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ABSTRACT 

Inflation is a period of an accelerated expansion of the universe. Cosmological perturbations are 

created by the amplification of quantum vacuum fluctuations of matter and metric perturbations 

during inflation. The equation of dynamics governing the evolution of cosmological 

perturbations within the cosmological model in a single field inflationary scenario takes the form 

of a standard non-linear second-order differential equation, whose exact analytical solution has 

not been obtained to date. The various methods of approximation that have been used in solving 

this equation of dynamics have varied limitations that include: inadequate error control; 

difficulty in improving the accuracy beyond the leading order (are not systematically 

extendable); complicated/tedious mathematical formulations; and series expansions that may be 

also divergent at some order. This study provides a systematically extendable method of 

approximation for the study of single field cosmological perturbations during inflation, which 

removes the divergence in the Wentzel-Kramers-Brillouin (WKB) approximation, based on a 

factorization and boost transformation procedures up to zeroth-order. The equation of dynamic is 

factorized and then converted into a matrix equation with its corresponding Hamiltonian. By 

using appropriately defined boost transformation operator, the resultant matrix equation 

undergoes successive boost transformations along suitable axes to new dynamical frames of high 

accuracy levels, characterized by an approximation parameter that becomes smaller with 

increasing number of boost transformations and is safely neglected at the highest level of 

approximation (accuracy). Diagonalization of the boost frame Hamiltonian leads to a simple 

analytical solution of the boost frame matrix equation through direct integration, and once the 

time evolution operator in the form obtained through the diagonalization procedure, is used into 

the analytical solution obtained, the desired general solution of the equation of dynamics 

governing the evolution of cosmological perturbations in single field inflationary scenario follow 

easily up to 𝑛𝑡𝑕 −order.The zeroth-order derivative of the approximation parameter produces an 

expression that is more exact and similar to the standard WKB approximation parameter 𝑄, 

though with different co-efficient. Each order of approximation provides an amplitude-

modulated “plane” mode function specified by a renormalized time-dependent frequency, that 

facilitates exact evaluation of the phase accumulation integral for various forms of the potential 

𝑈. The zeroth-order solution is exactly the leading order/first- order standard WKB solution, and 

takes exactly the same form of the assumed solution (ansatz) in the standard WKB 

approximation. Furthermore, it does not require any matching condition about any particular 

point, that is to say, a turning point as outlined in the results for the WKB mode function and 

therefore the issue of divergence at a turning point as encountered in the WKB approximation 

does not arise in the approximation procedure developed in this study. This goes a long way to 

improving the understanding of inflationary perturbations. The general expressions for the 

zeroth-order power spectrum constitute the main results of this study. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

The inflationary cosmological perturbation is most likely the most important matter perturbation, 

since there is evidence that it causes both the Cosmic Microwave Background (CMB) 

temperature fluctuations and structure formation in the universe. Recent observations of the relic 

photons created when the universe was hot and dense, which do survive today with a much lower 

temperature since their wavelength is increased due to the expansion of the universe (inflation), 

[1] and of galaxy distribution in real and red shift space (light emitted from a far away galaxy 

needs more time to reach us than light from a galaxy in our local group; and as a result, the far 

away galaxy is observed in a much earlier stage of its life than the nearby one), have 

dramatically improved our knowledge of the large-scale structure of the universe. Results from 

these observations have been largely consistent with the inflationary paradigm of cosmology and 

none of them would have been possible unless the celestial objects were emitting light, [2]. 

Cosmology describes the structure and evolution of the universe on the largest scales. Modern 

models of the Universe, including the Hot Big Bang [5] are based on an important assumption, 

namely, the Cosmological Principle, which states that; the Universe is, on the largest scales, 

nearly perfectly isotropic and homogenous. In the framework of General Relativity, a universe 

that is both isotropic and homogenous is described by the Friedman-Lemaitre-Robertson-Walker 

metric 

𝑑𝑠2 = 𝑑𝑡2 − 𝑎 𝑡 2  
𝑑𝑟2

1−𝑘𝑟2
+ 𝑟2 𝑑Ɵ2 + 𝑠𝑖𝑛2Ɵ𝑑φ2                                 (1) 
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where 𝑎 𝑡  is the scale factor of the Friedman-Lemaitre-Robertson-Walker metric [3], and 

𝑘 =  −1, 0, 1, is the curvature signature. All three models are without boundary; the positively 

curved model is finite and “curves” back on itself; the negatively curved and flat models are 

infinite in extent. The coordinates 𝑟, 𝜃 and 𝜑, are referred to as commoving coordinates [3] 

Inflation predicts a spectrum of metric perturbations in the scalar (density) and tensor 

(gravitational wave) sectors, the vector component being naturally suppressed [4] and are 

determined on this background by the two functions respectively denoted as µ = µ𝑆 = −2ƶ𝑆𝜁, 

where 𝜁 is the Bardeen‟s hyper surface-independent quantity [19] or µ𝑆 = 𝑎𝑄 (𝑄 is the 

Mukhanov variable) [9], and µ =  µ𝑇 =  Ƶ𝑇𝑕 = 𝑎𝑕 where h is the amplitude of gravitational 

waves, which satisfy a one-dimensional Schrödinger-like equation [6] 

 
𝑑2

𝑑𝜂2 + ѡ2(𝑘, 𝜂) µ(𝜂) = 0.                                      (2) 

The effective time dependent frequency is given by the general expression, 

ѡ2 𝑘, 𝜂 = 𝑘2 − 𝑈 𝜂 = 𝑘2 −
Ƶ′′

Ƶ
        ,                                                    (3) 

where k is the wave number (primes denote derivative with respect to conformal time 𝜂) and   

Ƶ𝑆 = 𝑎 2 −
𝑎𝑎 ′′

𝑎 ′ 2  ,          (4a) 

for scalar (density perturbations), and 

 Ƶ𝑇 = 𝑎 ,           (4b) 

for tensor (gravitational wave perturbations). Equation (2) is the equation governing the 

evolution of cosmological perturbations in a single field inflationary scenario, and its physical 



3 
 

interpretation is parametric amplification of perturbations during inflation. The perturbations are 

generated due to the amplification of quantum vacuum fluctuations by the dynamics of the 

background space-time, and the scale factor plays the role of a „pump‟ field and the „interaction‟ 

between the background and the perturbations is described by the potential 𝑈 𝜂  [4]. 

The mode function µ(𝜂) in equation (2) is a quantity of interest because the power spectra of 

density perturbations and gravitational waves, which are observables, directly involve them. 

Equation (2) for the mode functions µ 𝜂  must be solved together with the condition that the 

modes are initially plane waves for wavelengths much shorter than the Hubble radius [7]. 

  µ𝑠,𝑇 𝜂 k

aH
→∞

lim =  ±
 8𝜋

𝑚𝑝𝑙

𝑒−𝑖(𝜂−𝜂𝑖)

 2𝑘
 ,            (5) 

where 𝜂𝑖  is an arbitrary time at the beginning of the inflation and 𝑚𝑝𝑙  is the Planck‟s mass. This 

initial condition corresponds to the fact that, initially the modes are sub horizon and therefore do 

not feel the curvature of space-time. As a consequence, they are described by plane waves. If the 

initial quantum state is the vacuum state, then the statistical properties of the perturbations are 

entirely characterized by the two-point correlation function, that is to say, the power spectrum. 

The dimensionless power spectra for scalar and tensor fluctuations are governed by [6] 

𝑃𝜁 𝑘 =  
𝑘3

8𝜋2
 

µ𝑆

Ƶ𝑆
 

2

 ; 𝑃𝑕(𝑘) =  
2𝑘3

𝜋2
 

µ𝑇

Ƶ𝑇
 

2

.           (6) 

The spectral indices and their running‟s are defined by the co-efficient of Taylor expansions of 

the power spectra with respect to ln 𝑘, evaluated at an arbitrary pivot scale 𝑘∗ given by 

𝑛𝑆 − 1 =
𝑑𝑙𝑛 𝑃𝜁

𝑑𝑙𝑛𝑘
|𝑘=𝑘∗

 ; 𝑛𝑇 =
𝑑𝑙𝑛 𝑃𝑕

𝑑𝑙𝑛𝑘
|𝑘=𝑘∗

.                          (7) 

The two following expressions define the “running” of these indices, 
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∝𝑆=
𝑑2𝑙𝑛𝑃𝜁

𝑑 𝑙𝑛𝑘  2 |
𝑘=𝑘∗

      ;     ∝𝑇=
𝑑2 𝑙𝑛𝑃𝑕

𝑑 𝑙𝑛𝑘  2 |
𝑘=𝑘∗

.              (8) 

In order to calculate the perturbation spectra for these quantum vacuum fluctuations, three steps 

are necessary: the dynamics of the background space-time must be determined; the mode 

equations for scalar and tensor perturbations must be solved; and finally the power spectra 

themselves must be calculated as functions of a wave number 𝑘 [1]. The power spectra is a 

variable that quantifies the variance of the perturbations as a function of the commoving 

wavenumber 𝑘. As for its physical importance, the scalar and tensor perturbations of inflation are 

the contact between theory and observation. According to [20], by confronting theoretical 

predictions with observations, cosmologists aim to reduce the number of viable inflation theories 

or even pin down the correct model which will ultimately test Ultra-high energy Physics beyond 

reach of any earth-bound accelerator. The equations governing the evolution of scalar and tensor 

perturbations in single field inflationary models can be solved numerically, so that comparison 

with available or future data will tell us which models satisfactorily represent the time evolution 

of the Universe. Since exact solutions are not available for cosmological perturbations in general 

inflationary models (except for the case of an exponential potential), approximation methods are 

welcome [15]. 
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1.2 Statement of the problem 

Traditionally the method of choice for inflationary cosmology is the slow-roll approximation 

subject to an infinite number of convergence conditions, or on numerical integration. Recently, 

semi-classical methods such as: the WKB approximation method; the phase integral method; and 

the method of uniform approximation have been applied. The various methods of approximation 

that have been used in solving the equations governing the evolution of scalar and tensor 

perturbations in single field inflationary cosmological perturbations have varied limitations that 

include: inadequate error control; difficulty in improving the accuracy beyond the leading order 

(are not systematically extendable); complicated/tedious mathematical formulations; and series 

expansions that may be also divergent at some order. Therefore, a method of approximation for 

inflationary cosmology that is able to improve on any of the limitations is necessary.  

1.3 Objectives of the study  

The objectives of the study are: 

1. Develop a systematic method of approximation for the study of cosmological 

perturbations during inflation, characterized by an approximation parameter which 

becomes progressively smaller with increasing number of successive boost 

transformation. 

2. Compute approximate expressions for the power spectra of scalar (density) perturbations 

and tensor (gravitational wave) perturbations in a single field inflationary scenario, and 

compare the results obtained with the Wentzel-Kramers-Brillouin (WKB) approximation 

results. 
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1.4 Justification of the study 

The study provides a method of approximation for the study of cosmological perturbations 

during inflation. The procedure does not make restrictive assumptions, is systematically 

extendable, and is valid for any form of the potential 𝑈 𝜂 . This allows for the determination of 

the spectra beyond the leading order.  

1.5 Significance of the Study  

The study has provided a way of removing the divergence at the turning point in the WKB 

approximation procedure, by applying an approximation method that is normally used in 

quantum mechanics to the study of cosmological perturbations during inflation. This will go a 

long way in improving not only the understanding of inflationary cosmology but also of quantum 

mechanics. 

1.6 Limitations of the study   

The limitations of this study include; 

1. The study only focuses on single inflation field models and not to other models such as 

the multiple field models, nontrivial potentials model etc. 

2. Apart from the standard slow-roll approximation, other approximation schemes carried 

out in previous studies allow determination of the spectra beyond leading order and are 

subject to different limitations. Comparison of results obtained from the approach 

developed in this thesis is only limited to the results obtained from the study of 

cosmological perturbations during inflation through the Wentzel-Kramers-Brillouin 

(WKB) approximation.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1. Cosmic Evolution 

One of the most crucial questions asked by scientists and philosophers since ancient Greece is 

whether the Universe is finite, and if so whether it is of constant size. Infact, Freidman found that 

according to General Relativity the Universe should either be expanding or contracting [10]. The 

first observational evidence of the time evolution of the universe was the discovery made by E. 

Hubble in 1929, that all galaxies observed today move away from our own galaxy with a 

velocity 𝑣 proportional to their distance 𝑑𝑙 , (𝑣 = 𝐻𝑑𝑙). This is commonly known as the 

Hubble‟s law. Given the cosmological principal, this discovery leads to the idea that the 

Universe is expanding with time. One can think of a Universe filled with galaxies and clusters of 

galaxies that do not expand themselves because of the gravitational attraction, but which recede 

from one another because of the expansion of the Universe. Extrapolating back in time, one 

discovers a Universe that was smaller and more dense. Extrapolating even further back in time, 

one reaches a singularity where all the matter in the Universe was concentrated at a point at time 

𝑡 = 0. This is called the Big Bang. The standard Big Bang theory assumes that the Universe 

today emerged from such a singularity, and initially rapidly expanded as an extremely hot and 

dense system which was made up from matter and radiation [5]. From there on, the evolution of 

the Universe is governed by laws of Physics at high energies. The expansion rate is gradually 

decreasing as time goes on, the energy, temperature, and the density of the Universe decrease. 

In the early stages of the Big Bang, most of the energy was in the form of radiation, and that 

radiation was the dominant influence in the expansion of the universe. Later with cooling from 
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the expansion, the roles of matter and radiation changed and the universe entered a matter-

dominated era. Recently, results suggest that we have directly entered an era dominated by dark-

energy [8]. 

The evolution of the universe depends on the single function (the scale factor 𝑎(𝑡) of the 

Universe), whose form is dictated by the matter content of the universe through the Einstein‟s 

field equation [2] 

𝐺µ𝜈 ≡ 𝑅µ𝜈 −
1

2
𝑅𝑔µ𝜈 = 8𝜋𝐺𝑇µ𝜈  .                    (9a) 

Here, 𝐺µ𝜈  is the Einstein‟s tensor, 𝑔µ𝜈  is the metric of the manifold in which the equations apply, 

µ𝛼  is the macroscopic speed of the medium, 𝑅µ𝜈  is the Ricci tensor and R is the Ricci Scalar 

𝑅µ𝜈 ≡ ᴦµ𝜈,𝛼
𝛼 − ᴦµ𝛼,𝜈

𝛼 + ᴦ𝛽𝛼
𝛼 ᴦµ𝜈

𝛽
− ᴦ𝛽𝜈

𝛼 ᴦµ𝛼
𝛽

         ;         𝑅 ≡ 𝑔µ𝜈𝑅µ𝜈  ,                              

(9b) 

where  

ᴦ𝛼𝛽
µ

≡
𝑔µ 𝜈

2
 𝑔𝛼𝜈 ,𝛽 + 𝑔𝛽𝜈 ,𝛼 − 𝑔𝛼𝛽 ,𝜈  ,              (9c) 

are the Christofell symbols, 𝑇µ𝜈  is the energy-momentum tensor and G is the Universal 

gravitation constant. The energy-momentum tensor incorporates matter into the Einstein 

equations, and the form given here is true for a perfect fluid [9]. 

The evolution of the scale factor 𝑎(𝑡) follows from the Einstein‟s field equations. The (0,0) 

component of the Einstein‟s equation gives [2] 

𝐻2 =  
𝑎 

𝑎
 

2

=
8𝜋𝐺

3
𝜌 −

𝑘

𝑎2 ,              (10) 
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where 

𝐻 =
𝑎 

𝑎
=

ℋ

𝑎
                ;             ℋ =

𝑎 ′

𝑎
 ,            (11) 

is the Hubble parameter and ℋ, is the Hubble rate, a dot meaning derivative with respect to 

cosmic time 
𝑑𝑡

𝑑𝜂
= 𝑎(𝜂) while a prime stands for a derivative with respect to conformal time. 

Differentiating equation (10) with respect to time, and using the mass conservation equation, 

  𝜌 +  3𝐻 𝜌 + 𝑝 = 0 ,          (12) 

we find 

𝐻 +  𝐻2 =
𝑎 

𝑎
= −

4𝜋𝐺

3
 𝜌 + 3𝑝 ,        (13) 

where ρ and 𝑝 are the proper energy density and pressure in the fluid rest frame.  

The two quantities 𝑝 and ρ are linked by the equation of state, 𝑝 =  ѡ(ρ), with a constant ѡ. For 

the different values of ѡ = 0,
1

3
, and −1, we get the equations of state of matter, radiation, and 

vacuum energy respectively [2]. 

Equations (10) and (13) are the Friedman equations and are fundamental in studies of 

cosmology, and are used to derive the behaviour of the scale factor for different eras of the 

Universe, through the cosmological pressure and density of each era. Equation (10) relates the 

curvature 𝑘 of the universe to the expansion rate 
𝑎 

𝑎
 and the density ρ, while equation (13), relates 

the acceleration 
𝑎 

𝑎
 to the density plus three times the pressure 𝑝. The Friedman equations together 
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with the equation of state form a complete system of equations that determine the unknown 

functions 𝑎(𝑡) and 𝜌(𝑡).  

2.2. Inflation 

Differentiating the Freidman equation for a flat universe obtained on using  𝑘 = 0 in equation 

(10) with respect to time, and replacing 𝜌  according to the energy conservation equation in 

equation (12), we obtain 

𝑎 = − 
8𝜋𝐺

3

𝑎 

2𝜌
1
2

 𝜌 + 3𝑝 .          (14) 

As long as the universe is expanding 𝑎  is positive. So, the equation for accelerated expansion is 

simply  

𝜌 + 3𝑝 < 0.            (15) 

From equation (13) and equation (14), one sees that any form of matter such that  𝜌 + 3𝑝 < 0  

will cause an acceleration of the scale factor (exponential growth/decay). This is only true, of 

course, if the matter component satisfying  𝜌 + 3𝑝 < 0 is the dominant one [9]. The energy 

density is always positive but, in some situations, the pressure can be negative (negative pressure 

produces a repulsive form of gravity, because it leads to an acceleration of the scale factor 𝑎, if 

the pressure term 3𝑝 dominates over the energy density 𝜌) and the inequality 𝜌 + 3𝑝 < 0 may be 

realized. This simple remark is at the heart of the inflationary scenario. If the strong energy 

dominance condition,  𝜌 + 3𝑝 > 0, is satisfied, then from equation (13) and equation (14), we 

see that 𝑎 < 0 and gravity decelerates the expansion (form points to oscillatory behaviour with 
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time varying frequency).  Therefore, for an accelerated expansion, the strong energy dominance 

condition must be violated. 

The possibility of an early exponential expansion was first noticed by Starobinsky in 1979-1980 

[11], but at first it attracted little attention. It was Guth in 1981 [12], who noted that an 

inflationary period could solve the flatness and the horizon problems. In the model proposed by 

Guth, known as old inflation, a scalar field is trapped at the origin in a local minimum of its 

potential and hence the universe is dominated by the field‟s vacuum energy. Inflation ends when 

the field tunnels through the barrier and descends quickly to the minimum of the potential. 

However, this model could not provide sufficient reheating and it was soon abandoned. 

In 1982, A. D Linde and Albrecht Steinhardt [18], proposed the new inflation model. Assuming 

a phase transition, the inflation is initially situated on a maximum of its potential at the origin. 

The field starts slowly rolling down the rather flat potential. Inflation ends when it reaches its 

minimum and starts oscillating around it, reheating the universe. Although this type of potential 

was abandoned due to observational constraints, new inflation first introduced the concept of 

slow-roll inflation. 

Later on, chaotic inflation was proposed, during which the field rolls down the origin in a 

𝜙2  𝑜𝑟 𝜙4 potential [13]. Its name derives from the chaotic initial conditions that are used to 

explain the needed large initial value of the field. During chaotic inflation the fields magnitude is 

of the order of the Planck‟s mass 𝑚𝑝𝑙 , and hence it is not easy to make connection with particle 

theories. However, because of their simplicity, monomial models became the favoured 

paradigms of inflation. Many models have been built since then; among these we distinguish 

single scalar field inflationary models. 
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2.3. The cosmological scale factor 

The universe is understood to have evolved through various epochs, with each epoch named after 

the component that has a dominant contribution to the total energy density. The relative 

expansion of the universe is parametrized by the dimensionless scale factor 𝑎(𝑡), [12].  

According to [8], in the early stages of the Big Bang, most of the energy was in the form of 

radiation, and that radiation was the dominant influence in the expansion of the universe. Later, 

with cooling from the expansion the roles of matter and radiation changed and the universe 

entered a matter-dominated era. Recently, results suggest that we have directly entered an era 

dominated by dark energy. The scale factor is obtained by solving the Freidman equations. For a 

spatially flat universe, 𝑘 = 0 and the solution for the scale factor is [8] 

                                                            𝑎 𝑡 = 𝑎𝑜𝑡
2

3 𝜔 +1   ,       (16a) 

where 𝑎𝑜  is some integration constant to be fixed by the choice of the initial conditions and 𝑡 is 

the physical time, 𝑑𝑡 = 𝑎 𝑡 𝑑𝑟 . This family of solutions labelled 𝜔  in equation (16a) is 

extremely important for cosmology [8], for = 0,
1

3
, and −1 , we get the scale for matter, radiation 

and vacuum energy dominated universe respectively. 

In commoving coordinates 𝜂 is the conformal time defined as 

𝑑𝜂 =
𝑑𝑡

𝑎 𝑡 
                ⟹               𝜂 =  

𝑑𝑡

𝑎 𝑡 
  .        (16b) 

The conformal time can be expressed as a function of the scale factor; for the universe with 

radiation component  



13 
 

𝑎 𝑡 ~𝑡
1

2     ⟹     𝑎(𝜂)~𝜂 ,       (16c) 

while for non-relativistic matter  

𝑎 𝑡 ~𝑡
2

3     ⟹     𝑎(𝜂)~𝜂2 .       (16d) 

2.4. Single scalar field inflation 

During inflation the pressure should be negative and smaller than −
𝜌

3
.  A. Liddle and D. H Guth 

[12] noted that a cosmological constant Ʌ could do the job since it has 𝑝 = −𝜌. During a fully 

Ʌ-dominated stage, the Hubble parameter remains constant: one has a De Sitter (exponential) 

inflation. The problem is that a cosmological constant never decays, so the inflation will be 

indefinite. If we want inflation to end, “something must happen”, so there must be an arrow of 

time. Therefore, the type of matter responsible for inflation cannot be exactly in equilibrium. 

The simplest model for a successful inflation compatible with the symmetries of the Friedman-

Lemaitre-Robertson-Walker metric is to consider models where inflation was caused by the 

dynamics of a scalar field (called the inflaton) in a relatively featureless potential, evolving in an 

effectively friction-dominated “slow-roll” regime, and described by the corresponding 

Langrangian  

𝑆 =  𝑑4𝑥  −𝑔  
1

2
𝑔µ𝑣Әµ𝜑𝑜Ә𝑣𝜑𝑜 +  𝑉(𝜑𝑜) ,                            (17) 

where 𝑉(𝜑𝑜) is the potential [2]. Because it is rolling, there is an arrow of time, and something 

can happen that will end inflation. But because the valley is very flat and the rolling is very slow, 

the field can be seen at any time as in an “instantaneous vacuum state” sharing almost the 
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properties of a true vacuum state: in particular, the energy of the field is diluted very slowly, and 

the pressure is very close to −𝜌. 

In order to have a successful inflationary phase, the Langrangian in equation (17) must satisfy 

some constraints. The stress-energy tensor can be written as 

𝑇µ𝑣 = Әµ𝜑𝑜Ә𝑣𝜑𝑜 − 𝑔µ𝑣  
1

2
𝑔𝛼𝛽 Ә𝛼𝜑𝑜Ә𝛽𝜑𝑜 +  𝑉(𝜑𝑜) .        (18) 

From this expression, one sees that the scalar field can also be viewed as a perfect fluid. The 

energy density and the pressure are defined according to, 𝑇0
0 =  −𝜌, and 𝑇𝑗

𝑖 = 𝑃 𝑗δ
𝑖
, and reads 

[16], 

𝜌 =
1

2

 𝜑𝑜
′  

2

𝑎2 +  𝑉 𝜑𝑜 ,               (19a) 

             𝑃 =
1

2

 𝜑𝑜
′  

2

𝑎2 − 𝑉 𝜑𝑜 ,                             (19b) 

where the first and second terms in equations (19a) and (19b) are the kinetic energy density and 

the potential energy density respectively.  

Substituting equation (19a) and (19b) into the condition for inflation given in equation (15), we 

find 

1

2

 𝜑𝑜
′  

2

𝑎2 +  𝑉 𝜑𝑜 +
3

2

 𝜑𝑜
′  

2

𝑎2 − 3𝑉 𝜑𝑜 < 0   ⟹ 
 𝜑𝑜

′  
2

𝑎2 < 𝑉 𝜑𝑜 .                    (20) 

Hence, during inflation, the potential energy of the inflaton dominates the kinetic energy of the 

inflaton. For the above condition to hold the potential is required to be flat enough and hence the 
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scalar field is required to slowly roll. If the potential has a minimum, the above condition can 

also predict an ending to the period of inflation [9]. 

 2.5. The WKB Approximations 

A method for predicting inflationary cosmological perturbations to first order in the adiabatic (or 

“semi-classical) expansion based on the standard WKB approximation, (named after G. Wentzel, 

H.A Kramers, and L. Brillouin) was presented by [6], by first assuming a solution in form of 

WKB ansatz µ𝑊𝐾𝐵   given by  

µ𝑊𝐾𝐵 𝑘, 𝜂 =
1

 𝜔(𝑘,𝜂)
𝑒±𝑖  𝜔 𝑘,𝜏 𝑑𝜏

𝜂

,                         (21) 

representing the leading order term of the semi-classical expansion. Substituting  µ = µ𝑊𝐾𝐵  from 

equation (21) into equation (2) provides a differential equation 

µ𝑊𝐾𝐵
′′  𝑘, 𝜂 + 𝜔2 𝑘, 𝜂  1 −

𝑄 𝑘,𝜂 

𝜔2 𝑘,𝜂 
 µ𝑊𝐾𝐵 𝑘, 𝜂 = 0,                           (22) 

which differs from equation (2) by the term  𝑄µ𝑊𝐾𝐵  where the quantity 𝑄 𝑘, 𝜂  is obtained as 

𝑄 𝑘, 𝜂 =  
3

4

 𝜔 ′  
2

𝜔2 −
𝜔 ′′

2𝜔
,          (23) 

depending on the time dependent frequency 𝜔(𝑘, 𝜂). 

Comparing equations (2) and (22), it is concluded that the WKB mode function µ𝑊𝐾𝐵  is a good 

approximation of the actual mode function µ, if the following condition is satisfied, 

∆ ≔   
𝑄

𝜔2
 ≪ 1  ⟹ 1 −

𝑄

𝜔2
≃ 1,         (24) 
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and therefore 

 µ𝑊𝐾𝐵
′′  𝑘, 𝜂 + 𝜔2µ𝑊𝐾𝐵 ≃ 0.                  (25) 

On introducing a Langer transformation [6] defined by  

𝑥 ≔ 𝑙𝑛  
𝑘

𝑎𝐻
         ,      χ ≔  1 − 𝜖1 

1

2  𝑒−
𝑥

2  µ ,                                (26) 

in order to improve the accuracy of the calculations, equation (22) is re-written in the form 

𝜒 + 𝜔 𝑥 2𝜒 = 0,                           (27) 

where the (new) frequency 𝜔(𝑥)  in general vanishes at the classical “turning point” 𝑥 = 𝑥∗ [20].  

The first-order WKB approximation of the equation 𝜒 + 𝜔 𝑥 2𝜒  in equation (27) is given by 

𝜒 ∝ 𝜔 𝑥 −
1

2𝑒𝑥𝑝 ±𝑖𝜔 𝑥 𝑥 ,       (28) 

 and is a good approximation whenever the time variation 𝜔 𝑥  over one period is negligible. 

Higher order WKB solutions include higher order derivatives of 𝜔 𝑥 . 

On sub-horizon scales (𝑥 ≫ 𝑥∗), the mode 𝜒 in equation (27) oscillates (𝜔 ≃ 𝑘), which implies 

𝑄 ≃ 0 and the standard WKB approximation can be applied without difficulty since the 

condition in equation (24) is satisfied. On super-horizon scales (𝑥 ≪ 𝑥∗), the perturbations 

exponentially decay or grow and the standard WKB approximation can again be applied. One 

then matches the two approximate solutions at 𝑥 = 𝑥∗ to obtain the super-horizon amplitudes at 

𝑥 ≪ 𝑥∗ which determine the CMB spectra. This procedure opened up the possibility of further 

improving the knowledge of the spectra by including subsequent adiabatic orders.  However, a 
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straightforward generalization to higher adiabatic orders is seriously hindered by the lack of a 

general prescription for matching the two WKB branches with sufficient accuracy due to the 

divergence of the quantity 𝑄 at the turning point. 

This problem was discussed in [20], where it was suggested to replace the standard (plane wave-

like) WKB functions with Bessel‟s functions which are able to give a good approximation at the 

turning point, whereas the standard WKB approximation require the matching with yet another 

particular solution at some (unspecified) points both to the left and to the right of the turning 

point. 

An improved WKB analysis of cosmological perturbations was then presented by [20], in order 

to study cosmological perturbations beyond the lowest order based on Bessel‟s functions that 

approximate the true perturbation modes over the complete range of the independent (Langer) 

variable, from sub-horizon scale, and include the region near the turning point by employing 

both a perturbative Green‟s function technique and an adiabatic (or “semi-classical”) expansion 

(for a linear turning point) in order to compute higher order corrections.  

The basic idea was to use approximate expressions which are valid for all the coordinate 𝑥 and 

then expand round them by considering all the solutions to equation (27) for 𝑥 > 𝑥∗ to be written 

as a linear combination of two functions as 

𝑢± 𝑥 =  
𝜉 𝑥 

𝜔 𝑥 
 𝐽±𝑚  𝜉 𝑥  ,                (29a) 

where  

𝜉 𝑥 =  𝜔(𝑦)𝑑𝑦
𝑥

𝑥∗
  ,     𝑚 =

1

𝑛+2
  ,         (29b) 

 and 𝐽𝑣 are Bessels functions. For a general frequency 𝜔, equation (29a) satisfy 
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𝑑2

𝑑𝑥2
+ ѡ2 𝑥 − 𝜍(𝑥) 𝑢± 𝑥 = 0,            (30) 

  where the quantity 

𝜍 𝑥 =
3

4

 𝜔 ′  
2

𝜔2 −
𝜔 ′′

2𝜔
+   𝑚2 −

1

4
  

ѡ2

𝜉2 = 𝑄 +  𝑚2 −
1

4
  

ѡ2

𝜉2  ,          (31) 

contains the term 𝑄 (primes denote derivatives with respect to the argument of the given 

function) as defined in equation (23), whose divergent behavior at the turning point 𝑥 = 𝑥∗was 

the possible cause of failure of the standard WKB approximation.  

For a general (finite) frequency which can be expanded in powers of 𝑥 = 𝑥∗ in the form 

𝜔2 = 𝐶 𝑥 − 𝑥∗ 
𝑛 1 +  𝑐𝑞 𝑥 − 𝑥∗ 

𝑛
𝑞≥1  ,          (32) 

it was found that the extra term in the quantity 𝜍 𝑥  as defined in equation (31) precisely 

“removed” the divergence of 𝑄 at the turning point 𝑥 = 𝑥∗, and the WKB method could 

therefore be extended to higher orders. In fact, the residue 

𝜍 𝑥 𝑥→𝑥∗
𝑙𝑖𝑚 =

3(𝑛+5)𝑐1
2

2(𝑛+4)(𝑛+6)
−

3𝑐2

𝑛+6
,                  (33) 

is finite. The finiteness of 𝜍 𝑥  at the turning point was crucial in order to extend the WKB 

method beyond the leading order.  

In the improved WKB analysis, the asymptotic expression of the mode function were obtained 

taking into account the asymptotic form of the Bessel functions 𝐽𝑣 for 𝑥 → ∞ in the form 

𝐽±𝑚  𝜉1(𝑥) ~ 
2

𝜋𝜉1(𝑥)
𝑐𝑜𝑠  𝜉1 𝑥 ∓

𝜋

2
𝑚 −

𝜋

4
 ,        (34) 

and therefore, gave general formulae for the amplitudes, the spectral indices, and the “runnings” 

of these fluctuations next-to-leading order both in the adiabatic expansion previously done by R. 

E Langer, and a new perturbative expansion which makes use of the Green‟s function technique. 
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2.6. Factorization and Boost Transformation procedures 

A procedure for obtaining progressively improving approximate solutions of the WKB (semi-

classical) model of the stationary Schrödinger equation was presented by [17]. If 𝑘2 =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, then the equation of dynamics governing the evolution of cosmological perturbations 

in single field inflationary scenario given in equation (2) is similar to the time-independent 

Schrödinger equation that is normally dealt with in quantum mechanics when reorganized to take 

the form 

 
𝑑2

𝑑𝜂2 + ѡ2 𝑘, 𝜂  µ 𝜂 = 𝑘2µ 𝜂 .         (35) 

 In his work, each order of approximation provides an amplitude modulated “plane” wave 

function specified by a renormalized momentum. A simple binomial expansion of the 

renormalized momentum allows exact evaluation of the phase accumulation integral for studying 

basic features of the dynamics in arbitrary potentials whereas for a linear potential, the 

probability density profile reveals the expected confinement of the particle within the allowed 

region. The method is more elegant compared to perturbation and other expansion methods 

which are generally tedious and the general solutions apply to all types of second-order 

differential equations similar to the Schrodinger equation, which are generally used in 

Cosmology, Mathematics, Physics, Chemistry, Biology, Economics, and other disciplines where 

such second-order processes occur. 

This study applies a factorization and successive boost transformation procedures, a method used 

in quantum mechanics in cosmology to study cosmological perturbations during inflation, and 

the results obtained are compared with those obtained through the standard WKB approximation. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Factorization  

The form of the second-order differential operator (
𝑑2

𝑑𝜂2 + ѡ2(𝑘, 𝜂)) in equation (2), which noting 

the successive operation 

 
𝑑2

𝑑𝜂2 µ =
𝑑

𝑑𝜂

𝑑

𝑑𝜂
µ =  

𝑑

𝑑𝜂
 

2

µ ,     (36a) 

re-written in the form 

𝑑2

𝑑𝜂2 + ѡ2(𝑘, 𝜂)) ≡  
𝑑

𝑑𝜂
 

2

+ ѡ2(𝑘, 𝜂) ,    (36b) 

is expressible as a difference of two squares after introducing the imaginary number 𝑖 =  −1 

according to 

𝑎2 + 𝑏2 =  𝑎2 −  𝑖𝑏 2,        (36c)                                                                               

which can be easily factorized depending on the forms of 𝑎 and 𝑏. Applying this in equation (2) 

and taking into account of the effective time-dependent frequencies given in equation (3) 

provides two alternative factorised forms 

 −𝑖
𝑑

𝑑𝜂
+ ѡ  𝑖

𝑑

𝑑𝜂
+ ѡ µ =−𝑖

𝑑ѡ

𝑑𝜂
µ ,`    (37a)                                                                                                                                                                                                                                                                                                                                                                                                                                                    

 𝑖
𝑑

𝑑𝜂
+ ѡ  −𝑖

𝑑

𝑑𝜂
+ ѡ µ =𝑖

𝑑ѡ

𝑑𝜂
µ,                (37b) 
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according to the ordering of the differential operators, noting that the term ±𝑖
𝑑

𝑑𝜂
µ, arises from 

the application of the factorized differential operator on µ to obtain the original form in equation 

(2). 

Introducing complex mode functions ɸ  and ɸ∗ defined by 

ɸ =  𝑖
𝑑

𝑑𝜂
+ ѡ µ = 𝑖

𝑑µ

𝑑𝜂
+ ѡ µ     ;       ɸ∗ =  −𝑖

𝑑

𝑑𝜂
+ ѡ µ = −𝑖

𝑑µ

𝑑𝜂
+ ѡ µ ,                       (38a) 

with  

µ =  
1

2ѡ
 ɸ + ɸ∗     ;     

𝑑µ

𝑑𝜂
=  

1

2𝑖
 ɸ − ɸ∗ ,       (38b) 

 puts equation (37a) – (37b) in the simpler first-order form 

𝑖
𝑑ɸ

𝑑𝜂
=   ѡ +

𝑖

2ѡ

𝑑ѡ

𝑑𝜂
 ɸ +  

𝑖

2ѡ

𝑑ѡ

𝑑𝜂
ɸ∗,     (39a) 

𝑖
𝑑ɸ∗

𝑑𝜂
=   −ѡ +

𝑖

2ѡ

𝑑ѡ

𝑑𝜂
 ɸ∗ +  

𝑖

2ѡ

𝑑ѡ

𝑑𝜂
ɸ.     (39b) 

Introducing reduced mode functions ɸ  and ɸ ∗ defined by 

ɸ =  ѡɸ     ;   ɸ∗ =  ѡɸ ∗     ;    µ(𝜂) =  
1

2 ѡ
 ɸ + ɸ ∗    ;    

𝑑µ

𝑑𝜂
=  

 ѡ

2𝑖
 ɸ − ɸ ∗ ,  (40a) 

with 

𝑑ɸ

𝑑𝜂
=  

1

2 ѡ

𝑑ѡ

𝑑𝜂
ɸ +  ѡ

𝑑ɸ 

𝑑𝜂
         ;    

𝑑ɸ∗

𝑑𝜂
=  

1

2 ѡ

𝑑ѡ

𝑑𝜂
ɸ ∗ +  ѡ

𝑑ɸ ∗

𝑑𝜂
  ,   (40b) 

reduces equations (39a) - (39b) to the much simpler and convenient first-order forms 
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𝑖
𝑑ɸ 

𝑑𝜂
= ѡ ɸ +  

𝑖

2ѡ

𝑑ѡ

𝑑𝜂
ɸ ∗,       (41a) 

𝑖
𝑑ɸ ∗

𝑑𝜂
=  −ѡ ɸ ∗ +

𝑖

2ѡ

𝑑ѡ

𝑑𝜂
ɸ .      (41b) 

These are coupled equations for the mode functions ɸ and ɸ∗. Equations (41a) and (41b), 

together with the definition of the effective time-dependent frequencies in equation (3), and the 

mode function µ(𝜂) in equation (40a), are the final forms of the factorized mode equation 

governing the evolution of cosmological perturbations in a single field scenario given in equation 

(2). An important point to note is that for real mode function µ(𝜂), the mode functions ɸ and ɸ∗ 

as defined in equation (38a) are complex conjugates while for complex mode function µ(𝜂), the 

mode functions ɸ and ɸ∗ would not be related by simple complex conjugation. However, 

equations (41a) - (41b) apply for real or complex mode function µ(𝜂) since they follow from the 

operator ordering in the factorization and definitions given in equation (37a) - (37b) and (38a) 

respectively. We may then adopt a general notation 

ɸ → ɸ−     ;   ɸ∗ → ɸ+     ;  ɸ → ɸ − ;  ɸ ∗  → ɸ ∗
+     

;  µ(𝜂) =  
1

2 ѡ
 ɸ − + ɸ ∗

+     
 ,    (42) 

defined according to equation (38a), applying to real µ(ɸ+ =  ɸ−
∗ ) or complex µ (ɸ+    ≠ ɸ−

∗ ). 
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3.2 The matrix form of factorization 

Equation (41a) and (41b) can be written into a matrix equation as 

𝑖
𝑑𝑋

𝑑𝜂
= 𝐻𝑋,        (43a) 

after introducing a two-component column matrix X(𝜂) defined by 

𝑋(𝜂) =   
ɸ 

ɸ ∗
  ,       (43b) 

and H is the corresponding Hamiltonian obtained as 

𝐻 =  
ѡ

𝑖

2ѡ

𝑑ѡ

𝑑𝜂

𝑖

2ѡ

𝑑ѡ

𝑑𝜂
−ѡ

 .       (43c) 

Introducing Pauli matrices 𝜍𝑥 , 𝜍𝑦 , 𝜍𝑧 , and the identity matrix 𝐼 defined by,  

𝜍𝑧 =  
1 0
0 −1

    ;  𝜍𝑥 =  
0 1
1 0

     ;     𝜍𝑦 =  
0 −𝑖
𝑖 0

    ;     𝐼 =  
1 0
0 1

  ,   (43d) 

the Hamiltonian in equation (43c) is expressed in the form 

𝐻 = ѡ𝜍𝑧 +  𝑖𝑓𝜍𝑥 ,     (43e) 

where we identify a factorization coupling parameter 𝑓(𝜂) defined by 

𝑓 𝜂 =  
1

2ѡ

𝑑ѡ

𝑑𝜂
 .     (43f) 

The time-dependence of the coefficients ѡ and 𝑓(𝜂) of the Hamiltonian H in equation (43e) does 

not allow exact analytical solution of the matrix equation (43a) through direct integration due to 

the non-commutativity of 𝜍𝑧 and 𝜍𝑥  . We therefore, need to transform the original equation of 
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dynamics in equation (43a), with Hamiltonian in equation (43e) to a dynamical frame where the 

resultant Hamiltonian H is either time-independent for an exact analytical solution or has a 

negligible approximation parameter for high accuracy approximation. 

3.3. The transformation law 

We develop the transformation law by considering that the transformation from one dynamical 

frame to another of higher accuracy level is taken one step at a time. In this respect, we consider 

the general case of a transformation from the 𝑛𝑡𝑕 -order dynamical frame characterized by the 

mode function matrix 𝑋𝑛  , Hamiltonian 𝐻𝑛 , approximation parameter 𝜎𝑛 , and transformation 

operator 𝑇𝑛  specified by arbitrary transformation parameter 𝜃𝑛 , to the  𝑛 + 1 𝑡𝑕 -order frame. 

The equation of dynamics in the 𝑛𝑡𝑕 -order dynamical frame takes the form 

𝑖
𝑑𝑋𝑛

𝑑𝜂
= 𝐻𝑛𝑋𝑛  , 𝑛 = 0,1,2, … ……                        (44a) 

Transformation to the  𝑛 + 1 𝑡𝑕 -order dynamical frame characterized by mode function 𝑋𝑛+1 

and transformation operator 𝑇𝑛+1 is defined by 

𝑋𝑛+1 = 𝑇𝑛+1𝑋𝑛   ⟹ 𝑋𝑛 = 𝑇𝑛+1
−1 𝑋𝑛+1   ;     

𝑑𝑋𝑛

𝑑𝜂
= 𝑇𝑛+1

−1 𝑑𝑋𝑛+1

𝑑𝜂
+ 𝑋𝑛+1

𝑑𝑇𝑛+1
−1

𝑑𝜂
 .               (44b) 

In general, a transformation operator 𝑇 and its inverse 𝑇−1 satisfy the condition 

  𝑇𝑇−1 =  𝑇−1𝑇 = 𝐼,       (44c) 

where 𝐼 is the identity matrix. 
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We substitute 𝑋𝑛 = 𝑇𝑛+1
−1 𝑋𝑛+1 from equation (44b) into equation (44a), multiply the result by 

𝑇𝑛+1 from the left and apply the condition (44c) to obtain the equation of dynamics in the 

 𝑛 + 1 𝑡𝑕 -order dynamical frame in the form 

𝑖
𝑑𝑋𝑛+1

𝑑𝜂
= 𝐻𝑛+1𝑋𝑛+1 , 𝑛 = 0,1,2, … … … ,           (44d) 

where the Hamiltonian 𝐻𝑛+1 is obtained as a transformation of  𝐻𝑛  according to 

𝐻𝑛+1 = 𝑇𝑛+1𝐻𝑛𝑇𝑛+1
−1 − 𝑖𝑇𝑛+1

𝑑𝑇𝑛+1
−1

𝑑𝜂
.      (44e) 

3.4. The boost frames 

According to equation (43e), the original Hamiltonian 𝐻 is non-Hermitian. We therefore 

consider that the appropriate transformation to apply is a boost along an axis normal to the plane 

of the Hamiltonian. The zeroth-order dynamical frame Hamiltonian 𝐻𝑜 = 𝐻 given in equation 

(43e) is expressed as  

𝐻𝑜 = 𝑞𝑜(𝑘, 𝜂)𝜍𝑧 +  𝑖𝜎𝑜𝜍𝑥 ,       (45a) 

where 𝑞𝑜(𝑘, 𝜂) and 𝜎𝑜  are the zeroth-order renormalized time-dependent frequency and 

dynamical approximation parameter, respectively defined by comparing equation (43e) and (45a) 

in the form 

𝑞𝑜 𝑘, 𝜂 = ѡ(𝑘, 𝜂)   ;     𝜎𝑜 = 𝑓 =  
1

2ѡ

𝑑ѡ

𝑑𝜂
 .    (45b) 

The fact that 𝐻𝑜 = 𝐻 is defined in the 𝑧𝑥-plane means that the original (zeroth-order) dynamical 

frame of the mode equation (2) governing the evolution of cosmological perturbations in a single 

field inflationary scenario is the 𝑧𝑥-plane. The first-order boost operator 𝑇1(𝜂) is therefore 
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defined along the 𝑦 − 𝑎𝑥𝑖𝑠 specified by an arbitrary transformation parameter 𝜃1(𝜂) according 

to the definition  

𝑇1(𝜂) = 𝑒
1

2
𝜃1(𝜂)𝜍𝑦 =  

𝑐𝑜𝑠һ
1

2
𝜃1 −isinһ

1

2
𝜃1

isinһ
1

2
𝜃1 𝑐𝑜𝑠һ

1

2
𝜃1

 ,    (45c) 

which on substituting into equation (44e) for 𝑛 = 0,  𝐻𝑜 = 𝐻 and then eliminating the arbitrary 

𝜃1(𝜂)  as explained below provides the first-order dynamical frame Hamiltonian 𝐻1 in the form 

𝐻1 = 𝑞1(𝑘, 𝜂)𝜍𝑧 +  𝑖𝜎1 
𝜍𝑦 ,     (45d) 

where 𝑞1(𝑘, 𝜂) and  𝜎1  are the first-order renormalized time-dependent frequency and dynamical 

approximation parameter, respectively. We observe that 𝐻1 is defined in the 𝑧𝑦 − 𝑝𝑙𝑎𝑛𝑒, 

meaning that the first-order dynamical frame is the 𝑧𝑦 − 𝑝𝑙𝑎𝑛𝑒. The transformation from the 

fist-order dynamical frame is therefore, a boost along the  𝑥 − 𝑎𝑥𝑖𝑠. 

In general, the accuracy level dynamical frames alternate between 𝑧𝑥 and 𝑧𝑦 planes so that the 

corresponding boost transformation along axes normal to the dynamical planes are affected by 

boost transformation defined alternately along 𝑦 − 𝑎𝑥𝑖𝑠  and 𝑥 − 𝑎𝑥𝑖𝑠 as appropriate. For the 

general transformation from the 𝑛𝑡𝑕 -order frame to the (𝑛 + 1)𝑡𝑕 -order specified above, we 

define 𝑇𝑛+1(𝜂) and it‟s inverse 𝑇𝑛+1
−1 (𝜂)  in relation to the plane 𝐻𝑛  according to 

𝐻𝑛 = 𝑞𝑛 𝑘, 𝜂 𝜍𝑧 −  𝑖𝜎𝑛𝜍𝑥 ⟹ 𝑇𝑛+1 𝜂 = 𝑒
1

2
𝜃𝑛 +1(𝜂)𝜍𝑦 =  

𝑐𝑜𝑠һ
1

2
𝜃𝑛+1 −𝑖𝑠𝑖𝑛һ

1

2
𝜃𝑛+1

𝑖𝑠𝑖𝑛һ
1

2
𝜃𝑛+1 𝑐𝑜𝑠һ

1

2
𝜃𝑛+1

    ; 

𝑇𝑛+1
−1 (𝜂) = 𝑒−

1

2
𝜃𝑛+1(𝜂)𝜍𝑦 =  

𝑐𝑜𝑠һ
1

2
𝜃𝑛+1 𝑖𝑠𝑖𝑛һ

1

2
𝜃𝑛+1

−𝑖𝑠𝑖𝑛һ
1

2
𝜃𝑛+1 𝑐𝑜𝑠һ

1

2
𝜃𝑛+1

  ,     (46a) 
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which we substitute into the transformation law in equation (44e) to obtain 

𝐻𝑛+1 =  𝑞𝑛  𝑐𝑜𝑠һ𝜃𝑛+1 + 𝜎 𝑛𝑠𝑖𝑛һ𝜃𝑛+1 𝛿𝑧 + 𝑖 𝑠𝑖𝑛һ𝜃𝑛 + 𝜎 𝑛𝑐𝑜𝑠һ𝜃𝑛+1 𝛿𝑥  + 𝑖
1

2

𝑑𝜃𝑛+1 𝜂 

𝑑𝜂
𝜍𝑦 .(46b) 

We have used standard hyperbolic function identities 

𝑐𝑜𝑠һ𝜃 = 𝑠𝑖𝑛һ2 1

2
𝜃 + 𝑐𝑜𝑠һ2 1

2
𝜃            ;      𝑠𝑖𝑛һ𝜃 = 2𝑐𝑜𝑠һ

1

2
𝜃𝑠𝑖𝑛һ

1

2
𝜃,   (46c) 

to obtain the final form in equation (46b), and introduced a parameter 𝜎 𝑛 (short form for 

factorization approximation parameter) defined by 

𝜎 𝑛 𝜂 =
𝜎𝑛

𝑞𝑛
.      (46d) 

  3.5. Eliminating  𝜽𝒏+𝟏 𝜼  : renormalized time-dependent frequency 

The only externally introduced parameter in  𝐻𝑛+1 in equation (46b) is the boost transformation 

parameter 𝜃𝑛+1 𝜂  which must now be eliminated to obtain a physically meaningful dynamical 

frame Hamiltonian 𝐻𝑛+1. Since we shall diagonalize 𝐻𝑛+1 in the end to obtain the desired 

approximate solution of equation (44d) in the (𝑛 + 1)𝑡𝑕 -order dynamical frame. We start by 

eliminating the 𝜍𝑥 -component in equation (46b), by setting the co-efficient to zero, that is to say, 

the vanishing of the off diagonal elements implies that 

𝑠𝑖𝑛һ𝜃𝑛+1 + 𝜎 𝑛𝑐𝑜𝑠һ𝜃𝑛+1 = 0 ,       (47a) 

which easily fixes the boost parameter 𝜃𝑛+1 in terms of the physical parameters in the form 

𝑡𝑎𝑛һ𝜃𝑛+1 = − 𝜎 𝑛 .       (47b) 
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The boost transformation parameter is defined in terms of the factorization approximation 

parameter depending only on the time dependent frequency ѡ 𝑘, 𝜂  given by the expression in 

equation (3) 

Squaring equation (47b), using, 𝑐𝑜𝑠һ2𝜃 − 𝑠𝑖𝑛һ2𝜃 = 1, 𝑡𝑎𝑛һ2𝜃 =
𝑠𝑖𝑛һ2𝜃

𝑐𝑜𝑠һ2𝜃
  , gives                                                          

𝑐𝑜𝑠һ𝜃𝑛+1 𝜂 =
1

 1−𝜎 𝑛
2 (𝜂)

         ;     𝑠𝑖𝑛һ𝜃𝑛+1 𝜂 = −
𝜎 𝑛  𝜂 

 1−𝜎 𝑛
2 (𝜂)

 .        (47c) 

where the negative sign in the definition of 𝑡𝑎𝑛һ𝜃𝑛+1 has been taken into account in the 

derivation of 𝑐𝑜𝑠һ𝜃𝑛+1 𝜂  and 𝑠𝑖𝑛һ𝜃𝑛+1 𝜂 . 

Using equation (47c), the co-efficient of 𝛿𝑧  in equation (46) is obtained in the form 

𝑐𝑜𝑠һ𝜃𝑛+1 + 𝜎 𝑛𝑠𝑖𝑛һ𝜃𝑛+1 =  1 − 𝜎 𝑛2(𝜂).     (47d) 

Differentiating equation (47b) with respect to 𝜂 using 

𝑑

𝑑𝜂
𝑡𝑎𝑛һ𝜃𝑛+1 =

𝑑𝜃𝑛+1

𝑑𝜂

𝑑

𝑑𝜃𝑛+1
𝑡𝑎𝑛һ𝜃𝑛+1 =

𝑑𝜃𝑛+1

𝑑𝜂
(1 − 𝑡𝑎𝑛һ2𝜃𝑛+1) ,                            (47e) 

gives the final result 

1

2

𝑑𝜃𝑛 +1

𝑑𝜂
= −

1

2 1−𝜎 𝑛
2 (𝜂) 

𝑑𝜎 𝑛  𝜂 

𝑑𝜂
.     (47f) 

Noticing that the right hand side of equation (47f) involves first-order derivative of the n-order 

approximation parameter 𝜎 𝑛 𝜂 =
𝜎𝑛

𝑞𝑛
, we introduce the (𝑛 + 1)𝑡𝑕  boost approximation parameter 

𝜎𝑛+1 𝜂  defined by 

1

2

𝑑𝜃𝑛 +1

𝑑𝜂
= −𝜎𝑛+1 𝜂 ⟹ 𝜎𝑛+1 𝜂 =

1

2 1−𝜎 𝑛
2 (𝜂) 

𝑑𝜎 𝑛  𝜂 

𝑑𝜂
    ;   𝑛 = 0, 1,2, 3, … … .,  (47g) 
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Substituting equations (47a), (47d) and (47g) into equation (46b) (noting that the coefficients are 

the same), we obtain the boost frame Hamiltonian 𝐻 in the alternate form 

𝐻𝑛 = 𝑞𝑛𝜍𝑧 −  𝑖𝜎𝑛𝜍𝑥 ⟹ 𝐻𝑛+1 = 𝑞𝑛+1𝜍𝑧 −  𝑖𝜎𝑛+1𝜍𝑦  ,   (48a) 

where we have introduced the (𝑛 + 1)𝑡𝑕-order renormalized time-dependent frequency obtained 

as 

𝑞𝑛+1(𝜂) = 𝑞𝑛 (𝜂) 1 − 𝜎 𝑛2(𝜂)    ;        𝑛 = 0, 1, 2, 3, … … .,    (48b) 

Setting 𝑛 = 0, 2, 3, … … .,  in equation (48a) - (48b) provides the zeroth, even, and odd order 

dynamical frame Hamiltonians 𝐻 according to 

𝐻𝑜 = 𝑞𝑜𝜍𝑧 −  𝑖𝜎𝑜𝜍𝑥    ;    𝑞𝑜 = 𝜔    ;   𝜎𝑜 =
1

2ѡ

𝑑ѡ

𝑑𝜂
     ;   𝜎 𝑜 =

𝜎𝑜

𝑞𝑜
=

1

2ѡ2

𝑑ѡ

𝑑𝜂
  ,                             (48c) 

𝐻2𝑛 = 𝑞2𝑛𝜍𝑧 −  𝑖𝜎2𝑛𝜍𝑥   ;  𝑞2𝑛 = 𝑞2𝑛−1 1 − 𝜎 2𝑛−1
2   ; 𝜎2𝑛 =

1

2 1−𝜎 𝑛
2(𝜂) 

𝑑𝜎 𝑛  𝜂 

𝑑𝜂
  ;                                                           

𝜎 2𝑛−1 =
𝜎2𝑛−1

𝑞2𝑛−1
     ,  𝑛 ≥ 1,          (48d) 

𝐻2𝑛+1 = 𝑞2𝑛+1𝜍𝑧 −  𝑖𝜎2𝑛+1𝜍𝑦   ;  𝑞2𝑛+1 = 𝑞2𝑛 1 − 𝜎 2𝑛−1
2   ; 𝜎2𝑛+1 =

1

2 1−𝜎 2𝑛
2  

𝑑𝜎 2𝑛  𝜂 

𝑑𝜂
  ;                      

𝜎 2𝑛 =
𝜎2𝑛

𝑞2𝑛
     ,  𝑛 ≥ 0,          (48e) 

where 𝜎 𝑜  is the short form for zeroth-order factorization in equation (48c) approximation 

parameter as defined in equation (46d) and given in equation (48c). 
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3.6. Diagonalization and Approximate Solutions 

We recall that the purpose of the transformation of the original equation (43a) and its 

Hamiltonian in equation (43e) is to find a dynamical frame in which the resultant Hamiltonian 𝐻 

is either time-independent for an exact analytical solution or has a negligible approximation 

parameter for a high accuracy approximation. Since the renormalized frequency 𝑞𝑛 (𝜂) and the 

dynamical approximation parameter 𝜎𝑛 (𝜂) which specify the Hamiltonian 𝐻𝑛  in the 𝑛𝑡𝑕 -order 

dynamical frame for 𝑛 = 0, 1, 2, …, are time-dependent, the resultant equation of dynamics (44a) 

can only be solved under good approximation conditions in which we consider the 𝑛𝑡𝑕 -order 

dynamical approximation parameter 𝜎𝑛 (𝜂) to be negligible. Under such conditions, Hamiltonian 

𝐻𝑛  is diagonalized, leading to a simple solution through direct integration. 

The main task is to establish that the 𝑛𝑡𝑕 -order dynamical approximation parameter 𝜎𝑛 (𝜂) is 

small enough to be neglected at the 𝑛 ≥ 0 accuracy level. To do this, we consider that 𝜎𝑛 (𝜂) is 

defined in terms of progressively increasing orders of differentiation of the zeroth-order 

approximation parameter 𝜎𝑜(𝜂).  

For  𝑛 = 0, the zeroth-order approximation parameter takes the form  

𝜎𝑜 =  
1

2ѡ

𝑑ѡ

𝑑𝜂
          ;          𝜎  𝑜 =

𝜎𝑜

𝑞𝑜
=

1

2ѡ2

𝑑ѡ

𝑑𝜂
 .         (49) 

The factorization approximation parameter for 𝑛 ≥ 1 is given by 

𝑛 ≥ 1  ∶     𝜎𝑛 =
1

2 1−𝜎 𝑛−1
2  

𝑑𝜎 𝑛−1

𝑑𝜂
          ;        𝜎 𝑛−1 =  

𝜎𝑛−1

𝑞𝑛−1
.      (50a) 

For first order approximation we set 𝑛 = 1, and on using equation (49), we obtain the first order 

factorization approximation parameter in the form 
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𝑛 = 1  ∶                       𝜎1 =
1

2 1−𝜎 𝑜
2 

𝑑𝜎 𝑜

𝑑𝜂
=  

1

4 1− 
1

2ѡ2
𝑑ѡ

𝑑𝜂
 

2
 

𝑑

𝑑𝜂
 

1

ѡ2

𝑑ѡ

𝑑𝜂
 .          (50b) 

We use equation (50b) to obtain 

𝜎1 =
1

2 1−𝜎 𝑜
2 

𝑑𝜎 𝑜

𝑑𝜂
=  

1

2 1− 
1

2ѡ2
𝑑ѡ

𝑑𝜂
 

2
 
 

1

𝜔
 

𝜔 ′′

2𝜔
−

 𝜔 ′  
2

𝜔2   .       (50c) 

The first-order dynamical frame in equation (50b) is characterized by the first-order 

approximation parameter 𝜎1 obtained in terms of the first-order derivatives of the zeroth-order 

approximation parameter 𝜎 0. 

The derivative of the zeroth-order approximation parameter with respect to 𝜂 is obtained as 

𝑑𝜎 𝑜

𝑑𝜂
=

𝑑

𝑑𝜂
 

1

2𝜔2

𝑑𝜔

𝑑𝜂
 =

𝜔 ′′

2𝜔2 −
 𝜔 ′  

2

𝜔3 =
1

𝜔
 

𝜔 ′ ′

2𝜔
−

 𝜔 ′  
2

𝜔2  .       (50d)  

Equation (50d) produces an expression that is exact and similar to the quantity  𝑄 𝑘, 𝜂  used in 

the standard WKB approximation condition in equation (23), especially the expression 
𝜔 ′′

2𝜔
−

 𝜔 ′  
2

𝜔2 , though with different coefficients  

𝑄 = −  
𝜔 ′′

2𝜔
−

3

4

 𝜔 ′  
2

𝜔2  = −  
𝜔 ′′

2𝜔
−

 𝜔 ′  
2

𝜔2 +
1

4

 𝜔 ′  
2

𝜔2  = −  𝜔
𝑑𝜎 𝑜

𝑑𝜂
+

1

4

 𝜔 ′  
2

𝜔2  ⟹  
𝑑𝜎 𝑜

𝑑𝜂
 =

 
1

𝜔
 𝑄 +

1

4

 𝜔 ′  
2

𝜔2   .             (50e) 

Equation (50d), obtained through boost transformation and diagonalization procedure is more 

exact and elegant compared to the quantity 𝑄 𝑘, 𝜂   used in the standard WKB analysis of 

cosmological perturbations obtained by first assuming a solution to the mode equation (2) in the 
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form of an ansatz (trial solution) given in equation (21), and whose divergent behaviour at the 

turning point was identified as the possible cause of failure of the standard WKB approximation. 

The second-order dynamical frame will be characterized by the second-order approximation 

parameter 𝜎2 obtained in terms of the first-order derivatives of the first-order approximation 

parameter 𝜎 1. In general, the 𝑛𝑡𝑕 -order dynamical frame characterized by the 𝑛𝑡𝑕 -order 

approximation parameter 𝜎𝑛 , is obtained in terms of the first-order derivatives of the  𝑛 − 1 𝑡𝑕  

order approximation parameter 𝜎 𝑛−1 , as given in equation (50a), such that 𝜎𝑛 ≪ 𝜎𝑜 . 

The dynamical factorization approximation parameter therefore becomes progressively smaller 

with increasing 𝑛 ≥ 0. This means that the accuracy level increases with the number 𝑛 ≥ 0  of 

successive transformations from the zeroth-order to the 𝑛𝑡𝑕 -order (𝑛 ≥ 1) dynamical frame. The 

highest accuracy level is achieved in the dynamical frame where the approximation parameter 

𝜎(𝜂) takes the smallest possible value and can be safely neglected. 

Hence for 𝑛𝑡𝑕 -level accuracy (equivalent to approximation to the 𝑛𝑡𝑕 −order), we set 𝜎𝑛 (𝜂) 

(general 𝑛 = 0, even, odd) equal to zero in any of the forms in equations in (48a) - (48e), leading 

to diagonalization of the general  𝑛𝑡𝑕 −order dynamical Hamiltonian according to 

𝜎𝑜 𝜂 = 0   ⟹ 𝐻𝑜 = 𝑞𝑜𝜍𝑧        ,      𝑞𝑜 𝜂 = 𝜔 𝜂          ;        𝜎 𝑜 =
1

2𝜔2

𝑑𝜔

𝑑𝜂
 ,                 (51a) 

𝜎𝑛 𝜂 = 0   ⟹    𝐻𝑛 = 𝑞𝑛𝜍𝑧      ,       𝑞𝑛 𝜂 = 𝑞𝑛−1 𝜂  1 − 𝜎 2𝑛−1
2  𝜂     ,   𝑛 = 1,2,3. .,. (51b) 

Substituting the diagonalized Hamiltonian from equations (51a) - (51b) into equation (44a), we 

easily obtain approximate solution satisfying the accuracy conditions (51a) - (51b) in the 

𝑛𝑡𝑕 −order dynamical frame in the form 
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𝑋𝑛 𝜂 = Ʊ𝑛 𝜂 𝑋𝑛 0         ,      n = 0, 1, 2, …,     (51c) 

with the time evolution operator Ʊ𝑛 𝜂  obtained through direct integration in the final form 

Ʊ𝑛 𝜂 = 𝑒−𝑖𝛿𝑛 (𝜂)𝜍𝑧       ,      𝑛 = 0,1,2,3 … …,     (51d) 

 where 𝛿𝑛(𝜂) is the phase accumulation integral obtained in the form 

𝛿𝑛(𝜂) =  𝑞𝑛 𝜂′ 𝑑𝜂′        ,      𝑛 = 0,1,2,3 … … ,.      
𝜂

𝜂𝑜
                            (51e) 

Noting that 𝑋𝑛 𝜂  in the 𝑛𝑡𝑕 −order dynamical frame is obtained from 𝑋 𝜂  as defined in 

equation (43b) in the original frame through a succession of boost transformations according to 

𝑋𝑛 𝜂 = Tn 𝜂 𝑋𝑛−1 𝜂 = Tn 𝜂 Tn−1 𝜂 Tn−2 𝜂 … … T3 𝜂 T2 𝜂 T1 𝜂 To 𝜂 𝑋 𝜂  ,           (52a) 

where  

To 𝜂 = I  ⟹  𝑋𝑜 𝜂 =  To 𝜂 𝑋 𝜂 = 𝑋 𝜂 .      (52b) 

We apply inverse operations in succession from the left of equation (52a), starting with 𝑇𝑛
−1 𝜂  

as appropriate, to obtain the original mode amplitude in the form (𝑇0
−1 𝜂 = I) 

𝑋 𝜂 = 𝑇1
−1 𝜂 𝑇2

−1 𝜂 𝑇3
−1 𝜂 … … 𝑇𝑛−2

−1  𝜂 𝑇𝑛−1
−1  𝜂 𝑇𝑛

−1 𝜂 𝑋𝑛 𝜂 .                          (52c) 

Applying the inverse operation on equation (51c) from the left and substituting equation (52c), 

together with the entry-boundary transformation 

𝑋𝑛 0 = Tn 0 Tn−1 0 Tn−2 0 … … T3 0 T2 0 T1 0 𝑋 0 ,                          (52d) 

we obtain the approximate solution of equation (43a) in the original frame in the form 
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𝑋 𝜂 = Ʊ 𝜂 𝑋 0            ,         𝑋 𝜂 =  
ɸ 

ɸ ∗

(𝜂)
(𝜂)

         ,      𝑋 0 =  
ɸ 

ɸ ∗

(0)
(0)

  ,             (52e) 

where the time evolution operator Ʊ 𝜂  in the original frame has been obtained in the form   

Ʊ 𝜂 = 𝑇1
−1 𝜂 𝑇2

−1 𝜂 … 𝑇𝑛−1
−1  𝜂 𝑇𝑛

−1 𝜂 Ʊ𝑛 𝜂 Tn 0 Tn−1 0 … T2 0 T1 0    , 𝑛 ≥ 1.             

(52f) 

We recall that the boost operators applied in succession in equations (52a) - (52f) alternate 

between the 𝑥 − axis and 𝑦 − axis boosts as explained earlier in the form 

T2j 𝜂 = 𝑒
1

2
𝜃2𝑗  𝜂 𝜍𝑥      ;       T2j+1 𝜂 = 𝑒

1

2
𝜃2𝑗+1 𝜂 𝜍𝑦       ,    𝑗 = 0,1,2,3, …,   ;   𝜃0 𝜂 = 0.   (52g) 

Once Ʊ 𝜂  is evaluated explicitly and substituted into equation (52e) to obtain ɸ  𝜂  and  ɸ ∗ 𝜂 , 

the desired general solution of the equation of dynamics governing the evolution of cosmological 

perturbations in single field inflationary scenario in equation (2) up to the 𝑛𝑡𝑕 − order accuracy 

follows easily using the definition of the mode function µ(𝜂) in equation (40a). We illustrate the 

procedure by expressing explicit results for the zeroth-order in chapter four. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1. Zeroth - Order Approximation  

Up to zeroth-order approximation, we set 

𝑛 = 0    ∶   𝑞𝑜 𝜂 = 𝜔 𝜂            ;          𝛿0 𝜂 =  𝑞0 𝜂′ 𝑑𝜂′ ,              
𝜂

𝜂𝑜
   (53a) 

Ʊ0 𝜂 = 𝑒−𝑖𝛿0 𝜂 𝜍𝑧 =  𝑒−𝑖
𝛿0
2

 𝜂 
0

0 𝑒𝑖
𝛿0
2

 𝜂 
 ,    (53b) 

𝑇0
−1 𝜂 = I =  To 𝜂 ,       (53c) 

to obtain 

 Ʊ 𝜂 = Ʊ0 𝜂         ⟹ Ʊ 𝜂 =  𝑒−𝑖
𝛿0
2

 𝜂 
0

0 𝑒𝑖
𝛿0
2

 𝜂 
 .              (53d) 

Substituting equation (53d) into equation (52e) we obtain the final result 

ɸ  𝜂 = 𝑒−𝑖
𝛿0
2

 𝜂 
ɸ  0          ;        ɸ ∗ 𝜂 = 𝑒𝑖

𝛿0
2

 𝜂 
ɸ ∗ 0 .      (53e) 

Expressing the entry-boundary complex mode amplitudes ɸ  𝜂   , ɸ ∗ 𝜂  in the polar form 

ɸ  0 =  ɸ  0  𝑒−𝑖𝜗        ;         ɸ ∗ 0 =   ɸ  0  𝑒𝑖𝜗   ;  𝜗 = constant ,  (53f) 

in equation (53e) and using the result in the definition of the mode function µ(𝜂) in equation 

(40a) gives the solution of mode equation (2) to zeroth-order approximation in the form 

𝑛 = 0    ∶    µ 𝜂 =  
𝐴

 𝑞0
𝑐𝑜𝑠   𝑞0 𝜂′ 𝑑𝜂′ + 𝜗  

𝜂

𝜂𝑜
            ;     𝐴 =  ɸ  0  ,   (53g) 
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after substituting 𝛿0 𝜂  from equation (53a).  

We observe that for complex mode function µ(𝜂), the general definitions in equation (52a) and 

the results obtained in equation (53e) provide the zeroth-order solution in the form 

𝑛 = 0 ∶ µ 𝜂 =
𝐴

2 𝑞0
𝑒

−𝑖  𝑞0 𝜂 ′  𝑑𝜂 ′𝜂
𝜂𝑜

 
+

𝐵

2 𝑞0
𝑒

𝑖  𝑞0 𝜂 ′  𝑑𝜂 ′𝜂
𝜂𝑜

 
  ;  𝐴 =  ɸ  0  ;  𝐵 =  ɸ ∗ 0 .      (53h) 

The zeroth-order solution equation (53h), is exactly the leading order/first- order standard WKB 

solution, and takes exactly the same form of the assumed solution (ansatz) in the standard WKB 

approximation in equation (21). Furthermore, it does not require any matching condition about 

any particular point, that is to say, a turning point as outlined in the results for the WKB mode 

function and therefore the issue of divergence at a turning point as encountered in the WKB 

approximation does not arise in the approximation procedure developed in this study. 
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4.2. Zeroth - Order Power Spectra 

Using the expressions for the time dependent frequency in equation (3), the potentials in 

equation (4a)-(4b), the form of the scale factor 𝑎 𝜂  in equation (16c)-(16d), and the solution of 

mode equation (2) to zeroth-order approximation in equation (53g), we develop general 

expressions for the zeroth-order power spectrum  within the factorisation and boost 

transformation procedure. 

 4.2.1 Zeroth - Order Power Spectra in a Radiation Dominated Universe 

Taking the form of the scale factor for a radiation-dominated universe in equation (16c) as a 

function of conformal time  

                                                     𝑎 𝜂 = 𝛽𝜂    ;    𝛽 = constant,       (54a) 

from which we obtain 

                                                               𝑎′(𝜂) = 𝛽 ,         (54b) 

                                                               𝑎''(𝜂) = 0.         (54c) 

Using the (54a)-(54c) in the definitions of the potentials given in equations (4a)-(4b), we obtain 

for scalar (density perturbation) 

Ƶ𝑆 =  2𝛽𝜂                   ⟹           Ƶ𝑆 '' = 0,         (54d) 

while for tensor (gravitational wave) perturbations 

                                 𝑍𝑇 = 𝑎 𝜂 = 𝛽𝜂              ⟹                Ƶ𝑇 '' = 0.       (54e) 
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Using equations (54d)-(54e) in the definition of the time dependent frequency given by the 

general expression in equation (3), we obtain expressions for the time dependent frequency for 

the wave number 𝑘 = 1 𝑎𝑛𝑑 − 1in the form 

𝜔𝑆 =  𝑘2 −
Ƶ𝑆 ''

Ƶ𝑆
= 1,         (54f) 

                                       𝜔𝑇 =  𝑘2 −
Ƶ𝑇 ''

Ƶ𝑇
= 1.         (54g) 

For a radiation dominated universe, the form of the scale factor yields similar expressions for the 

time dependent frequency for scalar perturbations and tensor perturbation as given in equations 

(54f) and (54g).  

Using equations (53a) and equations (54f)-(54g) into the solution for the mode equation obtained 

in equation (53g), we obtain  

𝜇𝑆,𝑇 = 𝐴𝑐𝑜𝑠  𝑑𝜂 + 𝜗  
𝜂

0
 = 𝐴𝑐𝑜𝑠 𝜂 + 𝜗      ;     𝜗 = 0,

𝜋

2
,
𝜋

4
 .        (55) 

Substituting equations (54d) and (55) into the expression for the power spectra in equation (6), 

we obtain the zeroth-order power spectra in a radiation dominated universe. For scalar 

perturbations the power spectra is  in the form 

  𝑃𝜁 =  
1

8𝜋2  
µ𝑆

Ƶ𝑆
 

2

=
𝐴2𝑐𝑜𝑠2 𝜂+𝜗 

16𝜋2𝛽2𝜂2 ,            (56) 

while for tensor perturbations is obtained in the form 

                𝑃𝑕 =  
2

𝜋2  
µ𝑇

Ƶ𝑇
 

2

=
2𝐴2𝑐𝑜𝑠 2 𝜂+𝜗 

𝜋2𝛽2𝜂2  ,                        (57) 

noting that from equations (54f) and (54g), for a radiation-dominated universe µ𝑇 = µ𝑆. 
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For the wave number 𝑘 = 0, the scalar power power spectra takes the form  

𝑃𝜁 =  
𝐴2𝑐𝑜𝑠 2 𝜗 

16𝜋2𝛽2𝜂2 ,      (58) 

while the tensor power spectrum has the form 

𝑃𝑕 =
2𝐴2𝑐𝑜𝑠 2 𝜗 

𝜋2𝛽2𝜂2  .       (59) 

4.2.2. Zeroth - Order Power Spectra in a Matter-Dominated Universe 

Taking the form of the scale factor for a matter-dominated universe in equation (16d) as a 

function of conformal time  

                                                     𝑎 𝜂 = 𝛽𝜂2     ;    𝛽 = constant,        (60a) 

from which we obtain 

                                                               𝑎′(𝜂) = 2𝛽𝜂 ,        (60b) 

                                                               𝑎''(𝜂) = 2𝛽.         (60c) 

Using the (60a)-(60c) in the definitions of the potentials given in equations (4a)-(4b), we obtain 

for scalar (density perturbation) 

Ƶ𝑆 =  
3

2
𝛽𝜂2                    ⟹           Ƶ𝑆 '' =  6𝛽,                (60d) 

while for tensor (gravitational wave) perturbations 

                                 𝑍𝑇 = 𝑎 𝜂 = 𝛽𝜂2               ⟹                 Ƶ𝑇 '' = 2𝛽.        (60e) 
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Using equations (60d)-(60e) in the definition of the time dependent frequency given by the 

general expression in equation (3), we obtain expressions for the time dependent frequency for 

the wave number 𝑘 = 1 and −1 in the form 

𝜔𝑆 =  𝑘2 −
Ƶ𝑆 ''

Ƶ𝑆
=  1 −

2

𝜂2 ,        (60f) 

                                      𝜔𝑇 =  𝑘2 −
Ƶ𝑇 ''

Ƶ𝑇
=  1 −

2

𝜂2
  .       (60g) 

Expressions for the time dependent frequency in equations (60f) and (60g) are also similar for 

scalar and tensor perturbations respectively.  

Using equations (53a) and equations (60f)-(60g) into the solution for the mode equation obtained 

in equation (53g), we obtain  

𝜇𝑆,𝑇 =
𝐴

 1−
2

𝜂2 

1
4

𝑐𝑜𝑠    1 −
2

𝜂2 𝑑𝜂 + 𝜗  
𝜂

0
      ;     𝜗 = 0,

𝜋

2
,
𝜋

4
 .        (61) 

Evaluating   1 −
2

𝜂2 𝑑𝜂, by use of Wolfram Mathematica 8.0 program , we obtain 

  1 −
2

𝜂2 𝑑𝜂 =

 1−
2

𝜂2  𝜂 ( −2+𝜂2+ 2ArcTan [
 2

 −2+𝜂2
])

 −2+𝜂2
.      (62) 

Using equation (62) in equation (61), we obtain the mode function for the wave number 𝑘 =

1  𝑎𝑛𝑑 − 1 in the form 

𝜇𝑆,𝑇 =
𝐴

 1−
2

𝜂2 

1
4

𝑐𝑜𝑠  

 1−
2

𝜂2  𝜂  ( −2+𝜂2+ 2𝐴𝑟𝑐𝑇𝑎𝑛 [
 2

 −2+𝜂2
])

 −2+𝜂2
+ 𝜗      ;     𝜗 = 0,

𝜋

2
,
𝜋

4
 .    (63) 



41 
 

Substituting equations (60d) and (63) into the expression for the power spectra in equation (6), 

we obtain the zeroth-order power spectra in a matter-dominated universe. For scalar 

perturbations the power spectra is obtained in the form 

  𝑃𝜁 =  
1

8𝜋2
 

µ𝑆

Ƶ𝑆
 

2

=
𝐴2

12𝜋2𝛽2𝜂4 1−
2

𝜂2 

1
2

𝑐𝑜𝑠2  

 1−
2

𝜂2𝜂( −2+𝜂2+ 2𝐴𝑟𝑐𝑇𝑎𝑛 [
 2

 −2+𝜂 2
])

 −2+𝜂2
+ 𝜗 ,          (64) 

while for tensor perturbations it is obtained in the form 

           𝑃𝑕 =  
2

𝜋2  
µ𝑇

Ƶ𝑇
 

2

=
2𝐴2

𝜋2𝛽2𝜂4 1−
2

𝜂2 

1
2

𝑐𝑜𝑠2  

 1−
2

𝜂2𝜂( −2+𝜂2+ 2𝐴𝑟𝑐𝑇𝑎𝑛 [
 2

 −2+𝜂2
])

 −2+𝜂2
+ 𝜗  .              (65) 

For the wave number 𝑘 = 0,   −
2

𝜂2 𝑑𝜂 yields  

  −
2

𝜂2 𝑑𝜂 =  −
2

𝜂2 𝜂 Log[𝜂],            (66) 

and  the power spectras are obtained in the form  

𝑃𝜁 =
2𝐴2𝑐𝑜𝑠 2 𝜂+𝜗 

𝜋2𝛽2𝜂4 1−
2

𝜂2 

1
2

𝑐𝑜𝑠2   −
2

𝜂2  𝜂 𝐿𝑜𝑔[𝜂] + 𝜗  ,      (67) 

𝑃𝑕 =
2𝐴2

𝜋2𝛽2𝜂4 1−
2

𝜂2 

1
2

𝑐𝑜𝑠2   −
2

𝜂2
𝜂𝐿𝑜𝑔[𝜂] + 𝜗 .       (68) 

The general expressions for the zeroth-order power spectra obtained in equations (56)-(57), (58)-

(59), (64)-(65), and (67)-(68) for a radiation-dominated universe and a matter-dominated 

universe constitute the main results of this study.  
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The power spectrum is created by complicated but well understood Physics, depending not only 

on the perturbation spectrum, but also on the matter composition of the Universe. The observed 

oscillatory behaviour (compressions and rarefactions) is due to acoustic oscillations. “Acoustic” 

because the waves move with the sound speed. The plasma heats as it compresses and cools as it 

expands giving rise to the observed CMB temperature fluctuations [11]. 

Inflation is achieved when the universe is filled with a scalar field (the inflaton), whose slowly 

decreasing potential energy dominates the total energy of the universe. After inflation the 

universe, reheated while the inflaton decayed into particles and filled the earth with standard 

model particles, starting off the radiation dominated era of the universe. 

Any form of matter satisfying the condition for inflation (accelerated expansion) given in 

equation (15), will cause an exponential growth/decay (acceleration) of the scale factor. This can 

be illustrated when the graphs for the power spectra are plotted.  

The graphs of the evolution of the power spectrum with time obtained in this study both in a 

radiation-dominated and a matter-dominated universe, depicts a decaying oscillatory behaviour, 

which are the expected results. The varying heights of the peaks are due to the presence of an 

attractive form of gravity which causes more compression and less stretching. Therefore the odd 

peaks are higher (more compression) and the even peaks are lower (less stretching).  
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Figures (1a) and (2a), depicts the decaying oscillatory behaviour. The rate of decay depends on 

the form of the scale factor for different eras of the universe, and is too rapid in a matter-

dominated universe. The thick wave fronts in figures (1b) and (2b) are due to the high frequency 

range. 

From the general expressions for the power spectra in equations (56) – (57), (58) – (59), (64) – 

(65), and (67) – (68), when the conformal time 𝜂 = 0, the power spectra blows up. This 

corresponds to the singularity where all matter in the universe was concentrated at a point, at an 

initial time 𝑡 = 0. This is called the Big Bang. 

The exact shape of the universe is still a matter of debate in Physical Cosmology, but 

experimental data from various independent sources ( Wilkinson Microwave Anistropy Probe 

(WMAP), Balloon Observations of Millimetric Extragalatictic Radiation ANd Geophysics 

(BOOMERanG), Planck for example) confirm that the universe is flat with only 0.4% of error 

[21] [22].  

A flat universe  𝑘 = 0  expands forever but at a continually decelerating rate, with expansion 

asymptotically approaching zero. With dark energy, the expansion rate of the universe initially 

slows down, due to the effect of gravity. 

In a closed universe  𝑘 = 1 , gravity eventually stops the expansion of the universe, after which 

it starts to contract until all the matter in the universe collapses to a point, a final singularity 

termed the “Big Crunch”, the opposite of the Big Bang. 

Even without dark energy, an open universe expands forever, with gravity negligibly slowing the 

rate of expansion. With dark energy, the expansion not only continues but accelerates [21]. 



45 
 

The graphs of the power spectra against conformal time obtained in this study both in a 

radiation-dominated and a matter-dominated universe, are decreasing and are asymptotic to the 

horizontal axis, that is to say, the graphs do not get to zero.  
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CHAPTER FIVE 

 CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusion 

We have provided a general approximate solution of arbitrary level of accuracy of the equation 

governing the evolution of cosmological perturbations in single field inflationary models through 

factorization and successive boost transformation of the equivalent matrix equation. The fact that 

the basic approximation parameter, starting with the zeroth-order parameter reduces 

progressively under successive boost operation from dynamical frames of higher accuracy has 

led to the concept of accuracy levels. Each dynamical frame represents an accuracy level, and an 

advancement from a frame of a lower accuracy to a frame of a higher accuracy level is achieved 

through a boost transformation or an appropriate succession of boost transformations. 

The boost transformations effectively generate series expansions in terms of the derivative of the 

first-order derivatives of the approximation parameters. We have established that the 

factorization approximation parameter vanishes rapidly, and that the zeroth-order approximation 

or lowest accuracy dynamical frame is exactly the leading order/first-order WKB approximation.  

The factorization and boost transformation procedure developed in this study is systematically 

extendable. The zeroth-order solution, is exactly the leading order/first- order standard WKB 

solution, and takes exactly the same form of the assumed solution (ansatz) in the standard WKB 

approximation. Furthermore, it does not require any matching condition about any particular 

point, that is to say, a turning point as outlined in the results for the WKB mode function and 

therefore the issue of divergence at a turning point as encountered in the WKB approximation 

does not arise in the approximation procedure developed in this study. 
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The general expressions for the zeroth-order power spectra obtained in equations (56)-(57), (58)-

(59), (64)-(65), and (67)-(68) for a radiation-dominated universe and a matter-dominated 

universe constitute the main results of this study. The solution for the mode function obtained in 

this study, coincide exactly with the WKB approximation trial solutions. 

5.2. Recommendations 

The factorization and boost transformation procedure developed in this study is straightforward 

and quite effective in providing approximate solutions of the semi-classical model of the 

equation governing the evolution of cosmological perturbations in single field inflationary 

models.  

The results obtained are very interesting, and therefore further comparison should be carried out 

with results of numerical calculations and experimental observations if specific parameters are 

substituted into the results as appropriate.  

The approximation procedure is systematically extendable, once the time evolution operator 

Ʊ 𝜂  is evaluated explicitly and substituted into equation (52e) to obtain ɸ  𝜂  and  ɸ ∗ 𝜂 , the 

desired general solution of the equation of dynamics governing the evolution of cosmological 

perturbations in single field inflationary scenario in equation (2) up to the 𝑛𝑡𝑕 − 𝑜𝑟𝑑𝑒𝑟 accuracy 

follows easily using the definition of the mode function µ(𝜂) in equation (40a).  
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