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ABSTRACT

The transport of solutes through porous media where chemicals undergo adsorption or change
process on the surface of the porous materials has been a subject of research over years. Usage
of pesticides has resulted in production of diverse quantity and quality for the market and
disposal of excess material has also become an acute problem. The concept of adsorption is
essential in determining the movement pattern of pesticides in soil since it helps in assessing
the effect of migrating chemical from their disposal sites on the quality of groundwater. Most
studies done on the movement of pesticides in the ground environment in terms of
mathematical models have so far been simulated and emphasis given to axial movement and in
a few cases both axial and radial movements. Soil processes have a 3D (three dimensional)
character; modeling therefore in principle, should employ three dimensions. It should also be
noted that the appropriate number of dimensions is closely related to the required accuracy of
the research question. The ID (one dimension) and 2D (two dimension) approaches are
limited since they are not capable of giving dependable regional influence of pesticides
movement in the porous media and groundwater. They give only theoretical results which are
devoid of the reality in the field due to lumping of parameters. In this study, 3D formula is
derived so that it can enhance our capacity to analyze the realistic regional impact of
adsorption of pesticides in a porous media and groundwater in the field condition since there is
no lumping of parameters. In most cases we are supposed to adopt an existing equation and
use it to solve the problem of research but given the many equations, it is wise to derive from
the first principle in order to be sure of applicability of the equation to the research problem.
The objective of this study is to develop a mathematical model which can be used to determine
the combined 3D movement of pesticides with steady - state water flow in a porous media.
The methodology involves determining the comprehensive dispersion equation accounting for
3D movement of solutes in the porous media and finding the solution of the governing
equation using unconditionally stable finite difference 3D equation. The experimental results
based on ID are applied to 3D based on the dispersion constant being the same longitudinally
and laterally at low flow rate in the porous media as informed by Reynold's number being less
than 2300 for laminar flows. The equation is applied on the experiment done on adsorption.of
pesticide through a porous media. The results are applied to the equation and solved up to ten
steps in order to test equation's suitability.
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Chapter 1

Introduction

1.1 Mathematical Background

There are great challenges associated with fanning' due to increase of pests on both ani-

urals and plants. This has created room for manufacturers to cash ill 011 this high demand

of pesticides thus leading to increase in quantity and different. quality of these pesticides

in our markets. The disposal of the surplus and waste pesticide materials has become an

acute challenge. The practiced disposal options arc incineration. cucapsulatiou. isolation

in underground caves and mines. chemical stabilization. land spreading and land filling.

Safe disposal of pesticides has an Economic implication. the most economical methods of

disposals of pesticides is by landfills ami Iami spread [24]. The contamination of ground

water by migration of inorganic and organic pesticides froIl1 dinnpiug sites has bccoino an

issue of increased concert! in years The concept. of adsorption is essential in deterrniuing

the movement patterns of pesticides in the soil because it. helps in assessment of the effect.

of migmtiug chemicals ou the quality of the groundwater environment [3]. Chemicals de-

grade ground water quality when they migrate from their disposal sites to the aquifers. The

study of migrat.iou of pesticides from their disposal sites to the underground aquifer has to

be understood well so that we can come up with effective ways of protecting groundwater

resources from pollution. Predictions of the fate of ground-water contaiuinauts can then be

made in order to assess the eRect. of these chemicals on local water resources and to evaluate

the effectiveness of remedial actions.

Two physical processes that. goveru the movement of ground water solutes are:

1. Advection. which describes the transport of solutes by bulky motion of flowing water

in the ground due to pressure and gravitational energy [21].



2. Hydrodynamic dispersion. which describes the spread of solutes along and transverse

to the direction of How resulting from bot II iueclianical iuixiug and molecular diffusion

[lG].

This mixiug depends on molecular diffusion. geometry of the pores. and distribution of

soil water velocity which equally depends 011 water ill the medium. If the velocity of water

is zero. the process of iuixiug OCCUlSpurely as a result of diffusion 01liY.

Chemical reaction, including those mediated hy iuicro-organisius or caused by interaction

with aquifer material or other materials IIla)" also affect the concentration of solute.

These processes are described quant itat ivelv by a derived 3-dimension partial differential

equation referred to as :.ad vecti ve-dispersi ve sol ute transport equation" ill this study. This

equation yields the concentration as a function of tiiuc awl distance Iroiu the contaminant

source ill 3D. i.e. x. y and z directions. This equation is applied to a particular ground water

contaminant problem. data is required detailing the ground water veloci ly. coefficients of

hydrodyuaiuic dispersion. rate of cheiuical reactions. iuitial coucentratious or solutes ill the

damping site. configuration of solute source and hounclarit-s of pesticides movements ill the

ground flow system. Quaut itative charucterizat ion of 3D material microstructure is essential

for understanding relationships between microstructure and material properties.

III the ground flow system having irregular geometry and non-uniform media properties:

numerical techniques arc used t.o approximate solutions to the solute equation The 3D

analysis will provide details relevant to providing the details of study [2'>]

Porous media are made lip of pore space and a solid matrix. The pore spaces art' typ-

ically connected. which allows transport processes such as fluid flow. lllass transfer. 8.IllI

heat transfer t.o take place inside Transport ill porous media is an important part of mallY

eugineer iug processes such i:l.•':i chromatography. reactor desigll. enviromnent al reniediat iou.

petroleum recovery. catalysis. ion exchange etc. The struct me of porous media is usually

complex. so it is customary to model porous media by igllorillg the micro mechanical details

within the pores and instead t.o work wit]: the volume-averaged laws that treat a porous

medium as a macroscopically uniform continuum. At. this scale: porous media are described

by parameters such as permeability. ami dispersion coefficients [ '].

III IIlOSt. cases of practical interest analytic solutions of the mathematical models are not

possible. the IIIat. Iicuiati cal models arc trausformcd into numerical models. which. ill turu.

are solved by specially designed computer programs. Advantages of numerical approaches

are: they call easily deal with variability ill t.he flow transport parameters and there is flex-
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ibility in representing parameters that facilitate modeling of layers or other more complex

geollletries in two and three diiueusious [ '].

Disadvantages of numerical approaches arc; when doing numeric for a PDE that. has un-

known properties numeric are elusive, bug-prone, and sometimes just plainly wrong. In

solving Ordinary Differential Equations. some methods are stable (backward Euler). some

methods are unstable (forward Euler) and some have less glolJal errors than others.

A modeling task can be subdivided into several steps:

• Preprocessing (trallsfortuatioll of data into a toriuat appropriate for the numerical

algorithm. including grid gcncratiou)

• Numerical calculation (direct modeling)

• Cali bratiou (invorao morloli ng)

• Post-processing

Today 's software packages or codes assist ill all of thebe modeling steps [16, 28]

1.2 Basic Concepts

1.2.1 Steady Flow and Unsteady Flow

Steady-state flow refers to the condition where the fluid properties at a point in the system

do not change over time. Tillie dependent flows are unsteady (also called transient)

1.2.2 Mass Balance

The conservation of mass principle gives the total amount of mass entering a control volume

equal to the toted mass leaving it.

Lrni = L'rn~ (1.2.1)

where. i=inlet and e=exit. Now. let. m..."be mass of the control volume. t.hcu (h:~Cl = O. for
• • ~c oi

steady flow.



1.2.3 Energy balance

Also, for energy balance for a process

(12.2)

UE,t;'CH< = 0, for steady flow E'fPt.e7r1 is energy in the control volume for a steady flow

process, the total energy content of a control volume remains constant.

The total energy E of a simple compressible system consists of three parts: Internal energy

U, Kinetic Energy h..E. and Potential Energy PE. i.e. E=U+KE+PE

For Unit mass,

(12.3)

where. e=total energy per unit mass. u=interual energy, v=velocity of the system. gz=uuit

gravitational potential energy. 9 -is the acceleration due to gravity.

For a general steady-flow process. tile energy balance can be written as,

(124)

From a closed thermodynamic system. the first law may be stated as:

DQ = ()l/''- + DU

or equivalently

DU = DQ - DW,

where DQ -is the quantity of energy added by heating the process,8W -Energy lost. due to

work: DU -is the change in internal energy.

(12.5)

where W-Is work due to expansiou vPressure multiplied by volume and Q-Is internal

energy
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1.2.4 Peclets N umber III mass transfer

Peclet Number,
(1.2.6)

where. u -average velocity. L -characteristic length. D",-molecular diffusioll coefficiellt

The 101lgitnclillR.l dispersion coefficient. DJ.,. is lower than Ii.; for Pc < 1, where DJ., rv peU-I-

with, O:L rv 1.2 for experiments 011 bead packs, sand packs and hOlllogelleous stones.

For mechanical dispersion regime with Dr" rv P, the transverse dispersion coefficient. DT,

however is lower than D L and typical seale approxilllately linearly with P; [14]

For longitudinal dispersion ill the absence of advectioll (Low Pe) molecular diffusion is the

only mechanism for fluid mixing. This diffusion is restricted as the porous matrix acts as a

barrier to molecules, thus reducing the mean free path of molecules which result in the ratio

it being smaller than unity [24] The first effect of advection on dispersion are observed

at P; = 0.1

At P; = 10. advect.iou starts to have a much-pronounced coutributiou on mixing but. diffusion

effect are still presellt. The Lest fit. of the results D J., rv P;o I- ill the regime 10 < P; < 400, is

with power law coefficient, O'L = 12, where (h-Longit.udillal dispcrsivity[14]. The niaguitude

of transverse dispersion is much smaller than longitudinal dispersion and the power law

coefficient. to fit DT rv P,/'Tis ltT = 0.94 < ltL indicatin.2, a weaker transverse cvr dispersion

dependent on Pc than longitudinal dispersion [24] O:r Traverse dispcrsivity.

D D (L?T-l) & }:J DT }:J f II }:J 1L or T - . Dr" rv e' D,,, rv e or a e > >

1.2.5 Mechanical Dispersion

The process where ground water velocity increases. the fluid mixing rate caused by differ-

ence of velocity in individual soil pore is a phenO!l1ellOll is called mechanical or convective

dispersion.

The mechanical dispersion account for: [4].

1. Micro SCR.1cspreading because of the parabolic velocity distribution ill single pores.

2. Variability ill velocities between different. pores, and

3. The tortuousity, branching and interfingering of pore channels.
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Hydrodynamic dispersion coefficient, D ill a porous medi Ull1is the sum of mechanical dis-

persion coefficient Dr" ami molecular diffusion coefficient DJ expressed as: D = Dr" + DJ

1101ecular Diffusion Coefficient ill the soil is givell by: Del = D.eI.T where. D.eI-is diffusion
2

coefficient in water and T -is tortuosity of porous medium is given by. T = (f) < 1, L-is

the straight line distance of a diffusing particle. Lc-is the real distance covered by diffusing

particle moving through pores among solid particles of the soil

Here the longitudinal dispersion is a result of differences ill travel tune along flowlines,

which split at grain boundaries (or large obstacles). whereas transversal dispersion applies

to dispersion perpendicular to that direction ami is caused by variations ill the microscopic

velocity with ill each flow channel and from one channel to another. Vertical transverse dis-

persion is usually smaller than horizontal transverse dispersion Microscopically there is no

mixing; however. if the average coucenr rat ion of a gi "en volume of fluid is considered all

apparent dilution or spreading is present The lllech~llical dispersion ill a variable aperture

fracture is caused 1.;)' Taylor dispersion, which results from velocity variations across the

fracture aperture. and macro/geometric dispersion, which is caused by velocity variations

in the planar of the fracture because of aperture variability [8]. Since Taylor dispersion is

proportional to v2 and macro dispersion is linear proportional to v . where v is the moan flux

[LT-1], mechanical dispersion will be negligible at Peclet numbers < < 1. Dispersion takes

effect at mauy scales. from pore-scale to larger scale. Variability ill groulldwater velocities

may increase at larger scales for two reasons -- either new, infrcqucutly spaced, pore elements

with higher-than-average velocities may be countered as scale is increased. ct.'; ill fractured

media. or there mH,),be continuous variations ill ensemble means from place to place. as III

cases where Darcian permeability is inhomogeneous.

In ID transport models. the approximations are mostly related with the averaging of radial

porosity, velocity profiles, and dispersion coefficients. In 2D models. the approximation in-

cludes decoupling of flow fields from those of concentrations by assuming prescribed velocity

profiles, which arc radial or symmetric As a consequence. these models cannot describe, in

particular, the effects of flow or circulation within the voids between the particles or those

of the stagnant zones around the particles or ill the vicinity of the walls of the adsorber,

011the concentration profiles Siiuilarly. the spatial variation ill bed-porosity ami dispersion

coefficient ill 2D models is incorporated via various empirical correlations reported ill the

literature. There is another lunit.atiou of the existing 1D or '2D models for packed beds

having small d/ dp ratio in predicting concentration profiles within the voids. In principle.

if the nou-diiucusioual groups ill diffcrcut sets of equations for the conservation of species
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and momentum and the corresponding non-dimensional boundary conditions are identical,

the non-dimensional solutions should also be the sallle. although actual solutions for the

velocity and concentration profiles will be different due to scaling effect The situation.

however, becomes rather non-trivial ill packed beds due to different packing arrangements

possible for the same djJp ratio. ill which case overall bed-porosity may be the same but the

local porosity vary from one arrangement to the other. As a COllSCqUCllCC.the concentration

profiles are different. This is one of the reasons why the existing literature correlations may

not be realistic for calculating effective Fe for packed beds having low df d; ratio «10),

since concentration profiles will be significantly infiueuced by the packing arrangeuieuts. III

such a case it would be more realistic to solve full 3D profiles without using any existing

correlations, [8].

Langmuir [17] ill 191G came up with a model. which is also called ideal localized monolayer

model, which was based on the following assumptions:

(i) Adsorption takes place only at specific localized sites 011 tile surface and saturation

coverage correspond to complete occupancy of these sites.

(ii) Each site can accommodate one and only one molecule or atom,

(iii) The area of each site is fixed quantity determine solely by the geometry of the surface.

(iv) The adsorption energy is the same at all site. and

(v) The adsorbed molecules cannot migrato across the surface or interact wi th neighboring

molecules.

The instantaneous cquilibriuu: reaction between the amount of chemical in solution and that

sobbed by the solid phase is generally represent by one of the following three adsorption

isotherms

The simplest chemical reaction model is the linear adsorption equation

(1:2.7)

where f{d is referred to as the distribution coefficient (slope of the adsorption isotherm),

C is the concentration of solute in the solution.
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II Equation (12.7) is 1:1.specied case of the Freundlich equation

(1'2.8)

where N is a fitting parameter.

iii The Lagllluir adsorption equation.

aC
S~ = ---

1+ bC
(12.9)

where Gl, and b are curve fitting parameters.

1.2.6 Water flow

Darcy's Law: in 1856 Darcy [9] found that the rate of flow Q (volume/uuit time) is

i Proportional to the cross-sectional area A of the soil under consideration;

11 Proportional to the difference ill total head 6h= (h1-h2), over the leugth L over which

fluid flow takes place; and

III Inversely proportional to that length L. The ratio 6h/L is known as hydraulic gradient

i. Thus, Darcy's law is

(12.10)

where the ratio Q/ A is the 'effective' or Darcy velocity v. This phenomenological or ex-

porimcntally derived 18,wcan be generalized for au isotropic 3D porous medium 8,Sv=-kvi,

where v is the effective velocit.y vector with cOlllponent.s Vr.; Vy and v, corresponding to

the Cartesian x. y and z coordinates. and vh is the hydraulic gradient with compollents

. oh' of, I . of, Tl I I I' I . f 1 . 1 / 1I'J' = ih' ly = oy auc lz = 0." ie vtota leal I arises roiu t Ie pressure potentia fJ I'w' t Ie

elevation z .. and the kinetic energy ~. where z is the elevation head with respect to some

fixed reference datum. p is pressure. "is the unit weight of the fluid (usually water) and

g is the acceleration due to gravity. However. for a porous medium. the fluid velocity is

usually low 8,11elchanges ill the piezometric head 8,I'Cmud 1 larger than the fraction of kinetic

energy: so. the later contribution is usually lIeglect.ed. leading to 11li ~ p/I'w +~. This leads

to the equation below which is refonnulat.ed ill terms of elevH.t.iollz and fluid pressure [30]:

(vP ) k Kv = -k: - + v.? = -- (vp + P9V;:') = -- (vp + pgvz)
I'w Pw9 ij

(1:2.11)
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\1p -Pressure gradient operator for 3D. \1:0 Hydraulic head gradient operator for 3D

where fJw is the fluid density. n. is the fluid dynamics viscosity. am] J( is the intrinsic per-

meabilitv of the grallular medium Ii11ked to the hydraulic couductivitv k as K = (k.,,).
, "[>.g

A mass balance must be performed. and used along with Darcy's law, to arrive at the tran-

sient groundwater flow equation. This balance is analogous to the energy balance used in

heat transfer to arrive at tile heat equation. It is siniplv a stateuieut of accounting. that for a

given control volume. aside from sources or sinks. uiass cannot be Cleated or destroyed. The

conservation of mass states that for a given increment of time (L'l t) the difference between

the mass flowing in across the boundaries. the mass flowing out across the boundaries. and

the sources within the volume, is the change in storage.

6t 6t 6t
(1.2.12)

Alt.hough Darcy" slaw (an expression of conservation of momentum) was det.ermined

experimentally by Darcy. it has since been derived from the Navier-St.okes equations via

homogcuization It is analogous to Fourier's law ill the field of heat. conduction. Ohm's

law in the field of electrical networks, or Ficks law in diffusion theory [3] One application

of Darcy's law is to water How through all aquifer. Darcy's laws along with the equation

of conservation of mass are equivalent to tile groundwater How equation. oue of the basic

relationships of hydrogeology. Darcy's law is also used to describe oil. water. and gas flows

through petroleum reservoirs

Tile original expression of Darcy's equation and a schematic is included below [9].

h\ - h2 /sh.
v = k = k-

I I

where. 'U =flow velocit.y ill cui/second, L'lh =dift"erellce ill iuauorueter level. ciu (wa.ter equiv-

alent}. I =total length of sand pack. em and k: =Collstallt. of permeability.

Q-discharge; 1 and 2 are corresponding inlet ami outlet respectively in the equation below.

Darcy's law [18] is a simple proportional relationship between the instantaneous discharge

rate through a porous iuodium. the viscosity of tile fluid and the pressure drop over a given

distance.



!I
,:.ons:o;"· 'C::;
W~'C6 ", ,(".1 ;, .•..

Q C-:;/'SC:.

" ,,/_ 'L LJ~
t
"-T

'2

l-igure t ~clwrnatic of nan'~ '" r~!H.'rimcnt \1

.1C-



-r,;A (P'2 - Pd
Q=-----

fl. L
(1.2.13)

where PI is the atmospheric pressure at hI and P2 is the atmospheric pressure at h2· The

total discharge, Q (units of volume per time. e.g, m/s) is equal to the product of the

permeability (h; units of area. e.?;. m) of the medium. the cross-sectional area (A) to flow,

and the pressure drop, all divided by the dynamic viscosity /1 (ill SI units c.g. kg/(llls)

or Pas) , and the length L tIle pressure drop is taking place over. The negative sign is

needed because fluids flow from high pressure to low pressure. So if the change in pressure

is negative (in the x-direction) then the How will be positive (in the x-direction). Dividing

both sicks of the equation by the area and using more gcucral notation leads to

-h; Q
q = -\lP = ~

p, A
(1.2.14)

where q is the flux (discharge per unit area, with units of length per time, lll/s) and \l Pis

the pressure gradient vector. This value of flux. often referred to as the Darcy flux, is not. the

velocity which the water travelling through tile pores is experiencing [0]. The pore velocity

(11) is related to the Darcy flux (q) by the porosity (p) The flux is divided by porosity to

account for the fact that only a fraction of the total formation volume is available for flow.

The pore velocity is. 'U = $ where. <J> is porosity

In 3D dimensions

In three duuensious, gravity uiust be accounted for. as the How is not affected by the vertical

pressure drop caused by gravity when assuming hydrostatic conditions. The solution is to

subtract the gravitational pressure drop from the existing pressure drop in order to express

the resulting flow.

(1.2.15)

where the flux q is a vector quantity. k(L2T-I) is a tensor of permeability. \l is the

gradient operator in 3D. yis the acceleration due to gravity. ez is the unit vector ill the

vertical direction. pointing downwards and (J is the dCllsity.

ERect::; of anisotropy in three dimensions are addressed using a symmetric second-order ten-

sor of permeability: [19]
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[

K'CX Kxy tc; 1
K = tc.; Kyy Kyz

Kzx Kzy Kzz

where the magnitudes of permeability in the .1:. y. and z component directions arc specified.

Since this is a symmetric matrix. there are at most six unique values. If the permeability is

isotropic (equal magnitude in all directions). then the diagonal values are equal. Sp [-]

In general. for a given porous medium [\":r. h'-yalld ['''-0 do not need to be the same, in which

case, the medium is called anisotropic. 011 the other hand, if K; = J{y = 1(, the medium is

called isotropic.

In general, x, y, z can have any orientation. but it is common to set. z vertical and x and

y horizontal. III three dimensions, all fiuxes (Q, q. v) are vector quanti ties (;) com pouents),

Cl,S is the hydraulic gradient l= [Lx : Iy : IzL (l" = g';, Iy = g:> i, = ~'~) The hydraulic

head is still a scalar (1 coiupouent). while the hydraulic conductivity is a tensor quantity (9

com ponents)

The most general 3D Darcy's law is written .as: [1 ]

q=-KI, I is the gradient head

Or more explicit.ly,

(L26.:2)

'vVecan easily verify that previous 3D Darcy's law (with 3 principal cOlnponellts:(l(r; J(y; J{J

is just. a reduced form of the above equation when J{ is a diagonal tensor (under the condition

that the coordinate R.XCS arc aligned with the principal axes of K).

1.2.7 ASSUl1.1.ptiol1.S

Darcy's law [11] is a simple mathematical statement which neatly summarizes several famil-

iar properties that groundwater flowing in aquifers exhibit. including:

• If there is no pressure gradient over ct distance. no flow occurs (this is hydrostatic

conditions) .
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• If there is a pressure gradient. flow will occur from high pressure towards low pressure

(opposite the direction of increasing gradient - lienee tile negative sign ill Darcy's law),

• The greater the pressure gradient (through t.he same formation material). the greater

the discharge rate. and the discharge rate of fluid will often be different - through dif-

fcrcut formation materials (or even through the same mat.erial. iu a different dircctiou)

- even if the same pressure gradient exists ill both ca.';es.

A graphical illustration of tho use of the steady-state groundwater flow equation (based on

Darcy's law and the conservation of mass) is ill the construction uf flow nets. to quantify the

amount of groundwater flowing under a dam. Flow nets are commonly used in the design

of earth darns.

Darcy's law is only valid for slow. viscous flow; fortunately. most groundwater flow cases

fall in this category Typically. any flow with c\ Revnolds number less than one is clearly

laminar, ami it would be valid to apply Darcy's law. Experiineutal tests have shown that

for flow regimes with values of Reynolds number IIp to 10 lllay still be Darcian Reynolds

number (a dimensionless parameter) fur porum; media flow is typically expressed as

Re = (J'Ud:3o

p.
(1.2.1G)

where (J is the density of the fluid (units of mass per volume}, 7' is the specific discharge (uot

the pore velocity - with units of length per time), d3U is a representative graiu diameter

for the porous medi uin (often taken as the 30% passing size from (1 grain size analysis using

sieves). and p, is the dynamic viscosity of the fluid.

1.2.8 Solute transport

Soluie-spreadmq mechanisms Three physically based incchanisuis have been proposed to

explain spreading of solutes as they travel through the soil with the moving liquid phase:

travel-time variations within the population of stream tubes, the analogy with molecular

diffusion. and Levy processes. Sorption and transformatiou processes call be equally well

implemented ill models based all any of these three spreading uiechauisms. Other concepts

have emerged, such as the mobile-immobile solute transport. model [12] for an overview

of early work. but these are typically based all one of the three fuudaiueutal spreading

mechanisms. For instance. sonic formnlat ious of the niobilo-inunohilc flow model aSS11l11e

the liquid phase in a soil to be partitioned ill a mobile domain where flow occurs. and an



immobile domain in which the soil solution is stagnant. Usually. the Convection Dispersion

Equation (CDE) is valid ill tile mobile domain. and diffusion is assumed ill the iunuobile

domain. A fourth mechanism has a less obvious physical connotation but merits attention

because of its extraordinary generality: solute spreading by a Coutiuuous-Time Random-

Walk process (CTHW). CTRW describes solute moveineut ill terms of the probability of a

random displacomcut with R,random travel time. It is distinct from random-walk models

in which particle paths follow stream lines perturbed by random excursions [11]. This

mechanism too can be implemented in derived modeling concepts. as was demonstrated by

Dentz and Berkowitz [Ll] who included CTRvV ill a uiobile-iunuobile model.

Brief information listed belo«: can explain the basics.

Travel tune variation within the population of stream of tubes:

This modeling concept views a soil volume as a population of stream tubes with randomly

distributed travel times. The travel-time probability density fuuctiou (pdf) is often assumed

to be lognormal [11]. resulting ill the Convective Lognormal Transfer function model (CLT).

In Stochastic-Convective Movement. solutes do not move with respect to the water which

carries them: R,solute particle never leaves the stream tube into which it entered at the

inlet boundary of the soil volume, and at all times its velocity is equal to that of the

water surrounding it. During stochastic-convective solute transport the degree of solute

spreading in nou-layered soils is proportional to the distance traveled. and the standard

deviation of t.hc travel time increases linearly witl: the travel distance [11]. For steady-state

flow. the standard deviation of the travel distance increases linearly with time. Because

solute particles are assumed not to leave their stream tubes. the SC]'vi can only model the

longitudinal spreading within the entire soil volume and CR,IlIlOthandle uon-uniforiu solute

applications at the inlet boundary.

Analogy with iuolecului diffusiun:

The solute transport concept. implemented in most solute transport models is the Convection-

Dispersion Equation (CDE). which assumes a macroscopic uniform flow ill which solutes are

spread by R,dispersive flux that is analogous to diffusion (i.e .. proportional t.o the couccn-

tration gradient) and hence obeys Ficks law. The CDE reads

8~~,'r= V (f}Dvc;) - V (1we;) (1.2.17)

Here. D (L2T-1) is a tensor consisting of effective dispersion coefficients. 1'L is the vec-

14



tor of water flux densities (LT-1) in the principal directions, c is the solute concentration

(ML -3). SLlbscript I indicates tile couceutratiou relates to dissolved rather than sorbed so-

lutes. and superscript T indicates a resident concentration The water flux densities in 1w

are macroscopic, in the sense that local variations need Hot be explici tly accounted for.

Instead. the effect these local variations ill 1u.' have Oil sol ute spreading is reflected in the

values of the clements of D For soils this means that soil layers arc usually assumed to

be uniform, resulting in essentially parallel, vertical flow lilies for IncU1Yapplications The

tensor D is often simplified, with a scalar longitudinal dispersion coefficient DL 011the di-

agonal element correspoudiug to the axis parallel to the uiaiu flow direction. lateral DR

dispersion coefficients (L2T-1) 011 the rcmaiuing diagonal clements corresponding to the

axes perpendicular to the main flow direction, and all oft-diagonal elements equal to zero.

According to the Stochastic-Convective Motion (SCM). solutes remain within the flow tube

in which they entered at the soil surface. The COII~ection Dispersion Equation (CDE) as-

sumes solutes continuously change flow tubes through Brownian motion. The Fractional

Advection-Dispersion Equation (FADE) allows for periods of Brownian motion interspersed

with periods during which solute particles do not leave their fiow vessel.

The element. of mechanical dispersion tensor D,rll for our stud,", can be expressed in terms

of longitudinal, Ul. and traverse dispersivities, ctt. the magnitude of velocity vector, V. and

the magnitude of its coinponcnts V.t. Vy and v z, [5] as.

D1T1:c:r

D = r + ct, (1); + V;)]
1I1~J11 V

[
(Ctl - CV\f)'V:"V'!!]

D,II.'J;?} == Dll/ll:t: ==

[
(Ctl - Cvtf) "v 1 '0 ]Dffl.y::; == Dill::: I} ==

[
( Ctl - etV'f)'1-':rV':]DIII:r::. == DII1::J" ==

D - [etlv; + Ctf (v; + v~) 1
m" - \1,

(1.2.18)

If a coordinate system is chosen, such that the direction of the average groundwater
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velocity is aligned with the x-direction (V=v", and vy=v.:=O), the off-diagonal terms in

the dispersion tensor (1.2.B.2) will equal zero. and the mechanical dispersion tensor can be

simplified to.

Dill., = Dill" = (ll V

(1.2.19)

From a geological point of view, the subsurface is divided into aquifers and aquitards. The

three-dimension equation problem of equation holds in aquifers. But. ill aquitards. there is

llO horizontal flow because the permeability is zero. Since the intrinsic permeability ill tile

horizontal direction of Darcy's law arc:

Hence the transport equation for geological aquitards becomes

(1.2.20)

with D ~ [

o
o
o o

(1.2.21)

The eflecti ve dispersion coefficient tensor D, referred ill this context is hydrodynamic disper-

sion coefficient. Hydrodynamic dispersion consists of mechanical dispersion and molecular

diffusion. Hydrodynamic dispersion is the flux of solute. Solute flux. J, is given by Fick's

first Law as

J = -fJD.C (1.2.22)

()

In a flow system having uniform flow aligned with the x-axis. the coefficients of the hydro-
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dynamic dispersion tensor, D:l' Dy and D.: are given by

(1. 2.23)

D"""D"ly' and Dill, are corresponding iuechauical dispersion coefficients ill x. y and z direc-

tions

III low flow, the dispersion due to diffusion is very low. It also depends 011 the scale flow

being considered [3].

1.2.9 Levy Process

The fractional advection-dispersion equation (FADE) represents the iuterinediate stages

between the SCM and the CDE and includes the CDE as a special case While the de-

vclopmcut of the sCtlr was triggered by the inability of the ('DE to reproduce held-scale

solute leaching it was found that assuming no dispersion at all was too strict. For flow

processes in other fields of physics, Fokker-Planck equations have been developed that use

fractional derivatives to account for non-Browniau inovernents with long-range spatial depen-

deuce (memory effect) or high velocity variabil ity [8]. In its simplest form (one dimensional

uniform flow, symmetric dispersiou. uniform, conservative tracer), the fructioual advection-

dispersion equation is [7]

A three-dimeusional (3D) analysis of transport and niacrodispersiou at the macrodispersion

experiment (MADE) site [8] using the Fractional Advection-Dispersion Equation (FADE)

developed [8] shows that the Levy dispersion process is scale depeudellt. Levy dispersion may

be superior to Gaussian dispersion 011 a sufficient ly sural] scale: on larger scales. both theories

are likely to suffer from the fact. that because uf depositional structures most flow fields

display an evolving. noustatiouary structure. l\lotion ill such fields is advection dominated.

displays a lot of memory ancl therefore is uot modeled well by Markov random processes

which underlie the derivation of both the Caussia» and Levy advection dispersion equations

[6, 27]. To improve plume simulation of all advectiou-doininated transport process, one

would have to bring ill more advective irregularity while siuiultaneously decreasing the Levy
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dispersion coefficient Therefore, on a 3-D basis. first-order Levy dispersion has limitations

similar t.o Gaussian dispersion However. this and related theories, such as the continuous

time random walk (CTRW) formalism. are in the early st.ages of development. and thus

may be fruitful areas for further. While a three-dimensional theory of fractional (Levy)

dispersion was been developed recently [7]. most. hydrological applications to date have been

onc-dimonsional. These applications have been intriguing ami promising. hut transport in

heterogeneous porous media is inherently 3D, and a ID application may obscure much of

the physical process that is actually occurring, especially if a 3D concentration distribution

is averaged to produce a ID distribution.

1.2.10 Implied additional environmental paramet.ers

Hudrodimamic dispersion: -

Hydrodynamic dispersivity (CtL, QT) is an empirical factor which quantifies how much con-

taminants stray away from the path of the groundwater which is carrying it.. Some of the

contaminants will be "behind" or " ahead" the mean groundwater, giving rise, to a longitudi-

nal dispersivity (CtL). and some will be "to the sides of' the pure advective groundwater flow,

leading to a transverse dispcrsivity ((loT) Dispersion in groundwater is clue to the fact that

each water "particle" , passing beyond a soil particle, must choose where to go. whether left

or right or up or down, so that the water "particles" (and their solute) are gradually spread

in all directions around tile meall path. This is the '"microscopic" mecliauisin. all t.lie scale of

soil particles. More important, 011 long distances, can be the macroscopic inhomogeneity's

of the aquifer, which can have regions of larger or smaller permeability, so that some water

can find a preferential path in one direction, some other in a different direction, so that the

contaminant can be spread in a completely irregular way. like ill a (three-dilllellsiollal) delta

of a river. Dispersivity is actually a factor which represents our lack of iuforuiatiou about

the system we are simulating. There are many small details about. the aquifer which are

being averaged when using a macroscopic approach (e.g., tiny beds of gravel and clay ill

sand aquifers), they manifest themselves as (\,11 apparcn t dispcrsivi ty. Because of this, (t is

often claimed to be dependent 011 the length scale of the problem -- t.h« dispersivity found

for transport. through 1 m of aquifer is different than that, for transport t.hrough 1 em of the

same aquifer material

D~ffusion :-
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This is a fundamental physical pheuomenon by which Einstein explained Brownian motion.

which describes the random tlienual iuovemeut of molecules and small particles ill gases and

liquids. It is an important phenomenon for small distances (it is essential for the achievement

of thennodinarnic equilibria). but. as the time necessary to cover a distance by diffusion is

proportional to the square of the distance itself. it is ineffective for spreading a solute over

macroscopic distances. The diffusion coefficient. D. is typically quite small. and its effect

can often be considered negligible (unless ground water flow veloci ties are extremely low, as

they are in clay aquitards). In our case we say diffusion results from the random collision of

solute molecules and produce a liux of solute particles froiu areas of higher to lower solute

concentration. [2] It is important not to confuse diffusion with dispersion. as the former is a

physical phenomenon and the latter is an empirical factor which is cast into a similar form

as diffusion, because we already know how to solve that problem VVe will be examining the

effect of three-dimensional approach of this factor in our analysis.

The retardation [actor:

This is another very important feature that makes the motion uf the coutaininant to de-

viate from t.he average groundwater motion. It. is analogous to the retardation factor of

chromatography. Unlike diffusion and dispersion. which simply spread the contaminant. the

retardation factor changes its global average velocity. so that it call be much slower than

that of water. This is due to a cheinico-physical effect: the adsorption to the soil. which

holds the contaminant. back and does not. allow it to progress until the quantitv correspond-

ing to the chemical adsorption equilibrium has been adsorbed. This effect is particularly

important for less soluble coutaminants. which thus call move even hundreds or thousands

of times slower than water. The effect. of this phenomenon is that. only more soluble species

can cover long distances. The retardation factor depends au the chemical nature of Loth

the contaminant and the porous media.

Hyd:f'U'Uiic coiuluciunis} (f{) tuul tmn:;TII:i:;;:;-i'U'ity (T) :-

These are indirect porous media properties (the\' cannot be measured directly). T is the K

integrated over the vertical thickness (b) of the porous media. (T=f{b when K is constant over

the entire thickness}. These properties arc measures of a porous nicrlia ability to transmit

water. Intrinsic permeabilitv (t;:) is a secondary medium property which does nut depend on

the viscosity and densi ty of the fluid i K and T Me specific to water] it is used more iu the

petroleum industry. Porosity does not directly affect. the distribution of hydraulic head in

a porous media, but it. has a very strong effect 011 the migration of dissolved contaminants,
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since it affects groundwater flow velocities through an inversely proportional relationship

WateT content ((}) is also a directly measurable property: it is the fraction of the total rock

which is filled with liquid water. This is also a fraction between 0 and 1. but it must also

be less than or equal to the total porosity.

The water content is very important ill vadose zone hydrology: where the hydraulic conduc-

tivity is a strongly nonlinear function of water content; this complicates the solution of the

unsaturated groundwater flow equation Water content has 110 dimensional variable cffoct

associated with it.

Tortuosity :-

This is one of the most meaningful 3D parameters of pore structure which express the degree

of complexity of the SillUOUSpore path Tortuosity.can easily be related to conductivity of

the porous medium since it provides all indication of increased resistance to flow due to

pore system's greater path length ie all increased path length results in less connection or

reduced hydraulic conductivity [31]. The shape factor coefficient. S", of the porous media

is computed from morphological characteristics of pores.

S" = (1.2.24)

where Sp is pore sphericity. Tppore path tortuosity. N is the number of pores.

(1.2:25)

Yzi . Ap are pore volume and surface area respectively.

(Po = L VjV;,ng (air fill porosity) (1.2.26)

Vi [Vl] is the volume of the i'll pore(empty pore)

Vimg - Volume of picat sub sample

(1.2.27)

where Rp -radius factor

The investigation of the shape. geographic pore properties. % porosity and hydraulic radius
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of pores. tortuosity are determined by use of 3D high resolution computed tomography

imagery. It is not possible ill 2D case

1.2.11 Interactive Volurne Modeling

Interactive Volume Modeling (IV 'I) was developed to uu ..-ct basic requirements of 3D prob-

lems, such as modeling, visualization and analysis. The use of visualization techniques and

volume calculations provide some useful capabilities such as the ability to calculate the vol-

uino of material within specific property mllge F\,]](] to be able to visualize where the volume

of material occurs in 3D space.

IVM creates F\, uniform, regularly spaced 3D grid model with F\, calculation property value

at each node. This grid model is then used to generate series of user defined surfaces equal

values, which are called" 'iso surfaces". GOCAD is a computer <tided design for geological

applications. [10].

1.3 Statement of the problem

The main challenge to address that necessitated the design of this model is how to control

the effect of migrating of dumped pesticides from their disposal sites to t he ground water

environment through understanding of the movement pattern from their disposal sites With

diminishing surface water resources and increasing demand with population increase, control

of ground water pollution is inevitable.

To address this migration, iuany solutions for Advection- Dispersive eq uatious ale 1l0W avail-

able for a large Humber of initial and boundary conditions for lD transport but very few

for 3D [29]

To accurately dotcnuinc the flow of these migrating chemicals ill the ground cnvirouiucnt.

ID and 2D dimensional equations are limited because they work with lumped parameters to

factor in missed dimensiouts}. The emphasis on use of ID and 2D was due to complexities

and costs associated with solving 3D equations.

Soil processes have a 3D character Modelling therefore in principle should employ 3D.

The target of auy research question is to get the highest degree of accuracy possible. The

number of dimensions is closely related to the required accuracy of a research question thus
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making 3D modelling most ideal for practical purposes when it. comes to solving this research

problem The strength with 3D How models is that they provide detailed analysis of typical

multidimensional Row.

This model is a good contribution to research. users aurl iuauufact urers.

1.4 Objectives of the study

General objective

The objective of this study is to model movement of pesticides in 3D by the advection-

dispersive partial difFerelltial equation under a steady state water Ruw in a porous media.

Specific objective:

Derive 3D equation uf advection-dispersion uf pesticides adsorpt.iou ill porous medium

from the first principle

11 Solve the derived equation.

11 Test the solution by applying it to experimental data so as to prove its validity.

1.5 Significance of the study

III this study we take care of 3D movement of chemical solute ill the subsurface euvirouiuent.

thus giving us a comprehensive mode! describing the movement of these solutes. This study

is essential tu;

The users of pesticides: -

It helps them know how to safeguard water sources by identifying safe dumping sites away

from water resources ami dctcnniniug the right pesticides for utilization ill protecting their

crop ami animals from pests.

Manujacturer of pesticides: -

It helps them avoid mallufacturing dangerous pesticides with high iuigratiou potential and

low solubility ill water ill order to facilitate adsorptiou
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The researchers of pesticides: _

For 3D How study, the researchers call IJe able to further carry out more studies ill order to

provide sound advice to the user and the lllallufactmer and expand kllowledge. The lumped

parameters as ill the case of ID and 2D are no more thus giving us deta.iled parameters
associated with 3D.

23



Chapter 2

Literature Review

Modeling of water flow and pollutant transport ill 8, POlOlISmedia by Marcin 1\ Widorniski

et al, [23], is fairly modem with computer approach. but not specific to pesticide flow in

a. porous media. III that study. the authors intended to provide systematic information

and examples of use of the numerical models to describe waste water How transport of

pollutants ill sewer systems. Vall Ccnuchtcn ct al. [30] developed a partial differential

equation generally assumed to describe the movement of pesticides and other adsorbed

solute.' tluough a porous soil media under (1 steady state water flow condition

oc D02C ec P os
-= ---/1----ot 0.1'2' Eh (j ot . (2.0.1)

where. C-Solute C01H.:entmtion. D-Coefficient of dispersion. v-Velocity. (j -porosity. p -densitv,

S -Total amount of solute. t-time. and x-is the displacement in axial direction. This equation.

if we have 8, confine aquifer. C8,UllOtbe used to calculate the underground How of pesticides

to the aquifer. Should some drill a borehole some distance from a dumpi llg si to. the aquifer

will be contaminated by the How of pesticide ill a lateral direction. Later \1(1.11 Ceuuchten

and Alives [2~]. callle up wi t.1J an equation for oue-diniension miscible displacement and

degradable chcm ical species (trallsport equation ill 1D)

~ [DOC] _ 7)OC _ ROC = IJ.C _"y.
o:r: ax o:r CJt . (20.2)

where. D is the coefticieut of dispersion. C is tile concent rat ion. R is the retardation factor.

x is the displacement ill the longitudinal axis. I' is the decay constant. is the zero-order

production rate and t is time. Basically, as stated the equation applies to degradable organic

pesticides and not inorganic pesticides Ed Perfect. and Michael C Sukop [13] reviewed a

model of dispersion of nonreactive solute ill saturated porous media. They explicitly stated

that dispersion call occur as a result of diffusion; inter facial iust.ability. mechanical mixing,
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molecular size effect. ami/or turbulence. Their focus was 011 combined effect of diffusion and

mechanical mixing. Frein their review. velocity-based models such as convective-dispersion

equations are widely used at present however they lack t he power due to inversely estimated

parameters. Geometrical dispersion models have been lIeglected in the past because of

difficulties of parametrizing ill the complex structure that occur ill the natural porous media.

The recent advances ill fracture geOlllctry. percolation and network t hcorv may reduce these

difficult ies. The spread of solute ill a porous medium during a saturated flow is important

physio-chemical process. att.ributing to combination of diffusion and dispersive mechanism.

Their focus was Oil pore geolJletry model for chemical transport. Taylor 1903 [29] derived

the convective-diffusion equation

oc ,y2 i3C i32C 10C 02C
-+2U(1-~)-=D(-. +--+_,)ot r2 ox 0:y2 y oy OX-2

(2.0.3)

The Discrete pore model equation is the Taylor's equation. Let

(2.0.4)

where. r is the radius of the pipe while x and yare displacement clue to movements of

pesticides ill axial and radial directions. u (.I)) = 2U(1 - ~) as iudicatet] ill Hageu-Poiseuille

equation of laminar flows. U is average velocity. D is dispersion coefficient and is assumed

to be independent and r is the radius of the tube. This is eftectivt'l\' two dimensions

equation While numerical techniques haw been employed in the equation above, there

are few analytical solutions available. They go further t.o create contlitious that enables

the equation to be examinee! with geometrical factors incorporated This review is in line

with our thesis because it deals with nonreactive adsorptive materials but their primary

consideration is the iuflueuce of the geometry 011 adsorption. The program SW JI! 5 _3D

Corle for Silllulating water flow and solute transport ill three dimensions [:31], numerically

solves Richards's equation for saturated-unsaturated water flow alld convective dispersive

equation for solute transport The mixed form of Richards's equation in 3D is given by

(2.0.5)

where
c of ec oR

J = oU + oU + ou
TU = (h,(j,,(jy.(j,)
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where () (Dlj L3
) is the volumetric water content ill the soil. ,0 (L) is the vertical coordinate ill

reference to certain datum. hI' (L) is the water column pressure at the point with elevation

z and k (LjT) is the hydraulic conductivity tensor. This program uiay be used to analyze

water and solute movement ill unsaturated. partially saturate or fully saturated porous

media. Here they use Calerkin- type linear fiui t.e element schemes. This program involves

flow ill all the three direction therefore not suitable for our analysis. Alla.lvtical solution for

solu tc transport ill three dilllCIlSiollS ill semi- iuf 1I i to porous media is prcscn tce! ill [14] and

it presents several solutions fur three dimensional 'solute t ranspor ts ill seini-iufiuite porous

media with ullidirectiollal flow first type (or flux) boundary conditions at inlet location of

the inediuru. They use allalytical method to solve tbe 3D problem [4] (Trallsport equation

ill 3D)

t)O .OLTLX. -XLyLX. -XL:L'YV

(20.6)

here, -is the general first order rate coefficient of decay (T-l), A-is the gelleralized zero

order rate coefficient for production (lvfL-IT-1). The equation is ideal [or our work but the

decay and zero order coefficients iuake the equation unsuitable for our case study. Adams

[1] developed a t wo-di mcusiona] equation dcscn bi llg the movement of pesticides ill a porous

medium under steady state flow condition. This study was based OIl the potential breakdown

of the ID equation due to exist.enc« of all inrperuieable layer (aquiclude) and development

of a borehole away from the damping pi t.

26



Figure 2: Skctrh slw" iJlg. the movement 01' pesticides ill !\\I) duncnviuns
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3C 32C 3C 1 3 ( 3C)R(C)-;;- = Dx~ -1!r~ + -Dy~ v:s:ot ox: ar y vy vy

(2.0.7)

The above equation was developed from the first principle and proved suitable for the

two-dimension flow.

Implicit uumerical methods are stable ill one-dimension problem but do not guarantee sta-

bility ill multidimensional. Crank and Nicolson Method is a finite difference method used

in solving partial differential equations ami it is all implicit method which is uncondition-

ally stable, accurate and deal with tunc matching problems by taking simple explicit and

implicit methods. It prevents numerical challenges ellcountered by fully implicit schemes

and shortens computing times by a factor of 2 [27]. It also does not encounter numerical

problems such Fl.S negative distribution function or crash during matrix inversion that arc

seen ill other implicit numerical methods. However, its matrix is too complicated to solve.

Douglas and GUIln modified Crank and Nicolson Method. TIley jointly developed a general

ADI scheme that is uucouditioually stable and retains second order accuracy when applied

to 3D problems with varied implicit and explicit steps This method gives a tridiagonal

matrix algorithm (TDMA) which is a simplified Gaussian elimination method [19].

These details are essential in analysis of many environmental studies related to irrigation

and drainage strategies (efficient water use). transport of IlU tricnts and pesticides movements

towards groundwater and surface water system (pollution}. surface water management of

agricultural areas and natural areas (agronomic and ecological interest).

In this study, we derive a 3D convective dispersive equation describing movement of pes-

ticidcs in underground porous media ami solve the equation using an efficient Alternating

Direction Implicit method by Peacemau and Rachford [32]. and Douglas and G unu [28]

developed from a variation on the Crank Nicolsou approximation.

Finally, we have used results of all experirueut carried out ill Soil Science Department, uni-

versity of Florida. United States, to apply the formula developed to test its fuuctionality.

It is not practical to get. all these details investigated with the samples locally because the

instruments used are not common.

28



Chapter 3

Research Methodology

3.1 Introduction

Research Methodology consists of differeutial equat ions developed from analyzing ground-

water flow (or solute transport ill groundwater}, The equation is derived froiu first principles

goveruillg molecular diffusion and hydrodynamic dispersion. Finally, the results are alla-

lyzed to confirm the suitability of this equation compared with the ones which are commonly

used.

3.2 Derivation of convective-dispersive solute trans-

port three-dimension equation with steady state

water flow condition

From a control volume, we have the Tvlassconservatiou law L J\!!.in = L ,~1md'

The speed of water ill porous media is detennined by considering the average pore water ve-

10cityu(LT -1) = * with CJ =-k~;t (Darcy's law}. the flux density. and () = Z ill which I!wis

the volume of water ill the porous media and v,is the volume of solids. k-is the pcrmcabil-

ity, DH -the change in hydraulic head and DI -eleinental distance travelled in longitudinal

direction.

III this study we use the concept of dispersion through", cubically packed soil vessel with

internal dimensions x, y, and z t.o derive our equation.
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Figure 3: Cubically packed soil sample sketch used for deriving the 3D equation of adsorption of
pesticides through a porous media.
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At very low flow rate, the dispersion is different in the three directions. The dispersion

coefficients are denoted by Dz Dy. and D;:; for x. y ami z directions respectively. Sum

dispersion coefficient D is given by;

D = D", + Del

where D.; (UT-l) is molecular diffusion coefficient CI.lHIDd (L2T-1
) is the hydrodynamic

dispersion and is the mixing spreading of the solute during transport due to differences in

velocities within the pores and between the pores. The volumetric water content denoted by

f) call be assumed to be a void ratio for saturated soils. The elenieutal height is denoted uyOl.

The measurements are denoted byz. y and z for x, y and z-axis of the cube respectively.

C is the concentration of the material to be dispersed and is a function of axial position

x, radial positions y and L;, time t ami dispersion coefficients DR and D L radial ami axial

respectively. The elemental displacement in X axis is Eh:. in Y axis is 8y and iu Z axis is 8z

The rate of entry of reference adsorption material due to flow iu axial direction from the

flow in the sample sketch Fig 3.

Cfl (yay) C (3.2.1)

The corresponding efflux rate.

(3.2.2)

The net accumulation rate in element due to axial flow,

(3.2.3)

Rat.e of diffusion in axial direction across inlet. boundary,

8C
-y8y(-}D'8i (3.2.4)

Corresponding rate at outlet boundary.

(') ? r)v.~.J

The net accumulation due to diffusion from boundaries in axial direction is,

(3.2.G)
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Diffusion at inlet y and z direction

(3.2.7)

The corresponding rate at y and z outlet. is,

(3.2.8)

The net accumulation rate due to diffusion from boundaries ill axial directions y ami z

(3.2.9)

For a representative volume of soil, the total amount of a given chemical species X (I'lil L -3)

is represented by the SUIllof the amount retained by the soil, when the adsorption isotherm

obeys the Freundlich equation the matrix and the amount present in the soil.

(3.2.10)

where. fJb is bulky density and S is the solute adsorbed ami &C is the solute ill the solu-

tion.Dificrcntiatiug with respect to t. we get

ax as oc- = (Jb- +(:1-at at at (3.2.11)

Now the total accumulation rate is

(3.2.12)

From equations (3.2.3), (3.26), (3.2.9). and (3.2.12). we have the following combined equa-

tion by the conservation of mass law.

For a cube. x=y=z and x = Dl = u:r = uy = u:;

Thus, the above equation gives us.

(3.2.13)



The presentation of the amount of solute adsorbate per unit adsorbent as a function of

the equilibrium concentration ill bulky solution at a constant temperature is termed as the

adsorption isotherm, One of the most popular adsorption isotherm equations that is used

for liquids was described as per equation (L2,7)

(3,2,14)

(Freundlich equ relates a S and e)

where S = x [rn: is adsorbed solid and e is the solute equilibrium constant.

as asae ae- = --_,_ = NF,:eN-1_,at ae at at (3,2,15)

From equation (3,2,11) and (3,2,15) we get,

ax as ae
- = {Jb- +f}-at at at

aIld

as = i\fKeN-1 aeat j , at '
Thus, we have

(3,2,lG)

where R (C) =(1 + (JNK,~CN-j)

Taking, (LT -1) = ~ , the Advectiou-Diflusiou equation from equation (3,2,13) is,

(3,2,17)

Therefore equation (3,2,17) is our model equation,

3.3 Problem formulation by finite difl'erence

For isotropic porous media, the adsorption of solute is governed by equation (4,3.4),

This equation is the second order equation quasiliuear partial differential equation. The

first step is to establish a finite difference method solution of the equation is to discrct.izc

the continuous domain of its grids with finite number of grid points,
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At time step n, the concentration of the solute C (x. y,::-, i;) at grid point (i. i. k) can be

replaced by C(iiJx,jiJy.kiJ;;,.n.iJt) which is denoted byC;j,!,:'

The initial couditious for solving the model equations is that the concentration of pes-

ticide at all POSitiOIl0 ill the soil at time zero is constant and equal to Ci,j.Ic. That is

C(x, 0, 0) = C for x > 0, C(O, y. 0) = C, for y > 0 and C(O, 0, z ) = C; for y > 0

For boundary conditions, two couclit.ious arc ucccssary:

In the first case the concentration of the pesticides at the position x = O. y=U is specified

for a period of time, the concentration at the surface is zero. That is

C(O. 0, t) ~ Co

for 0 < t :::;to

C(O, o. t) = 0

for t > to

II III the second case, the concentration of the pesticides ill the solution entering the soil

system at position x or y = 0 is specified for a period time. Following that time, the

concentration at the surface is zero. Thus

{
UC iJC iJC . _ _ }VCo, [or, 0 < t :::;to· +I), u, + D7) oy + D, 0: + VC Ix - 0 - 0, for, t > 0

Assumptions;

The pore water velocity is constant ill time and space. This condition call be met for

a uniform soil if the flux density of water velocity and volumetric water content are

constant for all positions all the times.

II The spread of solute is domiuatcd by hydraulic dispersion rather than diffusion.

III The hydrodynamic dispersion can be approximated as the product of the dispersivity

and pore water velocity.

IV The adsorption process is iustantaueous and reversible and the adsorption isotherm call

be described by the model i.c the concentration of pesticide absorbed 011 the soil solids

is proportional to the concentratiou ill the solution, [14]
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3.4 Alternate Direct Implicit Method (ADI)

The implicit method is also known as the Backward ill Time Central ill Space (BTCS)

scheme and is uncouditionally stable Although it lias great advantage. the drawback is

that a tridiagonal system must be solved for each time step. The ADI method is what. is

used to solve the model equation. Below is a sketch of uonhornogeueous discretization



C:.J.k.l

Figure 4: Sketch showing non-homogeneous discrctizauon
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Alternate Direct Implicit lethod (ADI) is a Difference Method for solving Parabolic and

Partial difference equations.

III this study we will deal with two methods

III this study we will deal with two methods

1. Crank- icolson Method.

2. Douglas-Cuun Method

3.4.1 Crank-Nicolson Method

Crank-Nicolson [26] dealt with the time marching problem by taking the average of simple

explicit and implicit methods. For our equation (4.3.4) we have

(Cn+1 - cn)
R (C) L1t

D; (Cn+1 + cn) f/c (Cn+1 + cn)
= D1 2(L1X)2 . - 'VI 4 (L1l:)

[J2 (C"+1 + C") {)2 (Crt+1 + cn)+D y + D -,-z ---,,---
y 2(L1y)2 z 2(L1.::;)2

where. ol;-central difference ill x direction, oy - central difference in y direction and oz -
central difference ill 'f, direction.

Rearranging the Crank-Nicolson equation;

(CHI _ en )R (Cn.) 1.,),1, ·I,j./'; =
1,j,k L1t

(
(C.,,+I - ?Cn+1 + Cn+1

)) ((C'" - ?C'II + cn ))D HI,),/;; ~ i,y.!; 'i-I,),A: + D ';'+1,),1.: ~ /'I,),k ''i-I,),A:

x 2(L1Jl 1 2(L1.c:)2

(

(cn+1 2cn+1 + en+1 )) ((c,n '}C'I1 + cn ))+D, "i.)+1.k - "i,).k ;',)-I,k + D, '·i.),1.k - ~ 'i.y.k 'i,j-I.A:

Y 2(L1y)2 Y. 2(L1y)2

(C"+1
_ '}C,,+l + Cn+l

) = ?CT! cn ))+D, ;,),"+1 ~i.j,\i,j./';-I + D,i,j,k+l - ~i,j~ +,,),/,;-1

- 2(L1z) - 2(L1;:;)2
(3.4.1)
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where r Lit 'I" L'lt 1"z
\., , ':£ = (L'l:l:) " , 'Y = (L'ly)I. .;

1.2.".".""""J - 1, aud k = 1.2.""" """,K - 1.

L'lt LIt l'
(L'l.:Y·' 'IlL:!: = L'l:l" anc i l. 2.. ...1- 1, j

The equation (3.0.0.20) above yields;

_ ( V"rn.:"t + D:"T:ci ) C"+1
4R (en.) 2R (Cn,) 1.-1.j,"

't,j.k 't,j.k

Dr
Y YJ C"+I

'2R (CII. ) '1..)- Lk
'I"j,k

Dr
z "Ie C"+l

'2R (cn, ) ,.,),"-1
'I"j,k

( ».«. Dyr" Dz!"'). +1 ( o», _ V,JILt, ) C,"I,+1+ 1+ ,. ,t + "J + ""Ie C" ,._ ' 'J " "

R (C;'jI.J R (C;~j,k) R (C;'j,k) I,j,' 2R (Ci'jk) 4R (Ctj,kJ I+I,},k

Dr Dry y, C"+l .?: 2,. C"+l
2R (cn ) ',.j+l.k - 2R (Cn ) I,j.,+1

'.j k: ' "'I,j,k

(
~G ~~)~, ~~ ~ ~~ ~

2R (cn ,) + 4R (e" ,) "I-I,),/;: + 21? (ell .) /'t.j-Uc + 2R (C" .) "I,;,k-l
7.,.1,'" I.,j,/" 1.. j,A. 7,;.1.

+ (1 _ D"T:" _ DyTy _ D,T, ) c: .+ ( D:,r", _ Vx'rnx ) C"
R (cn.) R (cn) R (cn) I,j,k 2R (CII) 4R (cn.) 1.+1,j./;;"i,j,k "i,j,/;: . "i,j,k "i.j.k .",],k

DT . Dr+ y y C". + Z Z C"
2R (cn, ) 1,.)+I,k 2R (cn. ) '1.,)./;+1

'I,j.k '1";,1,

(3.4.2)

The matrix generated by Crank-Nicolson Method Ims the best R.CCUrR-CYand uncou-

ditionally stable but its main disadvantage is that the matrix generated is expensive (or

complicated) to solve,

Peaceman -Rachford awl Douglas - Cunu [:32]developed a variation of the Crank & Nicolson

approximation which is known as the ADI Method. Douglas - GUllll scheme is more relevant

for our calculation following the earlier discussion in the literature Review.

3.4.2 Douglas - Gunn Method

This nurnerical method is an alternative solution method which instead of solving 3D prob-

lorn solves R.succession of three one dimensional problems.

The breakdown of the method is explained diagrammatically as shown below ['28].

Douglas - Cunn [32] modified the Crank- Nicolson method and developed R.gellerR-l ADI

scheme that is unconditionally stable and retains second order accuracy when applied to

3D problems. This approach exploits the understanding that Implicit numerical methods

are stable in one-diiueusiou problem but do not guarautee stability ill inulti-dnnensioual
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STEP 1: X Implicit

Figure 5: Explicit in (Y,Z)

STEP 2: Y Implicit

Figure 6: Explicit in (X,Z)

STEP 3: Z Implicit

..........•...•",.
-.-..,....•~.. .

•• •• • • •
• t • •

• •••
••• ••• • ••--• • • , ••

• • ,.~
• • • , ••• • • •. ,.. -- n-lc.:

Figure 7: Explicit in (X,Y)
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problems. The incorporation of Thomas algorithm is based OIl the fact that the inversions

of matrices produced by explicit uuuierical methods are easier to solve compared to those of

implicit uumerical methods but require smaller time intervals. That. is why the ADI method

is preferred over other numerical methods.
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Chapter 4

Model Equation Solution

Based on Douglas - Cunn approach we rewrite our equation R,S follows;

( (
cn+l+en) u-in )R (C) (en+1 - en) = D"T" a: 2 '. -'4 :r (ox (eMl + en))

(4.01)

Instead of directly solving the equation at time step 11. we solve the same equation at three

sub-time steps [32];

D Cl2c,n D ~)2cn+ y'l'yv.y + zl'zvz'

(4,0.2)

Step 2:-R(C) (CT/+~ - cn) = D,;", (); (en+~ + en) _U"~/'f),. (CTI+~+ en)

(4.0.3)

(4.0.4)
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Expanding the equation in the steps above we have

Step 1

R (Cn ... ,) (C"+~i.j.): 1.,),k

V"1I1;,, [(C"+~ C"+~) (Cn Cn)]--4- '·';+I,j,k -I.-I,),k + i+1.}.k - i-I,),k

+ [Dyry (C~j+l,k - 2Ci~j,h + C;:i-l,lJ + D.oT, (C~ih+1 - 2Cr:j,k + C::i,k-I)]

(4.0.5)

Step 2

_ V"I17;" [(C"+~ _ C"-i) (Cft _ Cft )]
4 1.+I,},h 1-1,},k + 1+1.},k 1-I,J,k

(4.0.6)

Step 3

R ic: )(Cn1.+1 c: ) - o,», [((''f/.+~ ?(''f/.+~ (''f/.+~) ((m )(1'11 c: )]
, 1,)." i,j.k - /i,j,k - -2- 'i+l,j,k - ~ /i,j,k + /i-l,i,1; + 'i+l,j,k - ~ /i,j," + 'i-I,},"

v..», [(Cn+~ CT/,+~) (Cn (,n)]--4- 'i+l,),k - i-l,),10 + 1+1,j,k- i-I,),/';

+DyTy [( II+~ II+~ II+~) (n It It )]
C;'J+1.k - 2C;,j,k + C;,j-1.k + Ci,J-rl,k - 2Ci,ik + Cij-l,/;2

DzTz [( n+L _ ') n+J 1'1+1) (m _ ') n rt)]+ 2 Ci,j,k+l ~Ci,j,k + Ci,Jk-L + C;.J.k+1 ~Ci'J,k + CI,j,k_1

(4,0,7)

Rearranging the equation give~ U~ the equation which provides the matrix of solving the

model equation;
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Stage 1; Implicit in x direction, explicit in (y, z) directions

(
n.. V III )_ x x + x X (111

- 2R(Cn ... ) 4R(cn .. ) 'i-l.j.k
i.j.k i.j.k

Dvl'y C" Dzrz C"
R (C" .. ) i,j-U+ R (Cn .. ) i,j,k-I

i.j.k I,.I,k

+ (1 _ D":r,, _ 2D1J7'1J _ 2Dzrz ) Cn + ( D".r,l' _ IJ",TII". ) Cn .
R (C"· .. ) R (C" .) R (C'" .:s , ) I,J,k 2R (C" .i r. ) 4R (C·" .. ) ,+I,J,kI,J,k 1.),( I.Jk I,j,/'. I.j.k

+ Dyr)) C": + D,/', C".tiic-, . I') I,J+l./': n(cn .. I) I,J,A:+I
1.], • 1.. .1, •

L AI DTT, B' v",'rn, C' - DyJi'/'y 1D' D'kT',et, .j = R(C:' ' i .j = ( )' /. - ( ) aile I; = ( )
"',J,k R C;:].k j R Ci'j'. R Ci:i.k .

(4,0.9)

4
b1 f:1 0 eJ rilI,j,k

7

a2 b2 C2 CJ. d22,),k
10

Q'3 &3 C:3 «: d3

Its matrix is. where 0,1 = 0 and ('n = 0

Cn-I

o

where,

(4.08)

d.n-I

a; = - OB; + ~A;). b; = (1 + A;), C; = UB; - ~A;), and d, = UA; + *B;) Cr_l,j,k +
cc: v trc: +(l-A'-?C'-?D')C"" +(!A'-!D')enj i,j-l,k k i,j,k-Ij ~ j ~ k ivj.k: 2 i 4 ·ii+l.j,k

+CIC" . D' C'1/'.i i ,)+ I,A: -t- l; i ,j,k+ I
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Stage 2; Implicit in y direction. explicit. ill (x, z) directions
2 ( ) 2 3 I 1_ Oyry ,ll+'j 1 _ Oyry C"+3 _ o,», ll+;j = Oxr, C"+'j + V,I11, C"+3

2R(Cu ) C1,)-I,k+ -j H(Cu) i.j.k 2R(Cu) C1,/+I,k 2R(Cu ) 1-1.),k 4R(C~' ) 1-1,),k
1,].k ' I,J.k 1,j.k I,J,k I,J.k

DAv v.m, Dvry n.»,
+ ." Cn . +" Cn . + ... Cn + 0 0 Cn

2R (Cn) 1-1.J.I< 4R (Cn ) 1-1,J,I< 2R (Cn ) I,J-l,I< R (Cn ) 1,],1<-1
1,), 1..1,k I.J.k I.J.k

+ (cn _ Dxrx C"+~ _ Dxrx Cn _ Dyry Cn _ 2Dzrz Cn )
I,J,k R (Gl. ) I.J,k R (C" ) I,J,k R (C" ) I,J,k R (Cll ) I,J,k

i.j.k i.j.k i.j.k I,J.k

Dxrx Cll+i Dxlx en vxmx C111+~
2R(C". k) 1+1,1,1-+2H(C" ) i+l.j.k- 4R(C". ) 'i+l,j,k

I.). I J k I,J.k

+ Ozrz en.
R(C'" ) I.J,I<+1

i.Lk

Let

where o,j = 0 and Cn = 0

bl Cl

0.2 02 C'2

0.3 03 C3

0 l0 CJ nl<i 1 k
x

CJ. d21.2,)
11

C'; d3'/",,1,;

o

__ C; b.
o,j - 2' J

(4.0.10)

(4.0.11)

dll

e")
:2

1 1 1 1 1 1 C'
d = -A'C·."+J.. B'C"+J A'Cn B'Cn J elf' D' c:.J 2' I-l,),k + 4: 1 /,-1,),1.: + 2' i '1-1.j.k + 4: i ;-1.),10 + 2 /;,)-1./.; + k. /;,)./;-1
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Step 3; Implicit ill z direction. explicit in (x, y) direction

_ DzTz C,,+I + (1 + Dz/"z ) Cn+1 _ DzTz Cn+1
2R (CII. ) I,).k-I R (C) I.,}," 2H. (C". ) '1,),k+1

L),k I,),!,. 1,},/,

1 1 " )Dr":!.' Cn+1" + 1!.Trll;r en 1"J.,11"l·x Cn+1" + o,«; en + D,/'ry Cfl+1
2R(C>l" .) ·i-I.)," 4R(cn) i-I,j,k 4R(C>l ) i-I,}." 2R(cn) i-I,j,k 2R(cn.) i,)-I,"

1.),1, I,).k ~.).I, 1,).k L),k

+ Dy"Y C"... + D;I. CII.2R(C". ) '.,}-I,/,. 2R(C"') 7.,),1,.-1
t.).h t,l./;

(
C" DrTx Cn+} D"T~ C". _ DyTy CfI+~ _ DyTy C". _ DzTz C" )

+i.j,1,; - R (Cn. ) i,).k - R (C" .. ) 1,),1,; R (cn.. ) I.}.I.: R (cn ) 1.).1,; R (cn.) I,).k
'1.)," I,).!" 1,),1.. I.}," I.).k

(

o,», Cn+~ D:,.r,. n <':rlll" n+1 V,,· III ". cn D"I'" Cn+~ )
2R(C" ) i+l,j,k + 2R(C" ) C;+I,j,k - .. 4R(C" ) Ci+1.j,k - 4R(C k) ;+I,j,k + 2R(C" ) 'i,j+1,I,;+ l.}.k l,),k 1,),k . 1,),. l.),k

+ DY'ry C" + D,r, C"2n(C". ) ;.j+l,I.: 2n(C") ;.j.k+1
1,},J. 1,.'1,1.:

. Cn.+l + b cm+1 , Cn+1 - dak iJ"-1 I,; 'i,}," + CI,; i.}.k+l - 'k

0 C2 tlli,j,1

C3';3 rl21,./,

C;jk d3, ,

Matrix is, where ak = Oand en = G

o

D;, b ( I) D;,ak=--, 1.= l+D" ,c=--2 2
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C"+1
'/ ,),1/

(4.0.12)
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d (lAlC:n+~, .. + .trc: 1 lC'((+~ 1 4lc'n C; C"+~ + Cj Cn D;, Cn ),I, = 2' 1.-i.},/;; 4 I 1-1,),/' + 4D, 1.-1 j,k + 2' 'i 1-1,j.A + "2 i,}-I,k "2 ;,j-1,/' + '2' 'i,j,A:-l

1 AlCTI+1 1 lCn 1 lCn+1 1 BlCn C' Cn+~ )2 i ';+l,j,/' + 2A; 'i+l,),k - 4Bi ';+1.j,/' - 4 ,; ;+l,),k + 2';,)+1,/'

+Cj Crt + D; CTI
"2;,j+l.k '2' ';,j./'+I

The above is the solution to the model equation. which are equations (4.0.8), (4.0.10) and

(4.0.12).

Let A~ B'. == v,"} rnx
'I R(cn)

1..).1;

Cl.... Dyj,I',! d D' D'kr,- - an I,' =<i - R(C" ) R(Cn )
l.}.k 1.).k

1=1,2. , ,1, j=1,2 , , ' J and k=1,2 .. ...... h

In each of the three steps, we have J + 1 equations for each of (j. k). J + 1 equations for each

of (i, k) and J"': + 1 for each of ('i,j) value. \Ve also' have three unknown values ill variables

in each step.

In all the three cases. the tridiagonal matrix can be solved by use of Thomas algorithm.

Iu numerical algebra, the triadiagoual matrix (TDMA), which is simplified form of Gaussian

elimination can be used to solve numerical equations like this The triadiagoual system of

oue diineusiou for II unknown may be written as;

1 l' 1

C,rt+1 I. C,n+1 c,rt+1 d
Q.; i-1.)." + V; 'i,j,k + C; Hl,).k = i

(4.0.14)

where 0.1 = Uand Crt = 0

This algorithm is only applicable to matrixes that arc diagonally dominant. as illustrated
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below;

b1 C1 0 C1,j,k d1

0.2 b2 C'2 c-,, cl2

a3 b3 C3 C3.),k d3

o
(,-,-[ Cn-1,).k dn-1

all bll Cn.).k cl
ll

The same matrix is developed for (j, k)

(4.0.15)

The first step consists of modifying the coefficients as follows, denoting the new modified

coefficients with primes

'-', . 1 - ') ') II 1
b _ .' , . - ~, J, .." -

, (.:1_1 U·1

This is a forward sweep. The solution is obtained by back substitution:

"".n - 1

Ci = d'; - c';Xi.+l; i = n - 1. ii - 2, 1

(4.0.16)

(4.0.17)

(-±.O.18)



This will be the method that will be applied in finding the solution of the model equation.

4.1 Confirmation of stability using Von Neumann Method

Fourier method is preferred to other methods because of its power and flexibility ill 8,118,1-

ysis, it has facilitated all incredibly diverse range of applications to modem science and

engineering.

Douglas and Gunn derived an ADI scheme based on "approximating factoring" that is

unconditionally stable and retains second order accuracy when applied to three dimensions'

schemes.

A development of the scheme that highlights the approximate factorization point of view

is best carried out making use of a delta form of the equation. A delta form expresses the

unknown quantity as the change from a known value of the variable of interest. Here we

use a time delta and define,

()

cn+1 = C'"· L'lC' ....'/.,)'/,: I.j,/;: +/.,j,k· (4.1.1)

In this analysis, the discrete Fourier transform is used

(4.1.2)

i = 0,1, .... , ..... " .., I - 1, j = 0,1, ....J - 1, and k:= 0,1. ......,K -1,

Using the discretization and Fourier trausform for equatious (4.3.3) and (4.0.17) we get

following,

Stage 1

(1 1 4'82 1]]'8 ) Cn+l (. 14'82 1]]'8 C'82 D' 82) en- 2' J 'i ", + 4' i " J = 1 + 2" i :I,' - 4'i ", +j u + I,: z

(4.1.3)
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Equation (4.1.3) becomes;

Cn+~ _ ~A' (Cn+~ _ 'JC"'+! C"'+1) B; (Cn+~ - C,.,+! )
i,j,k 2 i i+1.j./;; ~ 'i.j.k + i-I,j,k + 4 'i+l,j,k 'i-I,j,k

+D' (C" - ')C'" + C" )k i.},k+1 ~ /i,j.k - i,},k

C" +! 4' (C" - ')CU + C .)' ..1./; 2' 'i;+I,j,l, ~ ,,},k ,-I,},k

j]; (cn cn)- 4"" i+J.j,k - ·i-l.j,k

+C' (cn - ')C'11 + cn )j i.j+l.k ~ i.].k i,]-J.k

(4.1.4)

Using equation (4.1.2), we find the following expression;

[
_ ,(eK.e, + e-K.e, ) 1, (eKJJ., - e-KlJ

,.)] C'1'.'+. ~
1 Ai 2 - 1 + -2B,,.;, 2,.;, 1.].k

(4.1.5)

Therefore,

1 - 2A~SiTl2~ - B;,."SiTi~C()8~

4C'S' 11" 4D' S' 11,- j 1'fIY - "w·z 1
en

(,],k

(4.1.G)

The amplification factor ~} is gi\"en as;

[

,2 (j.,. , (j r (jJ' ] j [ ,2 (j.,. ,(j J' (j.,. ,2 (j y ,1+ 2A,Sin --=-- + B.;,.;,Sin--=--Cos- ~1 = 1 - ')ASi'll --=-- - K,BSin--Cos--=-- - 4CSin - - 4D,S2 2 2 ~'2' 2 2 ] 2 '

(4.1.7)

where fiT = fiy = fi, = (-)= mtt im E f,Il(. and let ~~ = GJ, let 8in~
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Sill e; = SY' and sin~ = Sz

Using conjugate to eliminate the complex dououuuator

~.~= (1 - 2A~s; - B;",sccc - 4Cjs; - 4D~s;) ((1 + 2A;s;) - (B:",;sr,cc))

. ((1 + 2A;s;l + (B;s,,,c,,l)

For CRses where . A~ = Cj = D;, = A'Rlld e,r = ey = e.o = e

(4.1.8)

Stage 2

(4.1.9)

Following the same process RS in stage 1

(
,. 2f)y) ,n+~ [ ,. 2 f)". ". 2f)y ,. :If)., ,. (/1;, ex] '1/1+ 2C)S~n - C)'I' = 1 - 2A,Su~ - - 2C)Sm - - 4D,Sm - - B,,,,,Sm.-Cos- C.,·)·k2 ., , c 2 2" 2 2 2' ,

[
, 2e". , e". f)",] 'TI+.1- 2ASin - + fl""Sin-Cos- C.' ~
I 2 I 2 21,),k

quad (4.1.10)
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[1 <)A'S'· 20,. 4C'S,20y 4D'S'· 2iJ, -B'S'· e,·C e,,]'n+~ _ - L- ., UI 2 - j UL 2 - ,,~n 2 - '" i UL2 ·OS2 'II
CiJ·,,- ·')0·0 e CiJk, , 1+ 2A'S?n--'" + ",B'Snz,-"'Cos-'" ' ../ 2 / 2 2

Making the denominator real numbers by multiplying denominator and nominator with

conjugator of denominator gives us;

c,n+~ = [I (1 - 8A'S2 - 20(A,)2S4 + (B;'51:)2) + Ii' (12AB;s:3(~ + 2B;sl:) I]
1,j," ((1 + 2A'S2)2 + (B;SC)2)

which gives us,

(4.1.11)

(41.12)

Stage 3

R(C) (C"+l - C") = D;T,. i3; ( CII+!i + CII) - V";~l,c OC/: ((:11+1; + (:11)

(4.1.13)

Following the process ill Stage 2;

cn+1_
i.j,k- en

i.j.k
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(4.1.14)

Amplification factor

cn+1 _
'"i.,j.k -

(1 - 4A' s2-24A'2S4 -16A'3sG-1~A'B'~ s2C2+B'~S'2C2+16A'4s8-20A'2B'~ S4C2)

-/{, (B;sc - 16A'B'~ s4c2-16A'2B'~ s5C2+2A'B;s3c-:32A'2B'~ sGc2-:32A'3B;S7C)

((1 + 2A's2)2 ((1 + 2A'S2)2+(D;sC)2))

(4.1.15)

<1

(4.1.16)

From the details above. the numerator is diminishing and denominator increasing therefore

the theorem is right.

4.2 Determination of time step using stability criteria

4.3 Fourier or Von Neumann Stability analysis

Using Fourier transform.

(4.3.1)
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and let L11' = /Jy = /J:: = li

(4.3.2)

(,n+1 ('n /J(';,.i,k =l.j.A: +;.j.l.:.

(4.33)

Fitting this in the model equation ;

8C 82C 8C 82C 82C
, R (C) T = Dr ~ " - Vr.!::) + Dy ~ 2 + D = -a 2

vt or: ox os) z

(4.3.4)

Using equation (4.3.1).

Fourier transforms give:

(C'n ) ac":.y,Z = c: (2D" (CosfJ" - 1) _ V",h,SinB", 2Dy (CosfJy - 1) 2Dz (CusfJ., - 1))
R',J,k at ",J,k 112 2h + h2 + 11.2

(4.2.1.3)

Define;

From equation

(4.:3.5 )

A particular time stepping scheme will be stable provided C lies in its stability region.

Suppose that the stability region is contained in an ellipse

2 2
Stability Region A (:0) + Ct,) < 1 (4,2.1.4)

If real and imaginary parts (; are:

(4.3.6)



then the scheme is stable provided.

(91(6))2 (J(6))2-- + -- <1
Cto fj(J-

which implies that

< 1

(4.2.1.6)

which call be a sufficient condition. using ec = ey = e.: = e = ~

Maximum value of a sine function is realized at ~

[(-4L'lt)2(D~ u, Dz)2 (-L'lt)21 2]-- - + - + - + -- -1' :::::1
Ct(Jh2 2 2 2 (-Joh 4 "J

Implyiug that;

(4.3.7)

0:0 and (-Joareconstants which can assumed to be equal to 1.

4.4 Determination of fractional step using stability in

Multispace dimensions

Model Equation (4.3.4) is

oc d2C oc d2C [PC
R(C)- = D.- -1). - + D - +D,-;:)t .r;:)? .c;:) )}:::J'2 -;:)'2

V o.c: v:r vy o:
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Based all Disceret Fourier Transformation and its inverse

N/,)_J
~ 1\

C·· = ~ C e27r'iw(;r; YJ+'<''')
I.J.k Z:: 'W

N
w= /2

C (:r,!j, z , 0) = Co (:):,!j, z)

COIlclCo1 Periocl

Discretization in space,

i = 0, l. 2, ., , 'V - 1

j = 0, l. 2 ., N - 1

k=0.1,2. .. :.. N - 1

dC' ((4D S·· 2e,.) (4D S:· 2(11
) (4D S·· 28<) (/-S·, 8,·C e,.))R (C

w
) ~ = tJt _ ;c.:n 2 _ J} ~n 2 _ z:n 2 _ Ux \' U~2 OS2

dt h~ hy h~ ~h

(4.4.1)
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And the scheme will be stable for

( (4D SirI2~) (4D S'in'2f!.JL) (4D,Sin2i2L
) (l).kS'in~COs~)) .

Q(H" H .H_) = /st _ ". 2 _ y 2 _ - 2 _ -< 2 2
,t, Y 4 } '2 1 2 } 2 ')}

I,", Iy Lz ~ I,

(4.3.0.4)

For maximum value H = ~ = H,t = Hy = Hz.

[

L 2 1-4iJt Dr o; o, VT 2(-) (,)12 +-2/2 +-2/2) + (-I)
~ 1,-<, Iy Lz I,

(4.4.2)

(4.4.3)

For Forward Euler time step. we require.

11+ QI < 1 Or since Q E 9~we need -2 ::; Q ::;a
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Chapter 5

Findings, Discussions and Results

5.1 Applications and Results

5.1.1 Experiment on adsorption andmovement of selected at high

concentration in soils

These experimental findings were used when analyzing 2D equations of Pesticides flow ill

t.he porous media under steady flow state [J. 24]. The experiment was designed for one di-

mension but was applied to two dimensions for low flow water in a porous media considering

t.he theoretical parameters that goveru process.

There is no documented experiment of this nature carried out ill Kenya.

All the data availed here (both calculated and extracted from experimental results) is for

facilitating analysis of t.he output through application ami not. meant for comparison of the

output.

This analysis contains more information for purposes of giving a background of the exper-

iment but eventually it will focus on one sample 2, 4 - D amine on Webster soil to qualify

our mathematical model.

To support the model equations. our data extracted from the study carried out all soils

in U.S,A i.e Webster silt.y clay loam (molisol) from Iowa, Cecil sandy loam (ultisol) from

Georgia, and Eut.is fine sand (Entisol) from Florida. These soils were selected 011 t.he basis

of their taxonomic and textural representation of major U.S. A soils. Surface samples taken

from depth range of 0 - 30 Clll depth of each soil were dried and passed through a '2 llllIl

sieve prior t.o storage and use. The information taken from the detailed account is rele-

vant to our iuatheinatical model and not. to give irrelevant. iuforuiatiou that. will wake our

work t.o become amorphous. Experiment was carried out at Selected physical and chemical

properties of these soils pertinent to this study are listed .
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Table 5.1: Physical and chemical properties of soil used in this studv

Particle size fraction (%) [24]

Soil Sand Silt Clay PH (1.1

paste)

Webster 18.4 45.3 38.3 65

Cecil 65.8 19.5 14.7 48

Eustis 93.8 3.0 3.2 4.1

Vie can use the locally available soil samples if the relevant properties have been experimen-

tally determined

Pesticules:

Four pesticides used in this study were 2, 4-cl [2.4 Dichlorophenoxyacetic acid]' atrazinc

[2- chloro- 4 -ethylamino - 6 - Isopylainino - .5 - triazine], terbacil [3-tert - butly - 5 -

chloro - 6 - Methyluracil]. and methyl parathion [0 - 0 - dimethly - 0 - p - nitrophenly

phosphorothioato]

Column Displacement experiments (Relevant information)

1. _Pesticides movement through sat urated columns of Webster, cecil and Eutis soils was

studied using miscible displacement tcclnuquc [24].

2. Air dried soils were packed in small increments into glass cylinders (15 cm long: .45

em squared cross sectional area)

3. Medium porosity fitted glass cud plates served to retain the soil ill column.

4. A known volume of pesticide solution at cL desired concentration was introduced into

soil at a constant Hux using a constant volume peristaltic pump.

5. The column experiments consisted of displacing 2, 4 - dainine solution at two concen-

trations (i.e. 50 and 5000 I1qJlll-1
) through the columns of cecil. Eutis and webster's

soil and 5 to 50 jJ.gNll-1 of atrazinc through Eustis soil.

6. All displacements were performed at a Darcy flux of approximately 0.22 cm/h to ensure

equilibri Ulll condition of pesticide adsorption d uriug flow.
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Table 5.2: Freundlich constants

7. The volume of water held ill the soil coluuui 1~ was graviltletrically determined at the

end of each displacement by extruding the soil from glass cylinders and over drying

8. The number of pore volume (\~,) was calculated by dividing the cumulative outflow

volume (V) by the total water volume Vol the soil column. Effluent pesticide con-

centratiou is expressed at relative effluent and input concentration (g) where C and

Co are, relatively. Plots of go vs ~o referred to as break through curves (or 13TC)

13TC. 1 Number Graph [24]

The table below shows Freundlich constants calculated from equilibrium adsorption isotherm

for various soil pesticide combination. [24]

Pesticide Soil Kd N

2. 4 - d amine Webster 4.62 0.70

Cecil 0.65 0.83

Eustis 0.76 0.76

Atrazinc Webster 6.03 0.73

Cecil 0.89 104

Eustis 0.62 0.79

Teruacil Weuster 2.46 0.88

Cecil 0.38 0.99

Eustis 0.12 0.88

Methly Webster 13.39 0.75

Parathion Cecil 3.95 0.85

Eustis 2.7'2 0.86

In this analysis we will use 2. 4 - D amine Oil webster soil to qualify our mathematical model.
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5.1.2 Information extracted and calculated

Generally. at low rates of flow the effect. of molecular diflusion predominates and cell mixing

contributes relatively to dispersion. But ill liquids, molecular diffusion is insignificant at

Reynold number up to unity [31]. Whatever the mechanism. however. the rate of dispersion

can conveniently be described by dispersion coefficient. The dispersion rate in three direc-

tions is represented by Dx . DyD,c and DzD" respectively used in representing the behavior

in three directions. The process is normally linear. with rates of dispersion proportioual to

the products of the corresponding coefficients and ooncentr atiou gradients.

From Basic Concepts, for very low values of Reynold number like om case (Re< 1) the two

dispersion coefficients are approximately the same and equal to molecular coefficients.

From the Column Displacement experiments (From summary of Relevallt information) [24]

Given the sieve size used ill experiment is of size 2 nun, our particle diameter is 2 nun.

From Table 5.1. Webster soil contains 18.4% sand. 38.3% Clay and 45.3% silt. From soil

mechanics literature, Average bulk densities of.

Sand - Poand = 1.6 g/cm3,

Clay - Pclay = 1.2 g/cm3

Silt- (Joilt = 1.3 g/cm3

Total volume of soil is-45 cm2 cross section area of the sample X Ibcn: the height of the

sample,1iT = 675 cin".

Pro by mass of each soil is usiug the % content from table 51,

/v! ass = % content X vol LIme of sample X dens: tv.

Mclay = 310.23 g, and

Modt = 3<J7.S1 g
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Bulk densitv of our sample.o, = "M,""'" = 1.343 (j·/CII1;1, f:) =Void ratio. f:) = 1 - =, from soil
.J U vO'unlc' I f.J."i

inecliauics literature, p,-particle density = 2.6'0y/cnl.3 and f:) = 0.'007.

1. Taking our cylindrical vessel (Ill this sample we use the cylindrical vessel for purposes

of getting the basic parameters but. our sample is cubical) to be full,

where, Vv is volume of voids. Vs is volume of solids.

VT - Vs--- = 0.507
11:."

VT = (1.'007) Vs

v~;= 447.91rrn'J

1. Givell that the soil is sftt.llmterllOO% volume of water ill the soil V, =(675 - 447.91)rrn3

=22709 cur'

1. Darcy's flux = 0.22 cnr/In. (From details of column displacement statement number

6).
Q 022

'U = ~ = --. = 0431-krn/h,
f:) U.507

where v is the pore water velocity.

where, 71 -flow velocity ill cnr/hr. d -is the diameter of the of particle of the soil sample ill

C!Il, P -is the density of water ill g/CIIl'J and jJ. -is viscosity of water in g/cmhT.

1. From our earlier literature, peclet number ill liquids is approximately equals to unity

despit.e the varying Reynolds number

Fe = ~ = 0.43~(??) = 1 , v and d remain as ill He.
DJ, DJ,

DL = D" = U434XO.2 = U.0868(,/172/ILT.



1. Based on the same concept at low How rate the radial dispersion coefficient is the same

as the lougit.udiual dispersion coefricieut

2. From the break through curve [33] 'Webster soil; results with 2-4-D amine pesticide

Vv = Vo = 227.09cm3

~ = 6.5 for 5000p,gml-1

v = 1476.1cm3

where, V is the volume that passed through the sample, concentration recorded zero trace

of pesticide.

For 5000p,gml-1 Time taken for V to go through the sample,

1476.1
t = = 75hr

4SX0434

where t is the time taken for adsorption process to go 011 through the cube

Without any conceutratiou going beyond the porous end. for purposes of this analysis.

:1' = * = 14:~1 = 34 em -This is the length of travel of the adsorption water that

eliminated the pesticide from the sample For three dimensions. we assume the process of

adsorption moved the same distance, J; = 34C:TI7.y = 34ern , Z = 34('7)).

From equation, (3.2.16)

R (cn) [ PU!"N(CTI )N-l]. /i,j,k = 1 + (j \ i,j,h '

[
1.343X 462XO 7 (Cn. X -6) _0.3]

1+ 0 0 'l]k 10 ,.S 7"

= 1 + 540.5154(C;',."ro:1. (this converts micrograms automatically to Grams).

From table 5.2. N = 0.7. K = 4.62. () = 0.507(Calculated).

And for very low flow, the hydrodynamic dispersion coefficient is the same,
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From equation (4.3.4).

ec a2c sc a2c a2c
R(C) -at = D"~a 2 - 7);"-a+ D!J~a2 + Dz~a2'

:1" T ?J 2

relevant parameters ctre available,

1. Hydrodynamic dispersion coefficient is the same for 3D for flows with laminar flow

with Reynolds number less than 2300.

Reynold number Re = 2.58X 10-4 ::; 2300

(Qi23 degrees Celsius,

2. The dispersion coefficient D in laminar flows is the same in all dimensions,

3. The properties of the soil sample remain the same ill 3D. i.e .. Reynolds number, Peclet

number. porosity, void ration. grail! distribution and Permeability.

5.2 Courant-Friedrich-Levy Condition

This is a necessary condition for convergence while solving certain partial differential equa-

tions numerically in mathematics. We use it. t.o dctcnuinc the time step and fractional

steps.
lli1t

CFL= - < 1i1x -

0.434i1t
---::; 1

11

For the purpose of this calculations. i1t = Ihr. and h = 0.40rm.

Below find list of parameters for calculations of Pesticides flow in a porous media

SAMPLE 1
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Table 5.3: List of parameters for calculations of Pesticides

!Jtj!Jx

6.25

Co,o.o

sooo fL.9T1 d - I

2.5

Tx 6.25

625

T.'Z

C' Dy,,"'ll d D' 0,,, r,
j = R(C" ) all" k = ( )...,.k R C';~j,h

Stage 1; Implicit. ill x direction, explicit ill (y. z) directions. equation. (4.0.iS).

(
1 , 1 ') C,n+~ ( ') C,n+~ (1 I3' 1 ') Crt+~- 4I3; + 2A; i-1.j.k + 1 + A; i,j,k + 4 ; - 2Aii+I,},1,

(1 4' 1B') c: C' c: D' Cn
= 2" i + 4 i 'i-1,j,k + )i,j-1," + ki,j,k-J

(1 1)+ (1 - A; - 2C; - 2D~) C::jk + 2A; - 4B; C;~l,J,"

C" c: D' C'" TI··· 1 f f . (4 0 (\)+ ) i.j+l.k + I,; ;,j,HI· us IS III tie orm 0 equatiou .. ::J

'fn+~ n+~, .•T/+~_
a'lil,;e_1.·," +bIJI,;C '" + <-I.)./,;C·+I i.k - dIJk'. , 7 ,j," ,7,}," 7 ,},. , ,

Stage 2; Implicit ill y direction, explicit ill (x, z) directions, equation. (4.0.10),

_ Cj Cn+~ (1 C') Cn+~ _ Cj Cn+~ =.~ 4'Cn+~ ~I3'Cn+~
2 L)-I,k + + J 1.},k 2 7,j+ I,k 2"·/ ,-I,j,1t + 4 1 1-1,.1.k

1 1 C'4' cn B' C7
1 } C', D' C71+2" t I-I,),k + 4 .; /i-1,),1.: + 2 /i.j-l,k + k /·i.j,k-1
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(

I .+1
14/Cn+:J 1 A'en _ !]]ICfI

~.+ 2' ii+I,j," + 2 ; ;+1.).1.: 4 1 1+1,.I,k

+D~C;:Ik+l

1 ]]'C" + c; en4 .; 1+1.).k 2 ;,)+1,1.: )
This translates to the form of equation. (4.0.11).

CI/+~ I C"+~ CI/+~
0,;,.7," -';";-1." + 1;,.7." '-;',),k + (;;..7," ';,j+l.k = rL;.J,Ie.

Step 3; Iiuplicit ill z dircctiou. explicit. ill (x. y) direction. equation. (4.0.12).

_ D;, co+l (1 D') c=: _ D~Cn+1
2 1,},"-1 + + I.:i.)," 2 1,),k+l

(

1 1 n+ ~ 1 1 nil n+ ~ 1 1 '(I C' n+ ~ )2A;C;_l.j,1.: + 4E;C;-1,],Ie + 4E;C;-I,],k + 2A;C;-1,j,k + -tC;j-l.k

Cj C1T/ D;,: C'I'n
+""2;,j-l,1.: + 2" ;,),1.:-1

(
n I fI+-1 I n I I/+~ n. I n )+ C;,.I,I.: - AiC;.),k - A;Ci,j,k - C,Ci,),,, - CCi,I" - D"Ci,},k

This translates to, equation,

(5.2.1)
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Table 5.4: Second list of calculation Parameter for ten steps

br,j,I.: Cr,j,A: dr,jIJI.g 0,; . ./,1.: bi,.J,!;: Ci,.J,I;: di,.J.I.:p,[) o,;,j,i,' hi,j.!,' Ci,.JJ( di.j.!,

0 10126' - 4933288 0 10126' - 4933.4' 0 10126' - 4935

0.0000' 5 0.00631 0.0063

- 10125' - 4866.713 - 10125 - 4866.8C - 10125 - 4867.

0.0125< 5 O.OOOO~5 00062E 5 0006285 00062£ 0.0062c

- 10125:;: - 4799.835 J- 10125' - 4801.0~ - 10125L - 4801

0.0124S5 0.0000l3 0.0062E 0.00626 00062( 0.0062E

- 10124' o.ooooe 04732.757 p- 10124' - 4733.6 - 10124' - 4734.

0.0124:;: 000621 0.00621 0.00621 0.0062

- 10123" o.ooooe 4664.011 - 10123" - 4666.6" - 10123" - 4667.

0.0123E8 0.0006 9 (1.00619 0.006H 0.006H

- 10123~ 0.0000l 4598.940 ~- 10123 - 45996( - 10123 - 4599

0.0123 3 0.0061~ 5 0.006155 0006H 0.006H

- 10122( o.ooooe 4531821 - 10122( - 4533.0] - 10122( - 4533

00122( 0.0061. 0.00613 0.0061: 0.0061..:

- 10122 n.onoor 4464.818 - 10122 - 44653' - 10122 - 4466.

0.0122( 9 0.006115 0.006105 00061 00061

- 10121~ o.ooooe 4397.836 - 10121, - 43982~ - 10121~ - 4399.

0.0121[3 0.0060 5 0006075 00060~ 0.0060E

- 10121 00000 4330. 11 - 10120c - 43315E - 10120~ - 4:333

0.0121C 0.006045 0.006045 0.0()6()." ().006()~

From equation (43.3) to (4.0.18)

C . 1~~z==·

This is a forward sweep. Tile solution is obtai ned by back substitution:
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Table 5.5: Output of flow of tell steps ill 3D

'it'A «: NO t./Hrs. Cn Retardation n+~
Xi, Yj,.?: i,j,k Ci-l.j.k'

.+2

III constant c". :3
'".1-1,"

p.gm.I-1 R(C;:J,I.,) CII
+

1 /. "i,j,l'-1

".gm./-1

0 - 0 0 5000 429872

0.4 0 4871.806 1 1 4933 43.1575 4871.806

- 4871936 4902265

0.006231 4874.337 4904665

-

0.006231

0.8 0 4867.420 ~2 2 4866 433308 4867.4209

- 4837280 4867084

0.006207 4867.214

- 4837.528

0.006212

1.2 0 4800.637 3 3 4799 43.5072 4800637

- 4771934~ 480Ui72

0.006183 4771947 4801.219

-

0.006183

1.6 0 4733581 4 4 4732 43.6869 4733.581

- 4704.870 4733.495

0.0061:34 4705.677 4734.299

-

0.006134
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,t<;,1f,k d;.j.k NO t/Hrs Cf'j/; Retardation n+~
:C'i,Y.i· .0 , , Ci-1.j.,,·

In constant Cn+~
"',j-U'

1.19In1-1 R(CF.i,lJ C",+1 /
·i.j,h-J

j.19ml-1

0 - 0 0 ,)000 429872

2.0 0 4664.839 ~,) ,) 4665 438700 4664839~

4665.105S

- 4638.766 4666.127

0.006115

- 4638.707

000611,)

2.4 0 4,)99.700 6 6 4,)98 44.0,)64 4,)99.700)J'

- 4572.017 4599.578

0.006080 4572.078 4599.667

-

0.006080

2.8 0 4532.640 7 7 4,)31 44.2464 4,)32640

- 4506.128 4532.765

0.006056 4506.562 4533.600

-

00060,)6

3.2 0 446,).620 8 8 4464 44.4401 446').620t?

- 4438.6:34 4465.162

0006031 4438.014 446-L66

-

0.006036

3.6 0 4398.,)11 9 9 4397 446376 4398.,)11

- 4372.4')2 4:398.4,)1

0.006002 4373.519 4399.93

-

0.00601

4.0 0 4330.891 10 10 4334 448391 4330891

- 4306.260 4331.581

0.005973 4307.911 4333.264

-

000,)978
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5.3 Discussion

1. The equation derived for calculation of How of pesticides in a porous media is ideal for

estimation of the movement of solute in the subsurface environment in 3D Ior steady state

flow. The other parameters not considered are decay. chemical reactions with the solute

in ground environment and biological decomposition of organic pesticides. These are ideal

fodder for further advancement of the equation. Unsaturated flows are not considered in this

derivation.

2. Solving the equation using Crank-Nicolson method gives the best accuracy and it is uncon-

ditionally stable, however. the matrix generated by this method is expensive to solve thus

making it unsuitable for use. Douglas-and Gunn method is ideal for use in solving this

equation because it generates a matrix which is easily solved by Thoiuas algorithm as call

be seen in the thesis an alysi» of the matrix above.

3. Manual computation of this matrix is cumbersome. There is need for programming data so

that computer generates results fast and effectively.

4. The applications and results arc based on an experiment carried out in United State of

America on adsorption and movements of selected pesticides at high concentration in Soils.

[33]. This experirnent was run for ID flow, however, in our study we used these parameters

to apply to our 3D equation because at low flow rate the radial dispersion coefficient is the

same as longitudinal dispersion coefficient. \iVith the available values of dispersion coefficient

of both radial and longitudinal. 3D outputs are assured.

5. Examining the ten steps of calculating flow of pesticides in x, y, and z direction as shown

in the last table 5, the values of flow of pesticides in all the three dimensions are almost

the same when the flow is laminar. Its evident from the results that the application to

3D was realistic. For turuuleut How we would have different dispersive constant thus yield

conspicuous variation in both radial and longitudinal flows of pesticides
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Chapter 6

Conclusion and Recommendations

6.1 Conclusion

The theoretical output figures prove that the equations are correct representation of anticipated

flow pattern of the pesticide in the porous media. The flow figures show progressive reduction of

the adsorbent as the path distance increases up to insignificant quantity. It is evident that from the

calculations, the amount of pesticides flow in all three directions is always the same when the flow

is laminar. With the declining quantities of the adsorbent with time and distance, the suitability

of the equation is confirmed. Finally, it can be indicated here that the equation is suitable for all

pesticides flow and adsorption in porous media under steady state flow condition as long as all

parameters governing the flow are determined.

6.2 Recommendations

More experiments of adsorption are required for 3D to provide comparative analysis and output

so as to establish the suitability of this method on different samples. It is worth noting that the

output can be further fine-tuned through computer programming of the equation for calculation.

This is likely to give conspicuous How of information of adsorption of pesticides in a porous media.

More experiments may give different results if we increased the flow to almost turbulent level.

Migration of pesticides experience different rainfalls at the disposal point thus necessitating varied

examinations. Further analysis is necessary for different dispersion constants because the migration

from the disposal sites doesn't always depend on laminar How. At times we have storms which

trigger turbulent flow therefore that creatiug varied dispersion constants.
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