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Abstract

In this paper, we generate varied sets of exact initial and Dirichlet
boundary conditions for the 2-D Burgers’ equations from general ana-
lytical solutions via Hopf-Cole transformation and separation of vari-
ables. These conditions are then used for the numerical solutions of
this equation using finite difference methods (FDMs) and in particular
the Crank-Nicolson (C-N) and the explicit schemes. The effects of the
variation in the Reynolds number are investigated and the accuracy of
these schemes is determined by the L1 error. The results of the explicit
scheme are found to compare well with those of the C-N scheme for
a wide range of parameter values. The variation in the values of the
Reynolds number does not adversely affect the numerical solutions.

Keywords: Hopf-Cole transformation, finite difference methods (FDMs),
analytic solution, Crank-Nicolson (C-N) scheme, explicit scheme
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1 Introduction

The Burgers’ equation was named after the great Physicist Johannes Martinus
Burgers’ (1895-1981). This is an important non-linear parabolic partial differ-
ential equation (PDE) widely used to model several physical flow phenomena
in fluid dynamics teaching and in engineering such as turbulence, boundary
layer behaviour, shock wave formation, and mass transport, Pandey[8]. In
general, this equation is suited to modelling fluid flows because it incorporates
directly the interaction between the non-linear convection processes and the
diffusive viscous processes, Fletcher[4]. Consequently, it is one of the prin-
ciple model equations used to test the accuracy of new numerical methods
or computational algorithms, Kanti[6]. The 2-D coupled non-linear Burgers’
equations are a special form of incompressible Navier-Stokes equations without
the pressure term and the continuity equation, Vineet[10].

It is widely known that non-linear PDEs do not have precise analytic solu-
tions, Taghizadeh[9]. The first attempt to solve the Burgers’ equation analyt-
ically was done by Bateman[2], who derived the steady-state solution for the
one-dimensional equation, which was used by Burgers’[3] to model turbulence,
Mohammad[7]. Due to its wide range of applicability, several researchers,
both scientists and engineers, have been interested in studying the proper-
ties of the Burgers’ equation using various numerical techniques. They have
successfully used it to develop new computational algorithms and to test the
existing ones, Kanti[6]. In most of these cases, researchers have used varying
initial and boundary conditions but the most commonly used are credited to
Hopf-Cole transformation and used it to generate initial and boundary con-
ditions. Vineet[10] used two different sets of initial and boundary conditions
to test the accuracy of the C-N scheme. Newton’s method was used to lin-
earize the non-linear algebraic system of equations after which Gauss elim-
ination with partial pivoting was used to solve the resultant linear system.
Bahadir[1] also used the same sets of conditions to test the accuracy of his
scheme, the fully implicit finite difference scheme. Hongqing[5] and Young[11]
used similar conditions to test their discrete Adomian decomposition method
and the Eulerian-Lagrangian method of fundamental solutions respectively.
Mohammad[7] developed a semi-implicit finite difference approach to solve the
equations using an additional set of exact solutions.

In this paper, we generate three sets of varied initial and boundary condi-
tions from general analytic solutions via Hopf-Cole transformation and separa-
tion of variables. These conditions are used to find numerical solutions of the
2-D Burgers’ system using the C-N and the explicit schemes. The accuracy in
terms of convergence, consistency, and stability of these schemes is determined
by L1 error. The Reynolds number is varied to determine its effect on the
solution.
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2 Mathematical Formulation

The 2-D Burgers’ model is given by;

ut + uux + vuy =
1

Re
(uxx + uyy) (2.1)

vt + uvx + vvy =
1

Re
(vxx + vyy) (2.2)

subject to the initial conditions

u(x, y, 0) = ϕ1(x, y)
v(x, y, 0) = ϕ2(x, y)

}
(x, y) ∈ Ω (2.3)

and Dirichlet boundary conditions

u(x, y, t) = ζ(x, y, t)
v(x, y, t) = ξ(x, y, t)

}
(x, y) ∈ ∂Ω, t > 0 (2.4)

where Ω = {(x, y) : a ≤ x ≤ b, a ≤ y ≤ b} is the computational domain which
in this study is taken to be a square domain, because of its convenience for finite
difference methods (FDMs), and ∂Ω is its boundary; u(x, y, t) and v(x, y, t)
are the velocity components to be determined; ϕ1, ϕ2, ζ , and ξ are known
functions; ut is the unsteady term; uux is the non-linear convection term; Re
is the Reynolds number, and 1

Re
(uxx + uyy) is the diffusion term.

We find analytic solutions to the equations (2.1) and (2.2) via Hopf-Cole
transformation in order to derive varied sets of initial and boundary conditions
(2.3) and (2.4) respectively. The process of transformation is given by the
following steps;

1. Linearization of the Burgers’ equations by relating a function, φ(x, y, t),
to u(x, y, t) and v(x, y, t) in the following way;

u =
−2

Re

φx

φ
(2.5)

v =
−2

Re

φy

φ
(2.6)

For simplicity in calculations, let

u = f1(φ) (2.7)

v = f2(φ) (2.8)

2. The derivatives of u and v with respect to t, x, and y are found and
substituted back into the equations (2.1) and (2.2) to obtain;

f ′
1(φ)φt + f1(φ)f ′

1(φ)φx + f2(φ)f ′
1(φ)φy

=
1

Re
(f ′′

1 (φ)φ2
x + f ′

1(φ)φxx + f ′′
1 (φ)φ2

y + f ′
1(φ)φyy) (2.9)
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f ′
2(φ)φt + f1(φ)f ′

2(φ)φx + f2(φ)f ′
2(φ)φy

=
1

Re
(f ′′

2 (φ)φ2
x + f ′

2(φ)φxx + f ′′
2 (φ)φ2

y + f ′
2(φ)φyy) (2.10)

Taking any of the above equations (2.9) and (2.10), the same solution is
arrived at and therefore there is no need for repetition. We assume that
φ is bounded and therefore it implies that f ′

1(φ) and f ′
2(φ) are all non-

zero functions. Thus considering the first equation (2.9), and dividing
through by f ′

1(φ) results in;

φt + f1(φ)φx + f2(φ)φy =
1

Re
(
f ′′

1 (φ)φ2
x

f ′
1(φ)

+ φxx +

f ′′
1 (φ)φ2

y

f ′
1(φ)

+ φyy) (2.11)

But from expressions (2.5) to (2.8), we determine derivatives with respect
to φ and substitute into (2.11) to obtain;

φt =
1

Re
(φxx + φyy). (2.12)

3. Equation (2.12) is linear and can be solved by separation of variables
after which the solution φ is transformed back to the original solutions
of u and v using (2.5) and (2.6) respectively.

We seek a general solution of the form;

φ(x, y, t) = a + bx + cy + dxy + X(x)Y (y)T (t) (2.13)

which is the sum of the bilinear solution a + bx + cy + dxy and the separable
solution X(x)Y (y)T (t). The bilinear solution is denoted by φ1(x, y), and the
separable solution by φ2(x, y, t). The bilinear solution is added as a stabilizer
while the separable solution is obtained from the transformed equation and
can be written as

φ2(x, y, t) = X(x)Y (y)T (t) = W (x, y)T (t) (2.14)

Note that the first separation is done between space and time followed by
space and space for convenience. On substitution of the expression (2.14) into
equation (2.12) we obtain

WT ′ =
1

Re
(W ′′

xxT + W ′′
yyT ) (2.15)

For simplicity, equation (2.15) can also be written as

Re(WT ′) = (ΔW )T (2.16)
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where Δ is the Laplacian operator. Finally, rearrangement gives

Re
T ′

T
=

ΔW

W
= −α2 (2.17)

Where α2 is a separation constant and the negative sign is used because a
decaying function of time is anticipated. Thus the separated equations are

T ′ +
α2T

Re
= 0 (2.18)

ΔW + α2W = 0 (2.19)

Solving equation (2.18) yields

T (t) = Ae
−α2t

Re (2.20)

Consequently, equation (2.19) is solved but it is at this stage that the
function W (x, y) is separated into X(x)Y (y) that is space and space to arrive
at;

X ′′Y + XY ′′ + α2XY = 0 (2.21)

Or

X ′′

X
= −Y ′′

Y
− α2 = −β2 (2.22)

where β2 is a separation constant. From the expression (2.22) two equations
are obtained of the form

X ′′ + β2X = 0 (2.23)

Y ′′ + (α2 − β2)Y = 0 (2.24)

The general solutions of equations (2.23) and (2.24) are given by

X(x) = B sin(βx) + C cos(βx) (2.25)

Y (y) = D sin(γy) + E cos(γy) (2.26)

where γ = (α2 − β2). Substituting the solutions φ1(x, y, t) and φ2(x, y, t) into
the general solution (2.13) yields;

φ(x, y, t) = a + bx + cy + dxy + (B sinβx + C cosβx)(D sin γy + E cos γy)e
−α2t

Re

(2.27)
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At this point we transform the solution φ(x, y, t) to the original solutions
u(x, y, t) and v(x, y, t) as stated earlier to obtain;

u(x, y, t) =

−2[b + dy + β(B cosβx − C sinβx)(D sin γy + E cos γy)Ae
−α2t

Re ]

Re[a+bx+cy+dxy+(B sinβx+C cos βx)(D sin γy+E cos γy)Ae
−α2t

Re ]
(2.28)

v(x, y, t) =

−2[c + dx + γ(B sinβx + C cosβx)(D cos γy − E sin γy)Ae
−α2t

Re ]

Re[a+bx+cy+dxy+(B sinβx+C cos βx)(D sin γy+E cos γy)Ae
−α2t

Re ]
(2.29)

Equations (2.28) and (2.29) are the general analytic solutions to the 2-D
Burgers’ system. We now choose three sets of parameters a, b, c, d, A, B, C, D,
α, β, and γ to arrive at three sets of exact solutions from which we shall derive
varied sets of initial and boundary conditions for numerical computation. Note
that the parameters are chosen carefully to ensure that the solutions are not
trivial.

The discretization of the Burgers equations is done by the explicit and the
C-N schemes. For the explicit scheme, we discretize in time by the forward
Euler scheme and in space by the second order central difference scheme. For
the C-N, it is the trapezoidal rule in time and second order central difference
scheme in space. This results in linear and non-linear algebraic systems of
equations which are solved by a direct method and Newton’s method respec-
tively. The direct method used in this paper is the LU decomposition which is
also used for the C-N after linearization of the non-linear systems of algebraic
equations by the Newton’s method. The explicit and C-N schemes are given
mathematically by the following recurrence relations.
For the explicit scheme we have

un+1
i,j − un

i,j

k
= −un

i,j

(un
i+1,j − un

i−1,j)

2h
− vn

i,j

(un
i,j+1 − un

i,j−1)

2h

+
(un

i+1,j − 2un
i,j + un

i−1,j)

Reh2
+

(un
i,j+1 − 2un

i,j + un
i,j−1)

Reh2
(2.30)

vn+1
i,j − vn

i,j

k
= −un

i,j

(vn
i+1,j − vn

i−1,j)

2h
− vn

i,j

(vn
i,j+1 − vn

i,j−1)

2h

+
(vn

i+1,j − 2vn
i,j + vn

i−1,j)

Reh2
+

(vn
i,j+1 − 2vn

i,j + vn
i,j−1)

Reh2
(2.31)
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For the C-N scheme we have

un+1
i,j − un

i,j

k
= −1

2
[un+1

i,j (
un+1

i+1,j − un+1
i−1,j

2h
) + un

i,j(
un

i+1,j − un
i−1,j

2h
)]

− 1

2
[vn+1

i,j (
un+1

i,j+1 − un+1
i,j−1

2h
) + vn

i,j(
un

i,j+1 − un
i,j−1

2h
)]

+
1

Re
[
1

2
{(u

n+1
i+1,j − 2un+1

i,j + un+1
i−1,j

h2
) + (

un
i+1,j − 2un

i,j + un
i−1,j

h2
)}

+
1

2
{(u

n+1
i,j+1 − 2un+1

i,j + un+1
i,j−1

h2
) + (

un
i,j+1 − 2un

i,j + un
i,j−1

h2
)}] (2.32)

vn+1
i,j − vn

i,j

k
= −1

2
[un+1

i,j (
vn+1

i+1,j − vn+1
i−1,j

2h
) + un

i,j(
vn

i+1,j − vn
i−1,j

2h
)]

− 1

2
[vn+1

i,j (
vn+1

i,j+1 − vn+1
i,j−1

2h
) + vn

i,j(
vn

i,j+1 − vn
i,j−1

2h
)]

+
1

Re
[
1

2
{(v

n+1
i+1,j − 2vn+1

i,j + vn+1
i−1,j

h2
) + (

vn
i+1,j − 2vn

i,j + vn
i−1,j

h2
)}

+
1

2
{(v

n+1
i,j+1 − 2vn+1

i,j + vn+1
i,j−1

h2
) + (

vn
i,j+1 − 2vn

i,j + vn
i,j−1

h2
)}] (2.33)

where h = Δx = Δy, k = Δt, and h2 = Δx2 = Δy2 due to the square
computational domain.

3 Numerical Results by C-N and the Explicit

Schemes

1. For the first set of parameter values given by; a = 100, b = 0, c = 0,
d = 1, A = 1, B = 1, C = 1, D = 1, E = 0, β = π, γ = π
the exact solutions is given by;

u(x, y, t) =
−2y − 2πe

−2π2t
Re ((cos(πx) − sin(πx)) sin(πy))

Re(100 + xy + e
−2π2t

Re ((cos(πx) − sin(πx)) sin(πy))
(3.1)

v(x, y, t) =
−2x − 2πe

−2π2t
Re ((cos(πx) + sin(πx)) cos(πy))

Re(100 + xy + e
−2π2t

Re ((cos(πx) − sin(πx)) sin(πy))
(3.2)

2. For the second set of parameter values given by; a = 0, b = 5, c = 10,
d = 0, A = 1, B = 0, C = 1, D = 0, E = 1, β = 0, γ = 2π, the exact
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solutions are given by;

u(x, y, t) =
−10

Re
(5x + 10y + e

−4π2t
Re cos(2πy)) (3.3)

v(x, y, t) =
−20 + 4πe

−4π2t
Re sin(2πy)

Re(5x + 10y + e
−4π2t

Re cos(2πy))
(3.4)

3. For the third set of parameter values given by; a = 10, b = 50, c = 0,
d = 0, A = 1, B = 0, C = 1, D = 1, E = 0, β = 2π, γ = 2π, the exact
solutions are given by;

u(x, y, t) =
−100 + 4πe

−8π2t
Re sin(2πx) sin(2πy)

Re(10 + 50x + e
−8π2t

Re cos(2πx) sin(2πy))
(3.5)

v(x, y, t) =
−4πe

−8π2t
Re cos(2πx) cos(2πy)

Re(10 + 50x + e
−8π2t

Re cos(2πx) sin(2πy))
(3.6)

From the above sets of exact conditions, three sets of initial and boundary
conditions are derived to obtain the varying numerical solutions. We vary the
Reynolds number and the grid size and find the effect on the numerical solu-
tions and the stability of the explicit scheme. We provide graphical solutions
for the explicit scheme since they are as accurate as those of the C-N scheme
and no difference can be noticed by way of sight.

(i) The first set of initial and boundary conditions with Re = 500 and 4×4
grid by the explicit scheme yields;
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Figure 1: Numerical solutions for u and v with dt = 0.001 and t = 1.0 seconds

(ii) The second set of initial and boundary conditions with Re = 10,000 and
64×64 grid by the explicit scheme yields;
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Figure 2: Numerical solutions for u and v with dt = 0.001 and t = 1.0 seconds

(iii) The third and last set of initial and boundary conditions with Re =
50,000 and 64×64 grid by the explicit scheme yields;
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Figure 3: Numerical solutions for u and v with dt = 0.001 and t = 1.0 seconds

We now turn our attention to the L1 error analysis. We determine this
error for the first set of initial and boundary conditions as follows;

(i) For the explicit scheme, the first set of solutions in u and v respectively
yields;

Table 1: Order of Convergence for solution u and v at Re = 4000, t = 1 sec,
dt = 0.001
No. of Cells L1 error in u Order No. of Cells L1 error in v Order
(4,4) 1.372671e-09 (4,4) 7.73968e-10
(8,8) 4.589355e-10 1.580623 (8,8) 3.559509e-10 1.12060
(16,16) 1.270045e-10 1.853412 (16,16) 1.109287e-10 1.68205
(32,32) 3.295523e-11 1.946300 (32,32) 3.024347e-11 1.87494
(64,64) 8.277211e-12 1.993291 (64,64) 7.734937e-12 1.96716
(128,128) 1.999203e-12 2.049720 (128,128) 1.876935e-12 2.04301
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(ii) For the C-N scheme, the first set of solutions in u and v respectively
yields;

Table 2: Order of Convergence for solution u and v at Re = 4000, t = 1 sec,
dt = 0.001
No. of Cells L1 error in u Order No. of Cells L1 error in v Order
(4,4) 1.372733e-09 (4,4) 7.740016e-10
(8,8) 4.590219e-10 1.58042 (8,8) 3.560174e-10 1.12039
(16,16) 1.271022e-10 1.85257 (16,16) 1.110144e-10 1.68120
(32,32) 3.305757e-11 1.94294 (32,32) 3.033822e-11 1.87154
(64,64) 8.381246e-12 1.97974 (64,64) 7.833241e-12 1.95346

4 Conclusion

From tables 1 and 2, it is clearly noticed that the explicit and C-N schemes
are accurate and compare well with each other and are of second order conver-
gence in space. The explicit scheme is stable for small time stepping and high
Reynolds number. Furthermore since the L1 error approaches zero as the mesh
is refined, consistency is achieved in these schemes. Variation in the Reynolds
number does not affect the numerical solutions thus justifies the balance be-
tween the non-linear convection terms and the diffusion terms in the Burgers’
equation.
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