)
dispersion was been developed recently [7]. most hydrological applications to date have been
onc-dimensional. These applications have been intriguing and promising. but transport in
heterogeneous porous media is inherently 3D, and a 1D application may obscure much of
the physical process that is actually occurring, especially if a 3D concentration distribution

1s averaged to produce a 1D distribution.

1.2.10 Implied additional environmental parameters

Hydrodynamic dispersion: -

Hydrodynamic dispersivity («y, ag) is an empirical factor which quantifies how much con-
taminants stray away from the path of the groundwater which is carrying it. Some of the
contaminants will be "behind™ or "ahead™ the mean groundwater, giving rise to a longitudi-
nal dispersivity (ay), and some will be "to the sides of " the pure advective groundwater flow,
leading to a transverse dispersivity (ar) . Dispersion in groundwater is due to the fact that
each water "particle”, passing beyond a soil particle, must choose where to go, whether left
or right or up or down, so that the water "particles” (and their solute) are gradually spread
1 all directions around the mean path. This is the "microscopic™ mechanism, on the scale of
soil particles. Morce important, on long distances, can be the macroscopic inhomogeneity's
of the aquifer, which can have regions of larger or smaller permeability, so that some water
can find a preferential path in one direction. some other in a different direction. so that the
contaminant can be spread in a completely irregular way, like in a (three-dimensional) delta
of a river. Dispersivity is actually a factor which represents our lack of information about
the system we are simulating. There are many small details about the aquifer which are
being averaged when using a macroscopic approach (e.g., tiny beds of gravel and clay in
sand aquifers), they manifest themselves as an apparent dispersivity. Because of this, a is
often claimed to be dependent on the length scale of the problem — the dispersivity found
for transport through 1 m of aquifer is different than that for transport through 1 cm of the

same aquifer material

Diffusion :-




This is a fundamental physical phenomenon by which Einstein explained Brownian motion.
which describes the random thermal movement of molecules and small particles in gases and
liquids. It is an important phenomenon for small distances (it is essential for the achievement
of thermodinamic equilibria), but, as the time necessary to cover a distance by diffusion is
proportional to the square of the distance itself, it is ineffective for spreading a solute over
macroscopic distances. The diffusion cocefficient. D, is typically quite small. and its effect
can often be considered negligible (unless groundwater flow velocities are extremely low, as
they are in clay aquitards). In our case we say diffusion results from the random collision of
solute molecules and produce a Hux of solute particles from areas of higher to lower solute
concentration. [2] It is important not to confuse diffusion with dispersion. as the former is a
physical phenomenon and the latter is an empirical factor which is cast into a similar form
as diffusion, because we already know liow to solve that problem. We will be examining the

effect of three-dimensional approach of this factor in our analysis.
The retardation factor:-

This is another very important feature that makes the motion of the contaminant to de-
viate from the average groundwater motion. It is analogous to the retardation factor of
cliromatography. Unlike diffusion and dispersion. which simply spread the contaminant, the
retardation factor changes its global average velocity. so that it can be much slower than
that of water. This is due to a chemico-physical effect: the adsorption to the soil, which
holds the contaminant back and does not allow it to progress until the quantity correspond-
ing to the chemical adsorption cquilibriun has been adsorbed. This cffect is particularly
important for less soluble contaminants, which thus can move even hundreds or thousands
of times slower than water. The effect of this phenomenon is that only more soluble species
can cover long distances. The retardation factor depends on the chemical nature of both

the contaminant and the porous media.
Hydraulic conductivity (K) and transmissivity (T) -

These are indirect porous media properties (thev cannot be measured directly). 7' is the K
integrated over the vertical thickness (b) of the porous media ( T=Kb when K is constant over
the entire thickness). These properties are measures of a porous media ability to transmit
water. Intrinsic permeability (1) is a secondary medium property which does not depend on
the viscosity and density of the fluid (K and 7 are specific to water): it 1s used more in the
petroleun industry. Porosity does not directly affect the distribution of hyvdraulic head iu

a porous media, but it has a very strong cffect on the migration of dissolved contaminants.
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since it affects groundwater flow velocities through an inversely proportional relationship.

Water content (8) is also a directly measurable property: it is the fraction of the total rock
which is filled with liquid water. This is also a [raction between 0 and 1. but it must also

be less than or equal to the total porosity.

The water content is very important in vadose zone hydrology. where the hydraulic conduc-
tivity is a strongly nonlinear function of water content; this complicates the solution of the
unsaturated groundwater flow equation. Water content has no dimensional variable effect

associated with it.
Tortuosity -

This is one of the most meaningful 3D parameters of pore structure which express the degree
of complexity of the sinuous pore path. Tortuosity cau easily be related to conductivity of
the porous medium since it provides an indication of increased resistance to flow due to
pore system’s greater path length ie an increased path length results i less connection or

reduced hydraulic conductivity [31]. The shape factor coefficient, S,,. of the porous media

1s computed from morphological characteristics of pores.

S, = {L} (1.2.24)

)
N2 x T,

where S, is pore sphericity. 7,pore path tortuosity. N is the number of pores,

IS

<.

1
T3 (6V,)- )
B it (1.2:25)
P AP

V, . A, are pore volume and surface area respectively.

D, = Z Vi/Vimg (air fill porosity) (1.2.26)

V;[L®] is the volume of the i'" pore(empty pore
I pty p

Vimg - Volume of picat sub sample

(puA‘) o
Ty = 7.—R2I' (1.2.27)
2

where R, -radius factor.

The investigation of the shape. geographic pore properties, % porosity and hydraulic radius




of pores, tortuosity are determined by use of 3D high resolution computed tomography

inagery. It is not possible in 2D case.

1.2.11  Interactive Volume Modeling

Interactive Volume Modeling (IVM) was developed to meet basic requirements of 3D prob-
lems, such as modeling, visualization and analysis. The use of visualization techniques and
volumne calculations provide some useful capabilities such as the ability to calculate the vol-
ume of material within specific property range and to be able to visualize where the volume

of material occurs in 3D space.

IVM creates a uniforu, regularly spaced 3D grid model with a calculation property value
at each node. This grid model is then used to generate series of user defined surfaces equal
values, which are called “iso surfaces”. GOCAD is a computer aided design for geological

applications. [10].

1.3 Statement of the problem

The main challenge to address that necessitated the design of this model is how to control
the effect of migrating of dumped pesticides from their disposal sites to the ground water
environment through 1111(?lel‘st,e\,11dii1g of the movement pattern from their disposal sites. With
diminishing surface water resources and increasing demand with population increase, control

of ground water pollution is inevitable.

To address this wmigration, many solutions for Advection-Dispersive equations are now avail-
able for a large nunber of initial and boundary conditions for 1D transport. but very few

for 3D [29].

To accurately determine the flow of these migrating chemicals in the ground environment,
1D and 2D dimensional equations are limited because they work with lnmped parameters to
factor in missed dimension(s). The emphasis on use of 1D and 2D was due to complexities

and costs associated with solving 3D equations.

Soil processes have a 3D character. Modelling therefore in principle should employ 3D.
The target of any research question is to get the highest degree of accuracy possible. The

number of dimensions is closely related to the required accuracy of a rescarch question thus




making 3D modelling most ideal for practical purposes when it comes to solving this research
problem. The strength with 3D flow wodels is that they provide detailed analysis of typical

multidimensional flow.

This model is a good contribution to research. users and manufacturers.

1.4 Objectives of the study

General objective

The objective of this study is to model movement of pesticides in 3D by the advection-

dispersive partial differential equation under a steady state water flow in a porous media.

Specific objective:

1 Derive 3D equation of advection-dispersion of pesticides adsorption in porous medium

from the first principle.
ii Solve the derived equation.

ii Test the solution by applying it to experimental data so as to prove its validity.

1.5 Significance of the study

Iu this study we take care of 3D movement of chemical solute in the subsuwface environment,
thus giving us a comprehensive model deseribing the movement of these solutes. This study

1s essential to;

The users of pesticides: -

It helps them know how to safeguard water sources by identifying safe dumnping sites away
from water resources and determining the right pesticides for utilization in protecting their
crop and animals from pests.

Manufacturer of pesticides: -

It helps them avoid manufacturing dangerous pesticides with high migration potential and

low solubility in water in order to facilitate adsorption.




The researchers of pesticides: -
For 3D flow study, the researchers can be able to further carry out more studies i order to
provide sound advice to the user and the manufacturer and expand knowledge. The lumped

parameters as in the case of 1D and 2D are no more thus giving us detailed parameters

associated with 3D.




Chapter 2

Literature Review

Modeling of water low and pollutant transport in a porous media by Marcin K Widomiski
et al, [23], is fairly modern with computer approach. but not specific to pesticide flow in
a porous media. In that study, the authors intended to provide systematic information
and examples of use of the numerical models to describe waste water flow transport of
pollutants in sewer systems.  Van Genuchten ot al. (30] developed a partial differential
equation generally assumed to describe the movement of pesticides and other adsorbed

solutes through a porous soil media under a steady state water flow condition

: 2
aCc DO ¢ {‘(r)(j p A0S

il . O ol 2.0.1
ot da? dr 0Ot AL

where. C-Solute concentration, D-Coefficient of dispersion, v-Velocity. 6 -porosity. p -density,
S -Total amount of solute, t-time. é,nd x-is the displacement in axial direction. This equation,
if we have a confine aquifer, cannot be used to caleulate the underground flow of pesticides
to the aquifer. Should some drill a borehole some distance from a dwnping site. the aqui‘fer
will be contaminated by the flow of pesticide in a lateral direction. Later Van Genuchten
and Alives [28]. came up with an equation for one-dimension miscible displacement and

degradable chemical species (transport cquation in 1D).

[
&
8

=

0 [DdC} ocC oC

where. D is the coefficient of dispersion, C is the concentration. R is the retardation factor,
x is the displacement in the longitudinal axis. fis the decay constant. vis the zero-order
production rate and t is time. Basically, as stated the equation applies to degradable organic
pesticides and not inorganic pesticides. Ed Perfect and Michael C. Sukop [13] reviewed a
model of dispersion of noureactive solute in saturated porous media. They explicitly stated

that dispersion can occur as a result of diffusion. inter facial instability. mechanical mixing,

24




molecular size effect. and/or turbulence. Their focus was on combined effect of diffusion and
mechanical mixing. From their review, velocity-hased models such as convective-dispersion
equations are widely used at present however they lack the power due to inversely estimated
parameters. Geometrical dispersion models have been neglected in the past because of
difficulties of parametrizing in the complex structure that occur in the natural porous media.
The recent advances in fracture geometry, percolation and network theory may reduce these
difficulties. The spread of solute in a porous medium during a saturated flow is important
physio-chemical process, attributing to combination of diffusion and dispersive mechanism.
Their focus was on pore geometry model for chemical transport. Taylor 1953 [29] derived
the conveetive-diffusion equation

ocC y?
20(1 — =
o F

oC _  9°C 19C  *C

- Co i vt 2.0.3
P2 ) Ox dy? ! y dy ’ 81"2) ( )

The Discrete pore model equation is the Taylor’s equation. Let

(2.0.4)

IC 2C ac  &*Q ¥\ 0C
o _p(&C  19C FC\ . (, ¥\ &
ot Iyt oy dy  Ox? r? ) Ox

where. 1 is the radius of the pipe while x and y are displacement due to movements of
pesticides in axial and radial directions. v (y) = 2U (1 - ’f-) as indicated in Hagen-Poiseuille
equation of laminar flows. U is average velocity. D is dispersion cocfficient and is assumed
to be independent and r is the radius of the tube. This is effectively two dimensions’
equation. While numerical techniques have been employed in the equation above, there
are few analytical solutious available. They go further to create conditions that enables
the equation to be examined with geometrical factors incorporated. This review is in line
with our thesis because it deals with nonreactive adsorptive materials but their primary
consideration is the influence of the geometry on adsorption. The programm SWALS_3D
Code for Simulating water flow and solute transport in three dimensions [31]. munerically
solves Richards’s equation for saturated-unsaturated water flow and convective dispersive

equation for solute transport. The mixed form of Richards’s equation in 3D is given by

M =-VJj=V [K (h) V (h, + 2)] (2.0.5)
at
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where ¢ (L?/L*) is the volumetric water content in the soil. » (L) is the vertical coordinate in
reference to certain datumn. % » (L) is the water column pressure at the point with elevation
z and K (L/T) is the hydraulic conductivity tensor. This prograim may be used to analyze
water and solute movement in unsaturated. partially saturate or fully saturated porous
media. Here they use Galerkin-type linear finite element schemes. This program involves
flow in all the three direction therefore not suitable for our analysis. Analvtical solution for
solute transport in three dimensions in semi-infinite porous media is presented in[14] and
It presents several solutions for three dimensional solute transports in semi-infinite porous
media with unidirectional flow first type (or flux) boundary conditions at inlet location of

the medium. They use analytical method to solve the 3D problem [4] (Transport equation

in 3D)

oc  _9*C oC 9*C 9*C

ot =~ "o Ve TPvgm t gy —nC A

H0 .0Zasoc, —0LyLoo, —o0lzloo

(2.0.6)

here, -is the general first order rate coefficient of decay (T71), A-is the generalized zero
order rate coefficient for production (ML™'T~"). The equation is ideal for our work but the
decay and zero order coefficients make the equation unsuitable for our case study. Adams
[1] developed a two-dimensional cquation describing the movement of pesticides in a porous
medium under steady state flow condition. This study was based on the potential breakdown
of the 1D equation due to existence of an ipermeable layer (aquiclude) and development

of a borchole away from the damping pit.
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Figure 2: Sketch showing. the movement of pesticides in two dimensions
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The above equation was developed from the first principle and proved suitable for the
two-dimension flow.
Implicit numerical methods are stable in one-dimension problem but do not guarantee sta-
bility in multidimensional. Crank and Nicolson Method is a finite difference method used
in solving partial differential equations and it is an inplicit method which is uncondition-
ally stable, accurate and deal with time matching problems by taking simple explicit and
implicit methods. It prevents numerical challenges encountered by fully iinplicit schemnes
and shortens computing times by a factor of 2 [27]. It also does not encounter numerical
problems such as negative distribution function or crash during matrix inversion that are
seen in other implicit nunerical methods. However, its matrix is too complicated to solve.
Douglas and Guun modified Crank and Nicolson Method. They jointly developed a general
ADI scheme that is unconditionally stable and retains second order accuracy when applied
to 3D problems with varied implicit and cexplicit steps. This method gives a tridiagonal
matrix algorithm (TDMA) which is a simplified Gaussian elimination method [19].
These details are essential in analysis of many environmental studies related to irrigation
and drainage strategics (cfficient water use). transport of nutrients and pesticides movements
towards groundwater and surface water system (pollution). surface water management of
agricultural areas and natural areas (agronomic and ecological interest).
In this study, we derive a 3D couvective dispersive equation describing movement of pés—
ticides in underground porous media and solve the equation using an efficient Alternating
Direction Implicit method by Peaceman and Rachford [32], and Douglas and Gunn [28]
developed from a variation on the Crank Nicolson approximation.
Finally., we have used results of an experiinent carried out in Soil Science Departient, uni-
versity of Florida, United States, to apply the formula developed to test its functionality.

It is not practical to get all these details investigated with the samples locally because the

mstruments used are not comimon.




Chapter 3

Research Methodology

3.1 Introduction

Research Methodology consists of differential equations developed from analyzing ground-
water flow (or solute transport in groundwater). The equation is derived from first principles
governing molecular diffusion and hydrodynamic dispersion. Finally, the results are ana-
lyzed to confirmn the suitability of this equation compared with the ones which are commonly

used.

3.2 Derivation of convective-dispersive solute trans-
port three-dimension equation with steady state

water flow condition

From a control volume, we have the Mass conservation law Y~ M;, = >~ M,

The speed of water in porous media is determined by considering the average pore water ve-
locity v(LT —1) = § with ¢ :—k%? (Darcy’s law}, the flux density. and ¢ = “« i which vy,is
the volume of water in the porous media and v,is the volume of solids, k-is the permeabil-
ity, OH -the change in hydraulic head and 0l -elemental distance travelled in longitudinal
direction.

In this study we use the concept of dispersion through a cubically packed soil vessel with

internal dimensions x, y, and z to derive our equation.




1ay Z
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Figure 3: Cubically packed soil sample sketch used for deriving the 3D equation of adsorption of
pesticides through a porous media.

30




At very low flow rate, the dispersion is different in the three directions. The dispersion
coefficients are denoted by Du, Dy. and Dz for x. y and z directions respectively. Sumn

dispersion coefficient D is given by;
D= Dm + D(l

Dijx =D + Dy, 4]

ney K

where D,, (L2T71) is molecular diffusion cocfficient and D, (L*T~!) is the hydrodynamic
dispersion and is the mixing spreading of the solute during transport due to differences in
velocities within the pores and between the pores. The volumetric water content denoted by
¢ can be assuned to be a void ratio for saturated soils. The elemental height is denoted by0l.
The measurements are denoted byz. y and z for x. y and z-axis of the cube respectively.
C is the concentration of the material to be dispersed and is a function of axial position
x, radial positions y and z, time t and dispersion coefficients Dy and Dy radial and axial
respectively. The elemental displacement in X axis is da, in Y axis is 9y and iu Z axis is 0z
The rate of entry of reference adsorption material due to flow in axial direction from the

flow in the sample sketch Fig 3.

q (y9y) C (3.2.1)
The corresponding efflux rate. )
, oc
qydy (C + 51‘01> (3.2.2)

The net accumulation rate in element due to axial flow,

ocC
—qzyﬁyﬁf)l (3.2.

(8]
[\
W
N

Rate of diffusion in axial direction across inlet boundary,

acC
—ydyi D, — 3.2.4
yOyd D —; (3.2.4)
Correspouding rate at outlet houundary,
oc 0

ydy ‘[dl+012 } (3.2.5)

The net accumulation due to diffusion from boundaries in axial direction is,
02C .
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Diffusion at inlet y and z direction

ocC ac
z ! 32.%
—2002D),—— oy — yhoyD.— 5 (3.2.7)
The corresponding rate at y and z outlet is,
ac 8¢ oc  o*C
—2z00zD, — 00y D, —0z 3.2
9 ,,[a/+a ay} y6dy [aﬁazz e (325)

The net accumulation rate due to diffusion from boundaries in axial directions y and z

2 2
y@y()Dh%—ga + 20z ODQ(?)C;O (3.2.9)

For a representative volune of soil, the total amount of a given chemical species X (ML™3)
is represented by the sum of the amount retained by the soil, when the adsorption isotherm

obeys the Freundlich equation the matrix and the amount present in the soil.
X = ppS+6C (3.2.10)

where. p;, is bulky density and S is the solute adsorbed and ¢C' is the solute in the solu-

tion.Differentiating with respect to t, we get

0X os  oC

N 6 — 3.2.11
o o o (B2}
Now the total accumulation rate is
0X oS oC
TOyOz = Jxoydz 2.12
Az dyo 5 Ox0y0 <pb 5 o > (3 )

From equations (3.2.3), (3.2.6), (3.2.9). and (3.2.12), we have the following combined equa-
tion by the conservation of mass law,
9*C oC o 5

92 & YOydr—— 97 +y0y0zD,—— - zazayﬁDU@E

dxdy0-= < Po oy 5
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For a cube, x=y=g and & =0l =0z = 8y = 02

Thus, the above equation gives us.
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The presentation of the amount of solute adsorbate per unit adsorbent as a function of
the equilibrium concentration in bhulky solution at a constant temperature is termed as the
adsorption isotherm. One of the most popular adsorption isotherm equations that is used

for liquids was described as per equation (1.2.7)

S= KOV, (3.2.14)

(Freundlich eqn relates a S and C')

where S = z/m. is adsorbed solid and C' is the solute equilibrivun constant.

05 959C N 00 R
e 2.15
o Caca R (3.2.15)
From cquation (3.2.11) and (3.2.15) we get.
0X _ ! oS N HdC’
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Thus, we have
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where R (C) =(1 + %)
Taking, (LT —1) = § , the Advection-Diffusion equation from equation (3.2.13) is,
' ot T ox? "o Y o2 7 922 e

Therefore equation (3.2.17) is our model equation.

3.3 Problem formulation by finite difference

For isotropic porous media, the adsorption of solute is governed by equation (4.3.4).
This equation is the second order equation quasilinear partial differential equation. The
first step is to establish a finite difference method solution of the cquation is to discretize

the continuous domain of its grids with finite nwmber of grid points.
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At time step n, the concentration of the solute C'(z,y,z,t) at grid point (z.j. k) can be

replaced by C'(iAw, jAy. kAz. nAt) which is denoted byC7' ..

Tle initial conditions for solving the wodel equations is that the concentration of pes-
ticide at all positions in the soil at time zero is constant and cqual to C ;.. That is

C(z,0,0) = C; for z > 0, C(0,y.0) = C; for y > 0 and C(0,0,2) = C, for y > 0
For boundary conditions, two conditions arc necessary:

i In the first case the concentration of the pesticides at the position x = 0, y=0 is specified

for a period of time, the concentration at the surface is zero. That is
C(0.0,t) = Cy

for 0 <t <t

C(0,0.4) = 0
for t >ty

ii In the second case, the concentration of the pesticides in the solution entering the soil
system at position x or y = 0 is specified for a period time. Following that time, the

concentration at the surface is zero. Thus

{vco, for, 0<t<ty, -D,+ D% +D,% +VClz=0=0, for t>0}

£idE Y oy Oz
Assumptions;

i The pore water velocity is constant in time and space. This condition can be met for
a uniform soil if the flux density of water velocity and volumetric water content are

constant for all positions all the times.
il The spread of solute is dominated by hydraulic dispersion rather than diffusion.

ili The hydrodynamic dispersion can be approximated as the product of the dispersivity

and pore water velocity.

iv The adsorption process is instantaneous and reversible and the adsorption isotherm cau
be described by the model i.e the concentration of pesticide absorbed on the soil solids

is proportional to the concentration in the solution, [14]

34




3.4 Alternate Direct Implicit Method (ADI)

The implicit method is also known as the Backward in Time Central in Space (BTCS)
scheme and is unconditionally stable. Although it has great advantage, the drawback is
that a tridiagonal system must be solved for each time step. The ADI method is what is

used to solve the model equation. Below is a sketch of nonhomogeneous discretization




G,

i

K+

Figure 4: Sketch showing non-homogeneous discretization




Alternate Direct Implicit Method (ADI) is a Difference Method for solving Parabolic and

Partial difference equations.
In this study we will deal with two methods

In this study we will deal with two methods

1. Crank-Nicolson Mecthod,

2. Douglas-Gunn Method

3.4.1 Crank-Nicolson Method

Crank-Nicolson [26] dealt with the time marching problem by taking the average of simple

explicit and implicit methods. For our equation (4.3.4) we have

(Cn+l o Cn)

R(C) =

_p B(C 4 a(Cr 40

T s 4(dw)
a‘z Cn+l +C” 92 n+1 m
-+ )| 3 )+D:dz e JZC :
" 2(4y) 2(Az)

where. 0,-central difference in x direction, d, — central difference in y direction and 0, -

central difference in z direction.

Rearranging the Crank-Nicolson equation;

(C75% = Clu)

D (Cvzn—(flljl. o 26‘[77;“;} + C"F:Ll%j,kr) + D ( "‘Z;l,j.k - 20;,[],1; + C"I!f’—l,j,/i‘,)
’ 2(Axz)® ! 2(Ax)?
irn (Cl”++lljl\ - CIH—+11JA) — C“iril—l.J.A: o C"‘irll.jJ\:
N 4Azx ‘ 4Az
n+1 ¢ n+1 n+1 n ¢ n n
D (Ci.JtLl.k - Zcijk + Ci,f—l,k) +D ( Yig+lk T ZCf.J.k + Ci,j—l.k)
v 2(Ay)’ ! 2(Ay)”

+D,

(3.4.1)

-1 ‘ 41 n+1 N m T
(Gi.j,k+l - ZCLJ}A: + Czi,j.k'—l) 4D ( g k41 T 2C[Jh + C[,j,k—l)
2(Az)? ) 2(Az)?




ope 7, e B w o B B e B end § o 1.0 T
where 7., e Ty e T 5. My =~ and ¢ 1 / o~

The equation (3.0.0.20) above yields;

Vl? mtrl 4 Diz.t 7”.1:1 _u+1 o Dy"'yg /',”‘H o D”I’/ _u,+l
dB{Cr,)  2R(Cog)p 9 2R(Cr,.) T 2R(Cry) W
Dll.’"".’lf Dy”y DZ’ rZ/. +l Dll"]ﬂ;l' \/IL' ,)/I.l +1
e 1+ i e : i) 5 : ; '{vuv b — ‘ I: - - nz O;L oy
R (C(]L/A) R ((YINJ/\) R ( /z”//\) s 2R ((YIJA) 1R <(Y1//~) ot
o _Dy"‘y‘,/ e ‘/Ir*fl o DZTZ/\ /'nﬁ—l
2R ( lrfJA) b+ 1.k IR (C,”jk) 4. k41
DLllel_i vl ey, n Dy""y - DZT; 7
= i ——C" | ——C"
2R(CLe) | AR(C)) o RO, T T RR (O]

v (5= Ly B L) s, B Dirs oo 1D B Vemey, .
R(Chd R0 RCng) " \arien,) ~iR(cn,) ) e

i,k Ak i.j.k .k
Dy D.r,
Yty i 'z n 15}
+ IR (C,L ) i+ 1,k + OR (O'r} / ) C’[,{/.A:—}-l (‘)42)
"\ K SR\ LR

The matrix gencerated by Crank-Nicolson Method has the best accuracy and uncon-
ditionally stable but its main disadvantage is that the matrix generated is expensive (or
complicated) to solve.

Peaceman -Rachford and Douglas - Gunn [32] developed a variation of the Crank & Nicolson
approximation which is known as the ADI Method. Douglas - Gunn scheme is more relevant

for our calculation following the earlier discussion in the literature Review.

3.4.2 Douglas - Gunn Method

This numerical method is an alternative solution method which instead of solving 3D prob-
lem solves a succession of three one dimensional problems.

The breakdown of the method is explained diagrammatically as shown below [28].

Douglas - Gunn [32] modified the Crank- Nicolson method and developed a general ADI
scheme that is unconditionally stable and retains second order accuracy when applied to
3D problems. This approach exploits the understanding that Implicit numerical methods

are stable in one-dimension problem but do not guarantee stability i multi-dimensional
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STEP 1: X Implicit

R

oy g gy
D e = L o ]
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e
P
-
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i)k

Figure 5: Explicitin (Y,Z)

STEP 2: Y Implicit

./'

./",4 :3"',4”
A '!.
ff:.”. s aat
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P ,-u’/‘,x
o/‘(‘/:"/c'/:”'
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Figure 6: Explicit in (X,Z)

STEP 3: Z Implicit
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Figure 7: Explicit in (X,Y)




problems. The incorporation of Thomas algorithm is based on the fact that the inversions
of matrices produced by explicit nunerical methods are easier to solve compared to those of

implicit nunerical methods but require smaller time intervals. That is why the ADI method

is preferred over other numerical methods.




Chapter 4

Model Equation Solution

Based on Douglas - Guun approach we rewrite our equation as follows:

n+1 n Vo
R(CV) (C7n+l L Cvn) _ D;p'/”;(: (0? <C/ ‘+ O > N Uy My

2 4

4

(8, (C™ + G’”)))

DI /..1 - - D.: I, Y n
+#a§(c tyC )+—2—8§(C o)

(4.0.1)

Instead of directly solving the equation at time step n. we solve the same equation at three

sub-time steps [32];

Step 1 R(C) (€4 =€) = 222 (043 4 O7) - g, (et +cm)

+Dy1 2C" + D1, 07C"

(4.0.2)
" Step 2:-R(C) (0™ = C7) = 2map (Crh 4 0n) - g, (cm+t+cm)
PR L9z (¢4 4 C) + Dard? (C7)
(4.0.3)
Step 3i- R(C)(C™! = C") = 2242 (O 4+ C7) = Egg, (Cnvd 4+ C7)
+D”%8J’ (C""'*% 4 0) + DZ;" o2 (Cm + o)
(4.0.4)




Expanding the equation in the steps above we have

Step 1

’ n+1 - D-:'r';,- n+i p n+i n+i - .
R(C" k) (C ;= i,,j.k) = Jf) : [(CI+13.1¢ —2C; ;¢ + Ci~1,dj,k> + (Ci+1.;,'.k 20755+ Ciy ;k)] A

4

Virns n+id n+i
Eil 3 g i .
! l:(Ci+l,;j,k - CL—I,j,I:) sk (C1+14_;’.k - Cifl.j.k)]

+ [Dy'ry (Cirjj+l,/ 2C .k g Cl./ 1 l) + D:T': ( ’l“/k-H - C"/k = ¥ /I" 1)]

Step 2

7 n+2 - Drrr 'u,-i—:l n+ 4 n+ i n
R(C i»j-,k) (Ci,j,l: o Cijj.k) - D) [(Ci+ljj.]\ ZCJAJ + C, 1Jk> + ( “itlgk T C J.k + C —1,5,k )]

4

Vr’”‘r n+i n+L
xlly 5 vt 3 n "
T [(CiJrl,j,lc - '7%1,_7,!:) + (CHL_;‘& - Cifl,y,lf)]

D.r n+ 2 u+ n+2
Y n
+ 9 . l:(ci.j-!—dl.k 7C + CI_] 1; A) + ( i+l T Cl gk + C! 97— ll):l

+Dzr3[ Z]l/chl thjk+C'J‘ 1]

(4.0.6)

Step 3

" w . D Uy i St n v v
R(erj ) ((11;1 7NM> B 2 Kc”lq}’ 2(7 11z + Gy 1;;1> - ( {H gk ~2C ”1/ + '71rL1,,7,1c)}
‘/:57)7/;, it g n+i , ,
B 4 : [(Cﬂ»l;l C’i—lf‘i,k.) + ( -in+l.j.k. - '17—1,J',1,,):|
Dy‘]’ n+2 ¢ n+2 ,,,+% . ’L
1 ‘ n-+1 n+1 n 75
' 2 [(an"“ — 20755 + O 1) + (Clipnn — 20555 + Cijp )]

(4.0.7)

Rearranging the equation gives us the equation which provides the matrix of solving the

model equation;
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Stage 1; Lmplicit in x direction, explicit in (y, z) directions

Vyllly D.r, n+d Dyt > ntl < Villly D1y >
= = G, + | e | G+ - . C,
(4R (Crijx) 2R (Cni,j,k)> ik < R(CPiju) /) - 4R (C™jx) 2R (CPix)

B D.r, L VIl o N Dgry o 1 D,r, i
2R (Cmyjx) 4R (Chy5x) ek R (Cx) bt R (% %) e

c".. + D;l"';r Vg Ty n
4.0k 2R (C'Il,,]"k) AR (C""l,_fk) i+1,5,k

( D, 2Dy 27 >
T DR S .. SOOI
[{'(C’“i,],k) [{(C”'I.j‘k) [{(C”z,jk)

Dy, . r -
+R(C,f, =£)C1J+1A + mci,j‘k:%—l
(4.0.8)
" Dy, Ds s
Let, A} = DT B; = U—alL—, Cl=-F2"Cand D} = -~k
R(C7,0) R(Cr;,)" 7 R(CL;,) ® T R(CT, )
Nty et =
a;iC;_ 1% + G +c0,+1JA =d;
Its matrix is, where a; = 0 and ¢, = 0
(4.0.9)
- o . ) i )
b & - 0 Cﬁj,k d;
az by Cosx ds
10
a b3 c3 Cyl ds
-2
- - Cp—1 Cn - l.j,j,k‘ d/n -1
n—}—é
L 0 a’TI br’ M B C’l.j.z: L ({r' |
where.
a; = = (§Bi+341), b = 1+ A), & = (3B - LA). and d; = (LA +1B)Cr e

CiClyam + DiClpy + (1= Aj = 2C; —2D;) O, + (3A; - 1)) 7
+CICE ip + DLCE b

i+1,5.k




Stage 2; Implicit in y direction, explicit in (x, z) directions

5 o 2 1
Dyry A+ 3 Dyxy A+ 5 Dyry i+ 5 T ‘11—~— Vylll A+
2R(C,) Ciimna {1 R(Cy0) Cijk 2Ry ) Cija1a= R(Cr ) T TR

‘ ((m ) lR(C;iJ‘,I\-) /lfl.j,k
N DTy . My . D_\vr\, on w D,r, Co
¢ 'i—l._j.k =1.j,k + ¢ 1,)— 1,k "1jik—1
2R (C” ) 4R ( l;k) ZR ( ‘i]] k) l R ( :]J k) h
tfon —Dfx eord D o Dyry o 2Dar o
UUR(Ch) Y R(C) T R(C) T R(C)
. it Dt - Iy n+l Vil " Dyry \
"((:ux‘ij(/wl,j,k#vE{(‘éﬁj Gl QQ((‘JT)( i+1k T 7 (( n\.l\.j et ((‘ ‘<>(”;].j+l,l<

A n

R((‘:l_]‘k) 1.),k+1

(4.0.10)
Let

n42

a; C”_M—H)C”,n C”+1,+—d

(4.0.11)
where a; = 0 and ¢,, =0
bl cy 0 (\'IVII (]1
8
a9 bg ()] Clljz,/ dg
u.
as (’)3 C3 C'/ 3 k d3
I’I—% ;
o - Cp-l Dl ke (,l.,,,l
, il
i 0 Qy /)II ] ink L du
v/ "
; J / '
a;=——=b,=(14+C.).¢; = —
) o J ( /) J 2
n, 1 _1/(%’4r 3 l rytT 1 IVail 'i 1 11
j = 5‘ { ’/-l,./,/:+iB( IJA 5‘41(/—1._7.1 + - B(yrfljl. .) (/./711 +D (l/l—l

Nl /4 Y
+ (Ol — LGS = ALCT — CICT; . — 2DACT )




v 3 1, m ;, "
4C1+11L+)A (+1J,\ B(’Illlk B( &

F e e O
+D 1//. +1

Step 3; Implicit in z direction. explicit in (x, y) direction

D n D;l“: (0 D .
s (1 2 ot - 2o

¢ Y gk ] 4k ey Y1 i,0,k+1
2}? ( 74.}‘]?,) ]:{ <C vJ»A’> 2[{ ( 7,‘/,/'\7)
el 1 2
_Dere o5 weme  om b otame _"FE _DM,._CH 4 __h_ryw_Cr'—q
7 —1.5,k ¢ n i— 1,5,k o7 —1,7.k 10 1.5,k n j—1.k
_ 2R(Cr; ) 1 ar(Cr; ) L ar(cp;,) Ld 2r(Cy, ) Ll 2r(Cp;,) WL
,_py_v_(*fl _Dirs o
+2R( i A ) J—1.k s ZR(CQJ_/ ) “3id.k—1
+ oy — L n+3 . D1y n Dl/’"y n+3 D.ur.l/ 1" D,r, on
g,k n gk n gk n Bk n “igk T n 0.k
R ( IJL) R ( "/,J.fx‘) R ( "hva) R ( "/',]]k“) R ( ’LJJC)
Dyry n+3 T n vyt nty vty (o Dyry nts
” 1.5k T i+1,5.k W) Yilgk 1jk T <Gt
+ 2R(C17k) h J ((z,,'/.k) ! A JR(CL].k) whly JR(C ) s j ZR(Ct.J.k) 1J+1A
Dyry " Dzr. Y1
+2n(cnv )C j+1f\ + 2R(C;f,,k) IJA+1
(4.0.12)
n+1 +1 1+1
ULC'I Sk + by (,TI,, +(1,CY;/HI = dj;
(4.0.13)
Matrix 18, where a, = Oand ¢, = 0
g 2
bl (64] 0 C"I,J,l ('Zl
as by Cﬁ,‘,;g oy
< ) 4
as by c3 Ciix ds
‘zyffk/.rlfl d”“l
n+1
C( s i L d”/ i
/
_D
2

4




o n+ . St i (91 h D? 4
d (1AC7—1;I~+ BC”IJA+ BC l/l”+ 4C 1J}w+ Jclj—lk + 2]6[.1' 1A+ Eh I'Jk 1>

+ ( “8.3.k A (‘r“jl\_ A;C;I/ C/CI’+ (’Cz ,Jk Dk 4 /l.>

ik

e e

1
l AICI+1JA + lA,

n—+

1BC,+1M iBCh s+ = 3C

M I T
C1J+lk Cljl+l

n+

7+1JL 1J+]k

The above is the solution to the model equation, which are equations (4.0.8), (4.0.10) and

(4.0.12).

o o Tl nis 150 D. r.
Let A} = *—i;.sz#.C{:']—andD——’“——‘—
¢ R(C’th ") ‘ . (C;IJ P) R(("zrf],k)
I=12....... B 1 1 U Jand k=1.2,............ ... .. N

In each of the three steps, we have I +1 equations for each of (j. k), J + 1 equations for each
of (7, k) and A + 1 for each of (z,7) value. We also have three unknown values in variables

i cach step.
In all the three cases. the tridiagonal matrix can be solved by use of Thomas algorithm.

In numerical algebra, the triadiagonal matrix (TDMA), which is simplified form of Gaussian
elimination can be used to solve numerical equations like this. The triadiagonal system of

one dimeunsion for n uwuknown may be written as;

1
n+? T'+'l

Cvl~1jk+bcvljl\ +C Cvl+lj.k:d"'

n+2 n+2 3

GCU ]I»+bCIJA +(‘C1J+1A:dj

axCll |+ 0O+ O = dy

1,3.k~1 i,k i) k41 g

(4.0.14)

where a; = Oand ¢, =0

This algorithm is only applicable to matrixes that arc diagonally dominant. as illustrated




below;

by 0 17 Cijk ] [ dy |
as by Cy C'-_)’J k (]g
as by c3 C3k d3
- = Cn- C’r/—l‘j.k dn_1
0 a, b, Couiii dy |
L J L i L

(4.0.15)

The same matrix is developed for (7, k)

The first step consists of modifying the coefficients as follows, denoting the new modified

coefficients with primes

Ci.g, —
7/ E 1 =1
(,',[ =
e == 2, B anne n—1
)i —Cy_ U
(4.0.16)
divs
d’ B (71“1, = 1
) dimdiciei, s _ o
(,,7_,—“’]:‘1:2.3 ............. n—1
1G04
(4.0.17)

This is a forward sweep. The solution is obtained by back substitution;

Cvu - (’[/n

Ci=d, —czy;i=n—1n—2, ... 1




This will be the method that will be applied in finding the solution of the model equation.

4.1 Confirmation of stability using Von Neumann Method

Fourier method is preferred to other methods because of 1ts power and Hexibility in anal-
ysis, it has facilitated an incredibly diverse range of applications to modern science and

engineering.

Douglas and Guun derived an ADI scheme based on “approximating factoring” that is
unconditionally stable and retains second order accuracy when applied to three dimensions’

schemes.

A development of the scheme that highlights the approximate factorization point of view
is best carried out making use of a delta form of the equation. A delta form expresses the
unkunown quantity as the change from a known value of the variable of interest. Here we

use a time delta and define,

()

Cm,Jrl _ vau"k o ACV(‘,,J_A",‘ (411)

0]k tJ

In this analysis, the discrete Fourier transform is used

o Yn . Sy SKk0a0 KBy J'N,Q:I:
Take ik T Lwl‘: g k€ € TE ;

(4.1.2)
= nf—1 . C‘;’fj_kis a discretized concentration, 8, = 2nw,;, 8, = 2mwyy;. and 8, = 2nw, 2.
=1 C T e A =1, 9=0,1,........... J—1,and k=0,1............ -1,
it & s Oy B < T, 24 W = (g Wiy 002
Using the discretization and Fourier transform for equations (4.3.3) and (4.0.17) we get

following,

Stage 1

1 1 2 1 /c “«n#.li - 1 1 a2 l 1 v a2 I a2 N
<1 — 5‘4“8"‘ - -4—B,d‘,> C"T3 = <l + E‘A’id"’ - A—B,dﬁ + C;0, + D63 | C

(4.1.3)
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Equation (4.1.3) becomes;

 ;
1—1)L Cl+l_/L

/
n+:—§ Al n—+—% u+ ,u+ B n+431 ,n+%
CLJ',L: - 5‘4‘2 (Cl*l.”/.lﬁ o )Cl /L + C > T 4 Cifl‘./.k

I ]
" 1 A/ Y11 BYail
('\'14_1,1: + _“‘ ( /i+1,5.k ‘)CLV/.A‘ + CT—l-vl«k)

(C’l ]JI\ 7”_].],1\‘)
+C‘; (CV/T_I‘,+1';‘, - 2('[”/;\ + C'n )

i,y—1.k

| +DL (Clypes — 2C7 + Cilin)

1,0,k

(4.1.4)
Using equation (4.1.2), we find the following expressiou;
G’RU” + ()*K(J.l 1 ('?HU' o (J—K.H:z & gy X
€ : . . T
() D (2 e
L Ay (£ 1) = 3B (205 “) 1 ..
v [ e Oy L e—rby 57y etz Le—nb Cz.Jl
Cp (2 — 1) + 2 (225 - 1)
(4.1.5)

. . - kB —rb T R
From basic trigonometry, Sinl = == and Cost/ = e 2e . Therefore;

Costl = C'oszg — S’i'n?g—. S’/?rzzg + Cuszg =1 and Sint = 251‘71267053.

Therefore,

5 B S| 1—2.42577129‘ BixSin% C(m 5
1+ 2A.Sin*= +Bh5711—Cm— C 3~ Ct

) ) ik
~4C’/Sm7" — 4D, Sin%

(4.1.6)

The amplification factor €3 is given as;
0, A 6, . b, 0
1+ 2A,’,sz? - B,ff{Sm(—;Cos;} £3 = {1 - 2.4;,91/125 — KkB.Sin —;-Cos.—; - 4C;S1'HZ_~)'9 — 4D, S

4

(4.1.7)

Dy

- 1 - f, -
where 8, = 0, =0, =0 =mmym € I,J K. and let {3 = Gy let S‘m% = 5, cos’z




<7 0!./ — c s O
sin =+ = s, and st

2 ="

2z

(1 — 2A}s% — Blrs,c, — 4C)s2 — 4D;;s?)
(14 2A]s2 + Blksgc,)

[

§

Using conjugate to climinate the complex denominator.
(1 - 24;s2 — Bjks,c, — 4C] 2 —4D;s?) (1 + 2A}s2) — (Bjrsgcs))

>% _
§ (11 24127 1 (Bls,ea)?)

For cases where , A} =C) = D) = Aand 0, =0, =0, =10

=

(1 —10A4's* — Blrsc) (1 + 24’s?) — (Blrsc))
2

f (T 220+ (el

‘(1 ~ BA'S? — 20(A")st + (B;SC')2)2 + (124B!s%c + 2B!sc)”
G, = . <1
' ((1+2A's2)% + (Blsc)?) -

(4.1.8)

Stage 2
cmi - Lomgremtd = on g Laeend - Lpig.ontd oy Lageen — 1pa.cn
2 J7Y 2 & 4 t 2 ;e 4 7
1 1 2 /1 02 n
+5Ci0,C" + D92 (C™)
(4.1.9)

Following the same process as in stage 1

ij ke i,k

! O '61 -~ 2 - HJ WO H I Qs '(9-* / - 617 917 =
(1 + ‘ZC'J-S'L'ILZT") CANE [1 - ‘ZAf-S-ng - ‘ZCJSmZEy — 4DkSmZ§' - BiHSm?CosE— (O

0.’1’

1
An+s
g | G

6, ., . 6
- {2/115717127 + B.,vHS‘Z.’IY,?COS

quad : (4.1.10)
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{1 — 24, Sin*% — 4C‘j’,527,1,29‘7y — 4D} Sin*% — kBSin%Cos% fin
ik

1+ 2A.Sin?% + /‘;BfS‘zln.%Cosg

Making the denominator real numbers by multiplving denominator and nominator with

conjugator of denominator gives us;

L[] (1 - 8As? —20(A)%s + (B’:()Z) ,( 12AB!s*c + 2B;sc)|
(1+ 24'52)% + ( )

which gives us,

(1-6A4's> — 124251 + 8A®sS — 104’ B2 + B'2s%?)

2 5 = él”j,k
il —K (B sc— 16A'B s — 16A ZB;S')(T)
¢ —
i,9.k 3 A1.2 ¢ 212 I on)2
(14 24's%) ((1+ 2As%)" + (B!sc)))
(4.1.11)
where 0, =0, =0, =0 =mm;m e I.J K, and let §3
(4.1.12)

Stage 3

UM,

0, (et + )

R(cv) (CY’II+1 o Cm) -

DaTe s { oy 1
> - (C’/H—J‘ + C’”'> .

Dy Ty

o (C"*‘* + c") 2'”’ Z {0+ 3. %)

(4.1.13)
Following the process in Stage 2;

[ (1- 44'9 2405 - 16A70 - 184 B (2B e+ 16A 45" 204D ] )
—r (Bisc — 16AB [sc*16A B [5°c +24'Bsbc — 324"2B 1% 324 B ()

(128 (1 + 28+ (Bis)?))

~An+1_
Ci.j,k =

AH
Ci.j‘k



Amplification factor

I e 1< 1+ T ’ ’ « . ’ B B /4 I > & B 7
(1 —4A'S?24A"%54 16A35—18A'B 2522+ B P52+ 16A '8~ 20A 2B fs4c2)
—r (Bise - lGA'B'?s%z—16A'2B/i235c2+2A'B;s3c—32A'2B/;2s6c2—32A'3B;S7c>

en+41
Sigk — z ’ :
! ((l +2As2)? ((l + 2A’s2)2+(Bisc)2>>
(4.1.15)
- P 2 -
| (1 — 4A's2—24A 260 16A 35— 18A B Cs2c2+ B 522+ 16A 155 —20A 2B Cst¢?
+<B;SC = 16A/B'i25402—16A/2B/i255(‘:2+2A'B283c — 32A,2B/?SGCQ—-32A,3B;S7C> |
= : | <1
((1+ 28 (14 2882+ (Bise)*))

(4.1.16)

From the details above. the numerator is diminishing and denominator increasing therefore

the theorem is right.

4.2 Determination of time step using stability criteria

4.3 Fourier or Von Neumann Stability analysis

Using Fourier transform,

Cc? > (:',"_’J'ke“"’-"”e”(’yj6“92‘" and let Az = Ay=Az=h

S

(4.3.1)




and let Ax = Ay=Az="h

(4.3.2)
C',”/J“,f = Clix + AC jx.
(4.3.3)
Fitting this in the model equation ;
ricy 28 —p, 0% 96  p OC , 5 FC
T ot Toxr " Ox Y Oy * 922
(4.3.4)

Using equation (4.3.1).

Fourier transforins give;

A €Y.z A & ‘08 % wRoint, ; osly — 1 2Dz ) 505 = 1
R( ., > 0 ., <2D (Cos, —1)  VirSind N 2D, (Cost, — 1) 4 (Cost ))

bk B 12 20 h2 12

ot ik
(4.2.1.3)
Define;

From equation

R (Qm) AC (0,8, 6,) = AC?

O

4DJ,, 5 ,20;1: 4Dy . 28'!,’ 4D: . Y'ZHZ ‘/J e
(‘72‘5”" 5 TR oWy T S — gpkdings

(4.3.5)
A particular time stepping scheme will be stable provided C' lies in its stability region.

Suppose that the stability region is contained in an ellipse:
2 5
Stability Region: A (—) = (i) <1 (4.2.14)

ag Bo
If real and imaginary parts C' are:

¢ =R(C) + 3(C)

(4.3.6)



then the scheme is stable provided.

AN 2 AN 2
R(C J(C
O\, (3O _,
Qg By
which implies that:

A T 0\ —_At\2/1 | 2
{<_ (101'12> <DJ-51712§ + DUSIT[Z?J + D:S/112§> -+ < 30/1 > <§("J'S“’Hr> :l < 1

(4.2.1.6)

which can be a sufficient condition, using ¢, =6, =0. =0 = J

Maximum value of a sine function is realized at

—4At\? D. Dy D 2+ A I o
ey Ty T2 o
(k()h? 2 2 2 13[)/7 4 e

[S1E

huplying that;

(4.3.7)

ap and fpare constants which can assumed to be equal to 1.

4.4 Determination of fractional step using stability in

Multispace dimensions

Model Equation (4.3.4) is

e 22 1 3 32 v a2
oC _ , PC_ 0 *C o PC

R(.C)?.)?: .rafl,._;—f,n'a*k ,,By_z-’- > 52
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Based on Disceret Fourier Transformation and its inverse

N/Z—J "
CL.J‘.A: - C'_w(/27f'iw(:l'i+:t/] +21)
etV
v 1 — C. . - 2riwlety;+2x)h
Ch = I ,,;0 i,k

0L z0,2<1
Cl(x,y,2,0) = Cy (2,9, 2)
CandCyl Period

Discretization in space,

dc'
R (C) W = [ZD;”D.F;,;D_;UCMJ; == 2’(1% D+IC,;J',/‘- + Dyj D_H}D_yc_w-_k + DZ/.- D+zD—zCi,_1,k:| (4302)
=10 1, 2 oo s N -1

/=10 % I A — N —1

K= 0. 2 o g N -1
B = 2w
b, = 2mwyy,
()z = 27w, 2y,

dcC,, 'z..rkain.%Cos%
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{efs g

(45t (4D, Sint ) (4D.Sin*s
he h; n?

)

2h

(4.4.1)

)



h=0x=0y=0z

And the scheme will be stable for

4D, Sin?% AD,Sin*% 4D.Sin%

(4.3.0.4)

For maximum value ¢ =

b

Q)] =’

—4At\?*( D, Dy D 2+ (‘”_:r>2
2hZ  2h2 - 2RZ h

o 2 2 D:l: Dy D.‘: ’ i ’
At =@ [(_4) <2hg Tonz T amz) TG,

For Forward Euler time step. we require.

[1+ Q] <1 O0rsince @ € Rwe need =2 < Q <0

vk Sin %’ Cos %"

2h

(4.4.2)

(4.4.3)

))



Chapter 5

Findings, Discussions and Results

5.1 Applications and Results

5.1.1 Experiment on adsorption and movement of selected at high

concentration in soils

These experimental findings were used when analyzing 2D cquations of Pesticides flow in
the porous media under steady flow state [1, 24]. The experiment was designed for one di-
mension but was applied to two dimensions for low low water in a porous media considering
the theoretical parameters that govern process.

There is no documented experiment of this nature carried out in Kenya.

All the data availed here (both calculated and extracted fromn experimental results) is for
facilitating analysis of the output through application and not meant for comparison of the
output.

This analysis contains more information for purposes of giving a background of the exper-
iment but eventually it will focus on one sample 2, 4 — D amine on Webster soil to qualify
our mathematical model.

To support the model cquations, our data extracted from the study carried out on soils
in U.S.A 1.e. Webster silty clay loam (molisol) from lowa, Cecil sandy loam (ultisol) from
Georgia, and Eutis fine sand (Entisol) from Florida. These soils were selected on the basis
of their taxonomic and textural representation of major U.S. A soils. Surface samples taken
from depth range of 0 — 30 cm depth of each soil were dried and passed through a 2 nun
sieve prior to storage and use. The information taken from the detailed account is rele-
vant to our wathematical wodel and not to give irrelevant information that will make our
work to become amorphous. Experiment was carried out at Selected physical and chemical

properties of these soils pertinent to this study are listed.
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Table 5.1: Physical and chemical properties of soil used in this study

Particle size fraction (%) [24]

Soil Sand Silt Clay PH (1.1
paste)
Webster 18.4 45.3 38.3 6.5
Cecil 65.8 19.5 14.7 4.8
LEustis 93.8 3.0 3.2 4.1

We can use the locally available soil samples if the relevant properties have been experimen-

‘ tally determined

Pesticides:

Four pesticides used in this study were 2, 4-d [2.4 Dichlorophenoxyacetic acid], atrazine
[2- chloro- 4 —ethylamino — 6 — Isopylamino — 5 — triazine|, terbacil [3-tert — butly - 5 -
chloro — 6 — Methyluracil], and methyl parathion [0 — 0 — dimethly - 0 - p — nitrophenly

phosphorothioate]

Column Displacement experiments (Relevant information)

1. _Pesticides movement through saturated colunns of Webster, cecil and Eutis soils was

studied using miscible displacement techuique [24)].

2. Air dried soils were packed in small increments into glass cylinders (15 cn long: .45

cn squared cross sectional area)
3. Medium porosity fitted glass end plates served to retain the soil in column.

4. A known volume of pesticide solution at a desired concentration was introduced into

soil at a constant flux using a constaut volume peristaltic pup.

5. The coluinn experiments consisted of displacing 2, 4 — damine solution at two concen-
trations (i.e. 50 and 5000 pgM1~!) through the columns of cecil. Eutis and webster’s

soil and 5 to 50 pgMI~" of atrazine through Eustis soil.

6. All displacements were performed at a Darcy flux of approximately 0.22 cm /h to ensure

equilibrium condition of pesticide adsorption during flow.




Table 5.2: Freundlich constants

7. The volume of water held in the soil colummn V,, was gravimetrically determined at the

end of each displacement by extruding the soil from glass cylinders and over drying

8. The number of pore volume <\—\f0> was calculated by dividing the cumulative outflow
volume (V) by the total water volume V¢ T the soil column. Effluent pesticide con-
centration is expressed at relative efluent and input concentration (%) where C and
Cyp are, relatively. Plots of C% VS C—U referred to as break through curves (or BTC)

BTC. 1 Number Graph [24]

The table below shows Freundlich constants calculated from equilibrium adsorption isotherm

for various soil pesticide combination. [24]

Pesticide Soil Kd N
2.4 — d amine | Webster 4.62 0.70
Cecil 0.65 0.83
Bustis 0.76 0.76
Atrazine Webster 6.03 0.73
Cecil 0.89 1.04
Eustis 0.62 0.79
Terbacil Webster 2.46 0.88
Cecil 0.38 0.99
Bustis 0.12 0.88
Methly Webster 13.39 078
Parathion Cecil 3.95 0.85
Bustis 2.72 0.86

In this analysis we will use 2. 4 — D amine on webster soil to qualify our mmathematical model.
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Figure 9: Logarithmic form of Freundlich adsorption 1sotherms
for phenolic compound on activated carbon
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5.1.2 Information extracted and calculated

Generally. at low rates of flow the effect of molecular diffusion predominates and cell mixing
contributes relatively to dispersion. But in liquids, molecular diffusion is insignificant at
Reynold number up to unity [31]. Whatever the mechanism, however, the rate of dispersion
can conveniently be described by dispersion coefficient. The dispersion rate in three direc-
tions is represented by D, . D,D, and D.D, respectively used in representing the behavior
in three directions. The process is normally linecar. with rates of dispersion proportional to

the products of the corresponding coefficients and concentration gradients.

From Basic Concepts, for very low values of Reynold nuber like our case (Re<1) the two

dispersion cocfficients are approximately the same and cqual to molecular cocfficients.
From the Column Displacement experiments (From summary of Relevant information) [24]
Given the sieve size used in experiment is of size 2 mm, our particle diameter is 2 mm.

From Table 5.1. Webster soil contains 18.4% sand. 38.3% Clay and 45.3% silt. From soil

mechanics literature, Average bulk densities of,

Sand - psana = 1.6 g/cm?,

Clay - paay = 1.2 g/cm?

Silt- pyie = 1.3 g/em?

Total volume of soil is-45 em? cross section arca of the sample X 15cm the height of the

sample. Vp = 675 em”.

Pro by mass of cacl soil is using the % content from table 5.1,

Mass = % content X volune of sample X density.

A[.wlrlrl — 19872 g
Mgy = 310.23 g, and

My = 39751 g
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Volume

Bulk density of our sample.p, = 9% = 1343 g/cm?, 6 =Void ratio, # =1 — f—j#. from soil

mechauics literature, p,—particle density = 2.65¢g/cm® and ¢ = 0.507.

1. Taking our cylindrical vessel (In this sample we use the cylindrical vessel for purposes
of getting the basic parameters but our sample is cubical) to be full,

Ve =W +V,

where |, V, is volume of voids. Vg is volume of solids.

Vg = 447 91em?

1. Given that the soil is saturated 100% volume of water in the soil V., =(675 — 447.91)em?

=227.09 cm?®

1. Darcy’s flux = 0.22 cm/hr. (From details of column displacement statement number
6).
Q  0.22

P = T 0507 0.434¢m /b

where v is the pore water velocity.

vd SUXOBK0.9975 __ o ra it < o :
1. Reynolds munber, Re = Y2 = 0434A0.2X09975 _ 9 53 X'10~* < 2300 laminar flow.

" 335.556

where. v -flow velocity in cm/hr, d -is the diameter of the of particle of the soil sample in

e, p -is the density of water in g/cm?® and p -is viscosity of water in g/cmhr.

1. From our earlier literature, peclet number in liquids is approximately equals to unity

despite the varying Reynolds number

; 0.434(77 : o
Pe = xd - 0434077) _ . v and d remain as in Re.
Dy, Dy,

Dy = D, = 0.434X0.2 = 0.0868cm?/ hr.
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1. Based on the same concept at low flow rate the radial dispersion coefficient is the same

as the longitudinal dispersion coefficient.

D,=D, = 0.0868¢m? /.

\)

. From the break through curve [33] Webster soil; results with 2-4-D amine pesticide

Vi = Vp = 227.09¢cm®

= 6.5 for 5000ugml ™!

0

V = 1476.1cm?

where. V is the volume that passed through the sample, concentration recorded zero trace
of pesticide.

For 5000pgml—*. Time taken for V to go through the sample,

1476.1

x0431 O

where t is the time taken for adsorption process to go on through the cube

Without any concentration going beyond the porous end, for purposes of this analysis.

z = ‘—‘ = 1416’1 = 34 em -This is the length of travel of the adsorption water that

5

eliminated the pesticide from the sample. For three dimensions. we assume the process of

adsorption moved the same distance. @ = 3dem. y = 34em, 2 = 3dem.

From equation, (3.2.16)

R(Cra) = 1+ 2EN(CE)" ],

& \],lc

1.343X4.62X0.7 " ,
= |1 X —-6) _ 0.3 i
[ 0.507 (CrauX107) }

, . -0.3 , : .
=1+ 540.:3154( ,”,,) o (this converts micrograms automatically to Grams).
From table 5.2, N = 0.7. K = 4.62, 6 = 0.507(Calculated).

And for very low flow, the hydrodynamic dispersion coefficient is the same,

D,=D,=D.=D.
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From equation (4.3.4).

20 2 2
oC _, PC_ oC L FC o PC

R(C) Gy =Dagz —vgy ¥ Dvgr T D7

relevant parameters are available,

1. Hydrodynamic dispersion coefficient is the same for 3D for flows with laminar flow

with Reynolds number less than 2300.

Reynold numberRe = 2.58X107* < 2300

@23 degrees Celsius,
2. The dispersion coefficient D in laminar flows is the same in all dimensions,

3. The properties of the soil sample remain the same in 3D, i.e.. Revnolds number, Peclet

nwunber, porosity. void ration, grain distribution and Permeability.

5.2 Courant-Friedrich-Levy Condition

This is a necessary condition for convergence while solving certain partial differential equa-

tions munerically in mathematics. We use it to determine the time step and fractional

steps.
v At
GCFL = — <1
Ax —
0.434 At
— <1

h -

For the purpose of this calculations. At = 1hr. and h = 0.40cm.
Below find list of parameters for calculations of Pesticides flow in a porous media

SAMPLE 1




Table 5.3: List of parameters for calculations of Pesticides

Co0.0 =
5000 gl =

m, =|25

At Az

r, =162

At) Az?

ry =629

At] Ay?

r, = |06.20

At/ AZ?

C()’()_()((BOOO/I,TI‘IQZ =1 )

D, rs

Let AI .‘1" Ty . Bl _ V3 TNy . C/~ _ D!’]l Ty '
: R(C;nj k )

' j and D) =
(C:',k) P R(CP ) I R(Cr ) 5

Stage 1; Implicit in x direction, explicit in (y. z) directions. equation, (4.0.8).
1 l / v"+ » ,n+i l ’ 1 / n—%—l
_ (ZB,’. - EA’) Cioin A+ A)C 2+ (13,. - 5‘4"> Citik
1 / 1 ! n ! 13 /
= 5‘4714'13; Clrjx + CiCiyap + DiCl -

+(1—A§—2C§~2DL)C’IJA+< A’—B) R

+CICT 1  + DO ks - This is in the form of equation (4.0.9)

v n+
UI/kC] 1,k+b1JAC7,;, +CI/LCH.1,k dr .k

u+
”u/C 1,k+”11kC:,k +(1JAC:+11L dl,y,k

. Stage 2; Implicit in y direction, explicit in (x, z) directions, equation, (4.0.10),

C’ i 2 z O
—e i i+ : J n+ , Vn+ vn—e— i
Cz; 11k+ (1+CJ) C'i.j,k" o C11+1I <) Cz 1;} + BC: 1,5.k
LA BCI C’(‘” D
+ i— l/l. 1;£+ b J— 1L+ k IJ]\
43 = /
+< 1// AC;/! - 7 Tk p 11/ 2D /;l>
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1 A7 “+ 1 At 1 it 3 1 N 7
+ 5‘4‘icl+11k+ A‘[C‘i—%l.fk B(’7+l./k B(l+ljk+ C’/+1I‘
+D z/k+l

This translates to the form of equation, (4.0.11),

/I+ n+2
ag, JAC, ey 11.0,,,\. = G J/.C,J+H = d; 1k
Step 3; huplicit in z direction, explicit in (x. y) direction, equation, (4.0.12),

D Dy
ICvn+l (1 + DZ) C’InTkI ! _Cn+1

1,9,k—1 i,5,k+1

i
1 pr 3 i il n+ i) u—}—3
o EA'ZCi~l.j,L + B C:—IJk B C LJA +: A C:—] J}f C,J—lk
D!
_] e ; NG
e 2 C -1,k == "ty k=1
12
”*“ 1 It n all
+( IlkA_AC I]]\ C(Y7;A _C’I‘j}.k_Dk "i‘_lvk>
o 2
1 n+ 1 / 1 n+i 1 7 fl+§
+ 4 C1+ljk +3 A I+lj/\ B Cl+ljl\ B C+1Jk + TCIQ‘/-FI./;
(6
_am Vrl
+ 2 “uj+1k + “i,5.k+1

This translates to, equation,

o mAl o m+l . m+1 _ i
A 5 K C‘/,'_]"k,l + b‘l.].]\ C,,‘.,A],; + C/J.I\C,._,‘/H_l = d':,_/.]\v
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Table 5.4: Second list of calculation Parameter for ten steps

brjr | crgk | digeig | @igk | bigk | Cigk digppg aigr | bijk | Cijk | dijk

0 1.01267 - 4933.288] 0 1.0126% - 4933.42 0 1.01262 - 4935.

0.000045 0.00631 0.00631

- 1.01257 - 4866.713| - 1.01257 - 4866.89 - 1.01257 - 4867.

0.01254 0.000025 0.006285 0.006285 0.00629 0.00629

i

- 1.01257 - 4799.835bH- 1.0125% - 4801.03 - 1.0125% - 4801

[

0.01249 0.000003 0.0062¢ 0.00626 0.0062¢ 0.00626

- 1.01242 0.0000004732.757p- 1.0124% - 4733.67 - 1.01247 - 4734.
0.01242 0.00621 0.00621 0.00621 0.00621

- 1.01237 0.0000¢ 4664.011] - 1.01237 - 4666.67 - 1.01237 - 4667.
0.012368 0.000619 1 0.00619 0.00619 0.00619

- 1.01232 0.00000 4598.9408- 1.01237 - 4599.64 - 1.01237 - 4599

0.012313 0.00615 0.006155 0.0061¢ 0.00616

o

- 1.0122¢ 0.0000¢ 4531.8217 - 1.0122¢4 - 4533.01 - 1.0122€¢ - 4533,
0.01226 0.00613 0.00613 0.00613 0.00613

- 1.01221 0.0000( 4464.818| - 1.01221 - 4465.3% - 1.01227 - 4466.

0.012209 0.0061 0.006105 0.00611 0.00611

n

- 1.01213 0.00000 4397.836| - 1.01215 - 4398.29 - 1.01215 - 4399
0.01214

w

0.006075 0.006075 0.00604 0.00604

- 1.0121 | 0.0000 4330.811 - 1.01209 - 4331.59 - 1.01209 - 4333
0.0121 0.006045 0.006045 0.00605 0.00605

From equation (4.3.3) to (4.0.18)

[
G —
(": by 1
(&5 iy = o
o el 2,3 .....m—1
, %:1 =.1
d; = - :
a; — 1—](11:]':2.3’ ......... I'l*l

g
bi—ci_ a,

This is a forward sweep. The solution is obtained by back substitution;

/
Ty —

/ / £ ¢
Ti=d, —¢rirpi=n—1n—2, ... 1
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Table 5.5: Output of flow of ten steps in 3D

Ti\ Yj 2o 0 d; ;1 NO | t/Hrs. | C7 Retardation Clnjl%/,‘
In constant C;I/tél 5
pgml™ | R(C}', ) Citteon/

pgml !
0 - 0 0 5000 42.9872
0.4 0 4871.806| 1 1 4933 43.1575 4871.806
- 4871.936 4902.265
0.006231| 4874.337 4904.665
0.006231
0.8 0 4867.4209 2 2 4866 43.3308 4867.420
- 4837.280 4867.084
0.006207 4867.214
- 4837.528
0.006212

1.2 0 4800.637| 3 3 4799 43.5072 4800.637
- 4771.9344 4801.572
0.006183| 4771.947 4801.219
0.006183

1.6 0 4733.581] 4 4 4732 43.6869 4733.581
- 4704.870 4733.495
0.006134| 4705.677 4734.299
0.006134
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T, Y ;’kﬁ{;‘l}‘]k d;.j.k NO | t/Hrs. C,"f]‘,k Retardation C,:lji_k.
In constant C Iﬂ/+_§1 &
pgmi=t | R(CY, ) Crtan/

pugml—!

0 - 0 0 5000 42.9872

2.0 0 4664.83985 5 4665 43.8700 4664.8398

4665.1058

- 4638.766 4666.127
0.006115
- 4638.707
0.006115

24 0 4599.7000 6 6 4598 44.0564 4599.700p
B 4572.017 4599.578
0.006080| 4572.078 4599.667
0.006080

2.8 0 4532.640| 7 7 4531 44.2464 4532.640
- 4506.128 4532.765
0.006056] 4506.562 4533.600
0.006056

3.2 0 4465.6207 8 8 4464 44.4401 4465.620[
- 4438.634 4465.162
0.006031| 4438.014 4464.66
0.006036

3.6 0 4398.511| 9 9 4397 44.6376 4398.511
- 4372.452 4398.451
0.006002| 4373.519 4399.93
0.00601

4.0 0 4330.891| 10 10 4334 44.8391 4330.891
- 4306.260 4331.581
0.005973| 4307.911 4333.264
0.005978
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9.3

ot

Discussion

The equation derived for calculation of flow of pesticides in a porous media is ideal for
estimation of the movement of solute in the subsurface environment in 3D for steady state
flow. The other parameters not considered are decay, chemical reactions with the solute
in ground environment and biological decomposition of organic pesticides. These are ideal
fodder for further advancement of the equation. Unsaturated flows are not considered in this

derivation.

Solving the equation using Crank-Nicolson method gives the best accuracy and it is uncon-
ditionally stable, however, the matrix generated by this method is expensive to solve thus
making it unsuitable for use. Douglas-and Gunn method is ideal for use in solving this
equation because it generates a matrix which is easily solved by Thomas algorithin as can

be seen in the thesis analysis of the matrix above.
Yy

Manual computation of this matrix is cumbersome. There is need for programming data so

that computer generates results fast and effectively.

The applications and results are based on an experiment carried out in United State of
America on adsorption and movements of sclected pesticides at high concentration in Soils.
(33]. This experiment was run for 1D flow, however, in our study we used these parameters
to apply to our 3D equation because at low flow rate the radial dispersion coefficient is the
same as longitudinal dispersion coefficient. With the available values of dispersion coefficient

of both radial and longitudinal. 3D outputs are assured.

Examining the ten steps of calculating flow of pesticides in x, y, and z direction as shown
in the last table 5, the values of flow of pesticides in all the three dimensions are almost
the same when the flow is laminar. It's evident from the results that the application to
3D was realistic. For turbulent How we would have different dispersive constant thus yield

conspicuous variation in both radial and longitudinal flows of pesticides




Chapter 6

Conclusion and Recommendations

6.1 Conclusion

The theoretical output figures prove that the equations are correct representation of anticipated
flow pattern of the pesticide in the porous media. The flow figures show progressive reduction of
the adsorbent as the path distance increases up to insignificant quantity. It is evident that from the
calculations, the amount of pesticides How in all three directions is always the same when the flow
is laminar. With the declining quantities of the adsorbent with time and distance, the suitability
of the equation is confirmed. Finally, it can be indicated here that the equation is suitable for all
pesticides flow and adsorption in porous media under steady state flow condition as long as all

parameters governing the flow are determined.

6.2 Recommendations

More experiments of adsorption are required for 3D to provide comparative analysis and output
s0 as to establish the suitability of this method on different samples. It is worth noting that the
output can be further fine-tuned through computer programming of the equation for calculation.
This is likely to give conspicuous flow of information of adsorption of pesticides in a porous media.
More experiments may give different results if we increased the flow to almost turbulent level.
Migration of pesticides experience different rainfalls at the disposal point thus necessitating varied
examinations. Further analysis is necessary for different dispersion constants because the migration
from the disposal sites doesn't always depend on laminar flow. At times we have storms which

trigger turbulent flow therefore that creating varied dispersion coustants.
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