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ABSTRACT
Asset-based lending companies and other loan providers are exposed to risk of loan

defaults by borrowers. To reduce this risk, these companies acquire credit insurance. Thus
when the borrower defaults in payment, the insurance company covers a percentage of the
outstanding balance which generates a way to lessen and spread credit risk that the lender
incurs. Therefore there are a number of methods put in place such as frequency-serverity
and hazard rate models used to value credit insurance. Valuing of credit insurance for
asset-based lending companies is a challenging task especially in Kenyan market, where
in the case of a borrower’s default, the process for recovering of the collateral will last a
longer period of more than a year and where data on the borrower’s behaviour of payment
is of poor quality or generally unavailable. The existing methods do not consider the
time to repossession of the collateral in case of loan default. Our proposed model takes
into account time to repossession of the collateral and can be used in emerging market
economies where other available methods may be either unsuitable or are too complex
to implement due to lack of enough data. Therefore, this project aims to incorporate
the discrete and continuous time models to forecast loss reserves in credit insurance for
asset-based lending companies. First, we established a discrete-time model to describe
delinquency of credits in loan insurance product. Martingale properties, Replicating of
asset portfolio strategy and Ito’s calculus are used to obtain results on expected values
of future losses of credit insurance products. Secondly, we used the Black-Scholes model
to develop a continuous-time model to forecast future losses in credit insurances. This is
constructed by linking it from the discrete-time model using the methods of stochastic
calculus. We estimated the loss reserves by first applying the Geometric Brownian Motion
simulation to predict the probability of default of the borrower. The probability of default
was then multiplied by the simulated outstanding balances, a factor that considers the
time to repossession of the collateral and the assumed percentage coverage of the insurance
company to obtain estimates of loss reserves in credit insurance.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the study

Credit Insurance is used to pay out a loan balance or to postpone debt payments on the

customer’s behalf in the event of disability or job loss. Credit insurance can be purchased

to insure all kinds of consumer loans including car loans, loans from finance companies,

and home mortgage borrowing. Credit insurance is as a result of credit risk.

Whilst credit risk has not been primary area of consideration by Actuarial profession in

history, Actuaries have nevertheless made important contributions in the development of

modern credit risk modeling methods. The most common credit risk models used are

frequency-severity or hazard rate models. As credit risk became an increasing concern

in recent years, various advanced methods have been put in place to widely measure the

spread of credit risk. Therefore there is a need for actuaries to familiarize with these

popular methods and their advantages and disadvantages, in order to compete effectively

in this rapidly growing area.

Currently, reduced and structural form models constitute to two classes of credit risk

modeling methods. The structural approach provides an explicit connection between de-

fault risk and capital structure, while the reduced form approach models credit defaults

as exogenous events driven by a stochastic process (such as a Poisson jump process). In

this case, most actuarial models used for credit risk measurement lie within the reduced

form class. Structural models, pioneered by [7], employ modern option pricing theory in

corporate debt valuation. Merton model [7] was the first structural model and has served

as the cornerstone for all other structural models.

Structural approach, led by Merton model [7], has a very nice feature of connecting credit

risk to underlying structural variables. It provides both an intuitive economic interpre-

tation and an endogenous explanation of credit defaults, and allows for applications of

option pricing methods. As a result, structural models not only facilitate security valua-
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tion, but also address the choice of financial structure.

For this study we first focus on the binomial option pricing model then link it to the

Black-Scholes model. The binomial option pricing model uses an iterative procedure al-

lowing for the specification of nodes, or points in time, during the time span between the

option valuation date and the option’s expiration date.

1.1.1 Definition of key terms

(i) Loss Reserves

Loss reserve is an estimate of an insurer’s liability from future claims. Loss reserves

are typically comprised of liquid assets, and they allow the insurer to cover claims

made against policies that it underwrites. Forecasting loss reserves can be a complex

undertaking. Insurers must consider the duration of the insurance contract, the type

of insurance offered and the odds of a claim being resolved quickly. Insurers have to

adjust their loss reserve calculations under different circumstances.

When an insurer underwrites a new policy, it records a premium receivable (which

is an asset) and a claim obligation (which is a liability). The liability is considered

part of the unpaid losses account, which represents the loss reserve.

(ii) Asset -based lending

With asset-based lending, in an instance where an individual borrows money to buy,

for example, a home or even a car, the house or the vehicle serves as collateral for

the loan. If the loan is not repaid in the agreed time period, it falls into default, and

the lender may then recover the car or the house in order to pay off the amount of

the loan.

1.2 Statement of the Problem

Asset-based lending companies and other loan providers are exposed to risk of loan de-

faults by borrowers. To lessen this risk,these companies acquire credit insurance. There-

fore when the borrower defaults in his or her credit payment, the insurance company

covers a percentage of the outstanding balance and the rest of the balance is taken care

of by the insured lender through repossession of the collateral. Although data might be
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available, the pricing of credit insurance for asset based lending companies is a challenging

task and is even more challenging in the case of emerging markets like Kenya, where, in

the case of a borrower’s default, the process of repossession of loan collateral may last a

longer period of time of more than a year and where data on payment behavior is gen-

erally unavailable or of poor quality. The current valuation methods do not consider the

time to repossession of an asset in case of loan default. Credit insurance for the case of

asset-based lending differs from the other types of insurance contracts in several ways.

As a result of this, it is difficult to use the conventional techniques for valuing credit

insurance contracts.

First, in life insurance, risk increases with time while in credit insurance, the risk

involved decreases over the time because of spreading payments over multiple period.

Secondly, in credit insurance, prepayments and default rates depend on macroeconomic

factors that include interest rates and individual income among others hence a significant

amount of systematic risk is involved in the credit insurance. In contrast, insurers can

lessen the risks of conventional insurance policies through geographic diversification

Thirdly, casualty insurance contracts use historical performance to cover subsequent

periods since they only consider a single period. However, credit insurance for asset-based

lending companies cover multiple periods. Therefore,it is impossible to use this informa-

tion on historical experience to determine the premiums for credit insurance. Premiums

for life credit insurances are determined at the date of inception of the policy unlike the

other types of insurance policies.

Finally, credit insurance only covers the risk for the lender and not the borrower’s

risk. Because of these factors, the valuation of premiums for credit insurances requires

extensive research with new approaches. A more appropriate model for pricing should

give more emphasis on minimizing default risk. My proposed model applies methods of

stochastic calculus to come up with a forecast of loss reserves in credit insurances for

asset-based lending companies.

1.3 Objectives of the study

1. To develop a decrete time model to model the delinquency of credit.
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2. To construct a continuous time model to predict future losses in credit Insurances and

how time to repossession affects the future loss reserves estimates.

1.4 Significance of the study

• Instead of replacing currently used models, this will also present an alternative

method for insurers looking for a reasonable check for their reserves and premiums

levels. Our proposed projection techniques can be applied in any market, espe-

cially in emerging market economies where other existing methods may be either

unsuitable or are too difficult to use due to inadequate significant data.

• Using our discrete-continuous time model, all insurers in Kenya even those with

absence of resident Actuaries can use historical data from existing insurers and

their office experience data to accurately value credit insurance contracts. This

will in turn grow the number of credit insurance companies hence bringing foward

healthy competition and improved services.

• Financial institutions will be protected from the risk of loan defaults.

1.5 Basic Concepts

1. Brownian Motion.

Brownian motion (Bt , t ≥ 0) is a continuous time stochastic process with a continuous

state space and has the following properties;

• B0 = 0

• Bt has independent increments i.e Bt−Bs is independent of (Br, r ≤ s) whenever

s < t. Thus the changes in the value of the process over any two non-overlapping

periods are statistically independent.

• Bt has stationary increment, i.e the distribution of Bt −Bs depends only on t-s.

• Bt has Gaussian increment, i.e the distribution of Bt −Bs is N(0,t-s).
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• Bt has continuous sample paths t −→ Bt,i.e the graph of Bt as a function of t,

does not have any breaks in it [12]

2. Martingales.

A stochastic process X is called an Ft martingale, if the following conditions hold:

• X is adapted to filtration Ft t ≥ 0

• For all t, E(|Xt|) <∞

• For all s and t with s ≤ t, the following relation holds:

E(|Xt|Fs) = Xs

• A process satisfying, for all s and t with s ≤ t, the inequality E(Xt|Fs) ≤ Xs

is called a supermatingale and a process satisfying E(Xt|Fs) ≥ Xs is called a

submatingale [11]

3. Equivalent probability measure P and Q.

Two probability measure are equivalent if they are defined on the same sample space

and have the same null sets (i.e sets that have the probability zero.)

Mathematically P and Q are equivalent if P(A) > 0⇔ Q(A) > 0, where P(A) denotes

probability under measure P and Q(A) denotes probability under measure Q.

4. The Black Scholes model(Continuous model).

Is a pricing model used to determine the fair price or theoretical value for a call or a

put option

Assumptions

i) Price of the underlying share follows a geometric Brownian motion, i.e the share

price changes continuously through time according to the stochastic differential

equation.

dSt = St(µdt+ σdZt)

where; St is the share price, µ is the drift, σ is the volatility and Zt is a standard

Brownian motion.
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ii) The risk-free rate of interest is constant, the same for all maturities and same for

borrowing or lending.

iii) There are no risk-free arbitrage opportunities.

iv) The underlying asset can be traded continuously and infinitesimally.

v) No taxes or transaction costs.

vi) Unlimited short selling is allowed.

5. The Binomial Model (discrete model)

Is an option pricing model that uses an iterative procedure, allowing for the specifi-

cation of nodes or points in time during the time span between the time of valuation

and the options expiration date.

The model reduces possibilities of price changes and removes the possibility of arbi-

trage.

Assumptions

i) There are no trading costs or taxes.

ii) There are no minimum or maximum units of trading.

iii) Stock and bonds can only be bought and sold at discrete times 1,2,3..

iv) The principle of no arbitrage applies

Consider one period binomial model, we start at time 0, when the stock price = S0.

The stock price will do one of two things;

• Jump upwards to S0u

• Jump downwards to S0d

This is represented as;

S0

S0d

S0u

6



Where u is the proportion of upward price movement and d is the proportion of downward

price movement.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

The application of derivatives for risk mitigation and uncertainty inherent in financial

instruments has become a very relevant component in the global market. Based on the

similar financial contracts with other type of contracts, there have been more research on

their applications to other types of contracts. In recent times, the most commonly used

derivatives are the options because they are not obligatory in nature. Options give the

right but not the obligation to sell or buy the underlying asset or security at a specified

price on a specified future date. Baxter M. and Rennie A. [1] presented the idea of hedging

and pricing by arbitrage in the discrete-time setting by binary trees. The key probabilis-

tic concepts of conditional expectation, martingales, change of probability measure and

representation are all introduced. They also presented the concepts of expectation pricing

versus arbitrage. Expectation was used as a tool for risk-free construction. The concepts

of backward induction (extending the construction portfolio back one tick at a time from

claim to required starting place) are also looked at.

Baxter M. and Rennie A. [1] also brought to table the idea of hedging and pricing by

arbitrage in the continuous time setting. Brownian motion is brought out as well as the

Ito calculus needed to manipulate it culminating in a derivation of the Black Scholes

formula. Pricing of an individual asset subject to credit risk has been extensively studied

in the literature we refer to Duffie D.and K.Singleton(1996) [3] for the survey of such

pricing models. Among them, Jarrow, R. and S. M Turbull [4] assumed that the payoffs

upon default are expressed as an exogenous fraction of the claim and they showed, under

some regularity conditions, the price is given by the expected discounted payoffs under the

risk neutral probability measure. Duffie D. and K. Singleton(1996) [3] proposed another

model in which the payoffs are discounted by an interest rate that is adjusted so as to

reflect the effect of default risk. The Health-Jarrow-Morton type model of defaultable
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term structures with multiple ratings was proposed by T.R Bielecki and M.Rutkowski [5]

and P.Schonbuncher [6]. This approach:

• Formulates sufficient consistency conditions that tie together credit spreads and re-

covery rates in order to construct a risk neutral probability Q* and the corresponding

risk neutral intensities of credit events.

• Shows how the statistical probability P and risk neutral probability Q* are con-

nected via the market price of interest rate risk and the market price of credit risk.

• Combines market and credit risk.

In 1973, Merton developed the contingent claims model that provides the motivation

for the behavior of the borrower using the options theory Black.F & Scholes [7]. Most

studies initially used this approach in the valuation of mortgages by focusing default and

prepayment as individual risks. For example, Cunningham,D.F [2] used the Black-Scholes

option-pricing model to value the risk of default by considering the default risk as a put

option sold by the FHA and purchased by the buyer of a home for the protection of risk

of default to the lender.

Ashok Bardhan and collegues in their Journal of Real Estate Finance and economics(2006)

[8], developed a new option-based method for valuation of mortgage insurance contacts

in closed economy where agents are risk neutral. As an application, they priced a typical

Serbian government backed mortgage insurance contract. Zeyep Corpur [9] used the

concept of Geometric Brownian motion to describe the random behaviour of the asset

price St over time.In my case, I examine the random behaviour of the delinquency index

Yt.
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CHAPTER THREE

RESEARCH METHODOLOGY

We acknowledge Oscar Perez et al [8] in his study on Stochastic Calculus applied to estima-

tion of loss reserves in mortgage insurance, for the concept is utilized in this methodology.

In his study he focused on mortgage backed securities in Mexico by applying the discrete

and continous time model to forecast loss reserves in mortgage insurance.

3.1 Credit Risk Modeling

Here, we will model credit risk and present Insurance function in order to obtain the

expected present value of the payments of the Insurance. This will be done by applying

the binomial model(discrete model). Consider a borrower with a loan term of N months

given by a financial institution. Let a stochastic process Y represent the number of

defaultable periods (delinquency index) as of time t. Then,

Y = (Yt)t∈T , for T = (0, 1, 2, ..., N − 1)

Under certain circumstances, the value of Yt can be negative. In such scenarios we treat

Y as absolute value. Let pi represent the probability that the borrower fails to make

his credit payment for time i. Denote a function f(Yt) which is a function that depends

on the delinquency index. Consider cash bond Bt to be another stochastic process to

represent the time-value of money. Assume a constant risk-free rate r. Thus Bt =B0ert

with condition that B0=1. We thus analyze the simple case of the process Yt by applying

binomial trees. That is, when N=2.

Consider the following;
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Y0

Y0d

Y1

1− p0

Y0u

p0

Where;

u represents the value of the delinquency index Y1 when the borrower defaults his pay-

ment and d represents the value the delinquency index Y1 when the borrower pays his

credit payment. p0 denotes the probability that borrower defaults payments for time 0.

Consider f(Yt) defined above to represent compensation by the insurer due to the value

of the delinquency index at time 1. Thus we have the following figure:

Y0

f

Y0d

f(d)

1− p0

Y0u

f(u)
p0

From the above figure,we can obtain the expected present value of the compensation by

the insurance using the following formula:

E = E[f(Yt)] = e−r[p0 ∗ f(u) + (1− p0) ∗ f(d)] (3.1)

Where;

f(u) repesents compensation paid by an Insurance company in which the borrower defaults

payment and

f(d) repesents compensation paid by an Insurance company in which the borrower pay

the corresponding payment of his credit.

Thus by Kolmogorov’s strong law of large numbers, if the insurance company has a large

number of portfolio, then that company can expect a loss given by formula (3.1).
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3.2 Change of probability measure and free arbitrage valuation

We can also arrive at equation (3.1) through construction of replicating assets portfolio.

The technique of construction of replicating asset portforlios is widely used in the valu-

ing of financial derivatives. An extension of this is explained further in the subsequent

sections. Based on the examples of the binomial tree shown previously, we assume that

there exists a financial asset A(Yt) that depends on the delinquency index.

Suppose that an insurer who has a benefit payment of f(Yt) wants to hedge its losses by

replicating them using a instruments of the asset A and b cash bonds of B. Thus the

insurer is willing to posess a portfolio, Ct, constructed in the following manner:

Ct = aA(Yt) + bBt (3.2)

Thus, based on the binomial tree example given above, we can represent the value of that

portfolio Ct diagramatically as:

aA(0)+bB0

aA(d) + bB0er
1− p0

aA(u) + bB0er

p0

Remember the insurance company wants to replicate the corresponding losses f(u) and

f(d) with this portfolio. Thus the company has to have a and b satisfying the following

equations:

aA(u) + bB0e
r = f(u) ...................(i)

and

aA(d) + bB0e
r = f(d) ...................(ii)

Solving equations (i) and (ii) simultaneously, we have:

a = f(u)− f(d)
A(u)− A(d)

12



and

b = 1
erB0

[f(u)− ( f(u)− f(d)
A(u)− A(d))A(u)]

We can therefore obtain the value of the portfolio at time 0 by substituting a and b in

equation (3.2). Therefore we have:

C0 = e−r[(A(0)er − A(d)
A(u)− A(d) )f(u) + (A(u)− A(0)er

A(u)− A(d) )f(d)]

Moreover if,

q0 = A(0)er − A(d)
A(u)− A(d) (3.3)

we have:

C0 = e−r[q0f(u) + (1− q0)f(d)] (3.4)

Where q represents the probability due to A(Yt). Thus equation (3.4) denotes another

expected present value of the losses of an insurance company through the use of a technique

of asset-liability matching(free arbitrage valuation). The above calculations allow the

insurer to adjust the expected claims by using a portfolio which allows to replicate future

losses. Based on ”q” definition above,for the no arbitrage condition to hold, we have;

A(u)<A(0)er<A(d) } , 0<q<1

3.3 Generalization of the Binomial model

In order to generalize the binomia model in the last section, we need to get aquainted

with the following concepts.

• Conditional expectation. It’s a a technique for addition of information to the

expected value of a stochastic process denoted by Eπ[Yt|Ft]. Where π is a probability

measure (P or Q).

• Filtration. A filtration F = (Ft)t=0,1,2... is the information available up to and

including each time of a process. In this project, the filtration will represent the

information of the delinquency index in time.

• Financial Claim. Is the function f(.), that represents compensation by the insur-

ance company in this project.

13



• Adaptive and previsible processes: A stochastic process Yt is adaptive if given

the filtration Ft we can determine the value of Ys and a process is previsible if given

the filtration Ft we can determine the value of Yt+1. That is, a stochastic process

Yt is adaptive if

Eπ[Yt|Ft] = Yt

or previsible(capable of being predicted) if

Eπ[Yt|Ft−1] = Yt

• Martingale: An adaptive process Yt to the filtration Fi is a martingale under the

probability measure π if Eπ[Yt|Fs] = Ys for t ≥ s

Based on the example presented in the previous section, the existence of the probability

measure Q is equivalent to state that the present value of the asset that depends on the

delinquency index A(Yt), is a martingale. We can base this argument from formula 3.4:

q0 = A(0)er − A(d)
A(u)− A(d)

q0A(A(u)− A(d)) = A(0)er − A(d)

A(0) = q0e
−rA(u) + (1− q0)e−rA(d)

= EQ[e−rA(Yt)|F0] = e0A(0)

We will use the binomial tree of two steps to generalize the binomial model.In this case

we will do our analyzation by considering the case when N = 3, (t=0,1,2) under the

probability measures P and Q.

Where N is the loan term.
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Y0

1

Y0u

3
7 Y0d

21− pd

6 Y0dupd1− p0

Y0u

2
5 Y0ud

1− pu

4 Y0u
2

pu

p0

Based on the diagram above we can name the outcomes of the delinquency index and

its proportion of upward and downward movement based on the path followed by the

process, for example, ud shows the outcome when the process had an upward movement

in the first time and then a downward movement in the second step. We can name the

filration and the corresponding probabilities as follows; At time 0, the filtration of the

process will be, F0 = {1} At time 1, the filtration of the process will be F1 = {1, 2} or

F1 = {1, 3}. At time 2, the filtration is:

F2 ={1,2,4} orF2 ={1,2,5} orF2 ={1,3,6} orF2 ={1,3,7}

Thus the corresponding probabilities will be;

p{1} = 1 : p{1,2} = p0 : p{1,3} = 1− p0 : p{1,2,4} = p0pu : p{1,2,5} = p0(1− pu) :

p{1,3,6} = (1− p0)pd : p{1,3,7} = (1− p0)(1− pd)

If we apply the compensation(insurance) function f(.) to each of the branches of the tree,

we have:
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Y0

1
Y0d

f(d)

3 7 Y0d
2 f(dd)

1− pd

6 Y0du f(du)pd1− p0

Y0u

f(u)

2 5 Y0ud f(ud)
1− pu

4 Y0u
2 f(uu)pu

p0

t = 0 t = 1 t = 2

In our generalization and considering the methods in the previous section, we can calculate

the expected present value of the possible losses of the insurance company which issues

f(.) as follows. At time 1, we have;

EP{1,2} = e−rEP[f(Y2)|F1 = {1, 2}] = e−r(puf(uu) + (1− pu)f(ud)) (3.5)

EP{1,3} = e−rEP[f(Y2)|F1 = {1, 3}] = e−r(pdf(du) + (1− pd)f(dd)) (3.6)

WhereEP{1,2} is the expected present value in the tree node given by the filtration {1,2},

under the probability measure P and EP{1,3} is the expected present value in the tree node

given by the filtration {1,3}. At time 0, we can estimate the expected present value of

the losses of the company at time as follows;

EP{1} = e−rEP[f(Y1)|F0 = {1}] = e−r(p0EP{1,2} + (1− p0)EP{1,3}) (3.7)

We can now apply the method of replicating asset portfolio in order to make change of

probability measure. This will enable us find another way of expressing the expected

present value of the losses to the insurance company:

a) Suppose an insurance company wishes to match its losses by using the following port-

folio:

Ct = atA(Yt+1) + btBt

Where A(Yt) is an asset whose value depends on the delinquency index Yt and Bt is a

cash bond that has the risk-free rate r.
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b) Then the above portfolio Ct should replicate the losses of the insurance company. Thus

we have;

atA(Yt+1)|Ft) + btB0e
r = f(Yt+1|Ft) (3.8)

From equation (3.8) we have;

atA(Yt+1|F+
t ) + btB0e

r = f(Yt+1|F+
t ) .....(i)

and

atA(Yt+1|F−t ) + btB0e
r = f(Yt+1|F−t ) .....(ii)

solving equations (i) and (ii) simultaneously,we obtain;

at = f(Yt+1|F+
t )− f(Yt+1|F−t )

A(Yt+1|F+
t )− A(Yt+1|F−t )

bt = 1
erBt

[f(Yt+1|F+
t )− ( f(Yt+1|F+

t )− f(Yt+1|F−t )
A(Yt+1|F+

t )− A(Yt+1|F−t ))A(Yt+1|F+
t )]

Where; F+
t is the filtration at time t when in the last path of that filtration there was a

rise in the value of the delinquency index, and F−t is the filtration at time t when in the

last step of that filtration there was a decrease in the value of the delinquency index. If

we substitute at and bt in Ct we obtain:

Ct = e−r[qtf(Yt+1|F+
t ) + (1− qt)f(Yt+1|F−t )]

with

qt = A(Yt)er − A(Yt+1|F−t )
A(Yt+1|F+

t )− A(Yt+1|F−t ) (3.9)

As explained above, 0<qt<1 because of;

A(Yt+1|F+
t+1)<A(Yt)er<A(Yt+1|F−t+1)

We thus can be able to change the probability measure from P to Q. Formulas (3.5), (3.6)

and (3.7) will therefore turn into:

EQ{1,2} = e−r(EQ[f(Y2)|F1) = {1, 2}]) = e−r(quf(uu) + (1− qu)f(ud)) (3.10)

EQ{1,3} = e−r(EQ[f(Y2)|F1) = {1, 3}]) = e−r(qdf(du) + (1− qd)f(dd)) (3.11)
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EQ{1} = e−r(EQ[f(Y2)|F0) = {1}]) = e−r(q0EQ[f(Y2)|F1 = {1, 2}]+(1−q0)EQ[f(Y2)|F1) = {1, 3}])

(3.12)

with;

q0 = A(Y0)er − A(Y1|F−0 )
A(Y1|F+

0 )− A(Y1|F−0 ) = A(0)er − A(d)
A(u)− A(d)

qu = A(Y1)er − A(Y2|F−1 )
A(Y2|F+

1 )− A(Y2|F−1 ) = A(u)er − A(ud)
A(uu)− A(ud)

qd = A(Y1)er − A(Y2|F−1 )
A(Y2|F+

1 )− A(Y2|F−1 ) = A(d)er − A(dd)
A(du)− A(dd)

We illustrated in the previous examples that the change in the probability measure to Q

implied that the present value of the asset A(Yt is a martingale. The follwoing is now the

generalization of the results:

qt = A(Yt)er − A(Yt+1|F−t )
A(Yt+1|F+

t )− A(Yt+1|F−t )

A(Yt) = qte
−rA(Yt+1|F−t ) + (1− qt)e−rA(Yt+1|F−t )

= EQ[e−rA(Yt+1)|Ft] = e0A(Yt)

This is a very significant result that will be used in the following chapters.

3.4 The Continuous model

In this section we bring to table concepts that will enable us model the delinquency index

in continous time.

a) Brownian motion:

Let’s modify the binomial tree shown in the previous sections. If we take changes in

time to correspond to 1
N

where N is the term of the loan (asset-based) and suppose that

the borrower can increase or decrease its ”delinquency index” y=
√

1
N

with probability

p= 1
2 . Let xi be a random variable:

Xi =

 1 with probability p = 1
2

−1 with probability 1-p = 1
2
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Therefore the delinquency index at time t can be written down as:

Y t = x1y + x2y + x3y + ...+ xty = x1
√

1
N

+ x3
√

1
N

+ ...+ xt
√

1
N

Based on the central limit theorem: Yt ∼N(0, t).

The unconditional probability density function which follows Yt ∼N(0, t) at a fixed

time t for Wiener process (Brownian Motion process)is given by;

f(Wt(x)) = 1√
2πt

e−
x2
2t

The expectation is zero,

E(Wt) = 0

E2[Wt] = E[W 2
t ]− 0 = E[W 2

t ] = t

Thus

Yt ∼ N(0, t)

b) The ltô’s processes;

Suppose that there exists a real number Y0 and two adapted process µ and σ such that

the following relation holds for all t ≥ 0, then, Y is an ltô process;

dYt = σtdWt + µtdt (3.13)

Where:

σt is a stochastic process which represents the volatility of Y, µt is the drift of Y.

Additionally, the ltô process in equation 3.13 can be written in integral form as;

Yt = Y0 +
∫ t

0
σsdWs+

∫ t

0
µsds (3.14)

The ltô process will be a martingale if the drift µt is equal to zero. The special case of

ltô processes can be diffusion processes in such away that the drift and volatility are a

function of the time and of the stochastic process itself as shown;

dYt = σ(t, Yt)dWt + µ(t, Yt)dt (3.15)

We thus consider the the markovian property of the diffussion processes that is, if for

any function g:

EP[g(Xt|Fs)] = EP[g(Xt)|Xs], for t > s
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Another stochastic differential equations(SDEs) widely used are the Homogeneous

Brownian Motion which is given by:

dYt = σdWt + µdt

Where σ and µ are constants. Another very important process to be used in this work

is the Geometric Brownian Motion.

Geometric Brownian Motion

It’s a continuous time stochastic process in which the logarithm of the randomly vary-

ing quantity follows a Brownian Motion with drift. Thus a stochastic process is said to

follow a Geometric Brownian Motion if it satisfies the following stochastic differential

equation;

dYt = µYtdt+ σYtdWt

Where Wt is a Wiener process (Brownian Motion) and (µ the drift) and (σ the volatil-

ity) are constants. The expression of this diffusion is

dYt
Yt

= σdWt + µdt (3.16)

We can solve this stochastic differential equation (3.16) by applying ltô’s lemma (shown

below); This model is very important in the formulas developed further.

c) ltô’s lemma

Assume that Y has a stochastic differential given by

dYt = µtdt+ σtdWt (3.17)

Where µ and σ are adapted processes. Define the process Z by Zt = f(t, Yt). Then Z

has a stochastic differential given by

df(t, Yt) = {∂f
∂t

+ µ
∂f

∂y
+ 1

2σ
2∂

2f

∂y2 }dt+ σ
∂f

∂y
dWt (3.18)

Proof. Taking Taylor expansion including second order terms, we obtain;

df = ∂f

∂t
dt+ ∂f

∂y
dY + 1

2
∂2f

∂y2 (dY )2 + 1
2
∂2f

∂t2
(dt)2 + ∂2f

∂t∂y
dtdY
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Squaring equation (3.17) we obtain;

(dY )2 = µ2(dt)2 + 2µσdtdW + σ2(dW )2 (3.19)

Substituting equation (3.17) and (3.19) into the Taylor expansion taking into account

the following conditions,

(dt)2 = 0

dt× dW = 0

(dW )2 = dt

We obtain the result (3.18)

We can obtain the solution to the Geometric Brownian Motion SDE shown above by

applying Itô’s lemma as follows;

d(ln Yt) = (ln Yt)′dYt + 1
2(ln Yt)′′(dYt)2 (3.20)

= dYt
Yt
− 1

2
1
Y 2
t

(dYt)2 (3.21)

Where (dYt)2 is the quadratic variation of the SDE

(dYt)2 = µ2Yt
2(dt)2 + 2σYt2µdWtdt+ σ2(Yt)2(dWt)2

Assuming;

(dt)2 = 0

dt.dW = 0

(dW )2 = dt

Thus (dYt)2 = σ2(Yt)2dt
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Substituting the value of dYt and (dYt)2 in equation 3.21 we obtain;

d(ln Yt) = (µ− 1
2σ

2)dt+ σdWt

Written in the integral form,this leads to ln Yt = Y0 exp
[
(µ− 1

2σ
2)t+ σWt

]
Thus this equation can also be written as;

Yt = Yt0e
σ(Wt−Wt0)+(µ− 1σ2

2 )(t−t0) (3.22)

3.5 Credit Insurance and reserving

In this study we are looking at credit insurance in the case of asset-based lending where a

borrower borrows money to buy a car or a house. Thus the definition for credit insurance

becomes; a financial tool for transferring credit risk of a credit from a financial institution

to an insurance company. The financial institution has to pay a premium and the insur-

ance company will pay a percentage of the outstanding balance of the loan plus interests

if there is a default. In othis case Credit insurance will pay the benefit only when the

borrower defaults in their payments and the financial institution takes over or recover the

underlying car or house (collateral) for that loan .

We can explain reserving by using the concepts shown in the previous chapter such as

filtration and the markovian properties. Therefore if we denote the loss reserve at time

t as OCRt, X the random variable representing the losses, and Ft the filtration of the

delinquency index we can write

OCRt = g(Ft) = E(X|Ft)

We can say that this OCRt exhibits markovian property.We can build it further in the

following sections.

3.6 Black- Scholes constructs and forecasts

Assume that the delinquency index can be modeled as a geometric Brownian motion, we

will have;
dYt
Yt

= σdWt + µdt (3.23)

⇔ Yt = Yt0e
σ(Wt−Wt0 )+(µ− 1σ2

2 )(t−t0) (3.24)
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EP[Yt|Yt0 ] = Yt0e
µ(t−t0)

Consider cash bond Bt as the stochastic process that give the risk-free rate, that is:

dBt

Bt

= rdt⇔ Bt = Bt0e
r(t−t0) (3.25)

Rememeber we need an asset that depends on the delinquency index whose present value

is a martingale. Denote that asset as A(Yt) and we suppose that its linearly proportional

to the delinquency index as follows;

A(Yt) = At ∗ Yt

Let’s also denote D=(Dt)t ≥ 0 to be the stochastic process representing the present value

of At:

Dt = B−1
t A(Yt) = B−1

t AtYt

When we apply ltô’s lemma to Dt we get:

dDt

Dt
= σdWt+ (µ− r)dt (3.26)

Proof. Recall that dYt = µYtdt+ σYtdWt

dDt = d(B−1
t AtYt)

Bt = exp(rt)B−1
t = exp(−rt)

dBt = rexp(rt)dt

dB−1
t = −rexp(−rt)dt

dDt = B−1
t AtdYt +B−1

t YtdAt + dB−1
t YtAt

B−1
t At(µYtdt+ σYtdWt) + YtAt(−rB−1

t )

B−1
t AtµYtdt+B−1

t AtσYtdWt − YtAtrB−1
t dt (3.27)

But Dt = B−1
t AtYt

Thus equation 3.27 becomes;

dDt

Dt

= (µ− r)dt+ σdWt as above
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Based on the construction of asset portfolio strategy we were able to make change of

probability measure. This implied the present value of the asset which depends on the

delinquency index was a martingale. Therefore, we will make a change in probability

measure from P to Q on the process Dt in order to make Dt to be a martingale. Based on

the Cameron - Martin - Girsanov theorem, for each probability measure Q equivalent to

P and if we have a previsible process γ = (γt) then: W̃t=Wt +
∫ t

0 γs is also Q Brownian

motion with dW̃t= dWt+ γtdt.

Substituting in (3.26F) we have:
dDt
Dt

= σ dW̃t + (µ− r − γtσ)dt

for Dt be a martingale we need (µ− r− γtσ) = 0 since drift equals 0. The solution of this

equation is the Market price of risk;

γt = µ− r
σ

(3.28)

But Dt is a martingale;
dDt

Dt

= σdW̃t (3.29)

Considering the concepts shown so far, the delinquency index under the probability mea-

sure Q is:
dYt
Yt

= σdW̃t + rdt

Proof. Recall
dYt
Yt

= σdWt + µdt (3.30)

But dWt = dW̃t − γtdt

and from γt = µ− r
σ

r = µ− σγt

Thus equation (3.29) becomes

= σ(dW̃t − γtdt) + µdt

= σdW̃t − σγtdt+ µdt

= σdW̃t + (µ− σγt)dt

= σdW̃t + rdt
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as above

Thus under the probability measure Q the drift of the delinquency index is the risk-free

rate. Solving this stochastic differential equation, we can have estimate of the delinquency

index;

Yt = Yt0e
(σW̃t−W̃t0 )+(r− 1σ2

2 )(t−t0) (3.31)

This is an important result which will enable us forecast future losses of a credit insurance

which pays f(T):

OCRt = EQ[B−1
u f(T )|Ft0 ] (3.32)

Where:

OCRt is the reserve at time t given information of the filtration Ft0 .

Bt = Is cash bond which give the risk-free rate r.

T = t+ u and u = T − t

f(T) = Is the compensation by the insurance company. T = Is the random variable that

represents the time to paying the sum insured. Remember, the credit insurance pays

claims when the car or house is taken over. In the case the outstanding loan balance

upon default is more than the value of the collateral, the insured lender will exercise the

right to sell the collateral at the outstanding loan balance. This is achieved by the lender

receiving from the insurer the difference of the outstanding loan and the market value of

the car or house at the time of default. The contract is therefore settled by the difference.

In this case, the total cost of the policy holder will be the premium paid and the value

of the collateral upon default. In addition to the time of valuation, t we must consider

another random variable u representing the time to repossession of the car or hous and

thus T = t + u as denoted above.

Remember that we have 3 time functions in equation (3.31): T, t and t0. The time

to repossess a car or a house is not certain, it can take more than a year. That’s why

we use the random variable u. Moreover, the financial institutions which insures itself

with the insurance company have delays in giving out the information of the delinquency

index and this gives the reason for use of t0 which is about one month or two. Based

on these reasons, we are going to forecast the future losses of credit insurance at time t,
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with the information given by the financial institution at time t0 with the filtration Ft0.

We can see that t0 < t < T . Consider t0 to be independent of t,we can develop equation

(3.31). Consider f(T) to be the function that represents compensation by the insurance

company(assuming that the car or the house is recovered after R months defaultable

period). It will be defined as a percentage of the outstanding balance at time of recovering

the car or house if the delinquency index is greater than R. Where R is the delinquency

index threshold.That is:

f(T ) =


%Cov ∗ (OB)IT for Yt > R

= %Cov ∗ (OB)IT ∗ IYt ≥ R

0 for Yt < 0

%Cov = Is the percentage of the covered outstanding balance by the inurance company.

(OB)IT = Is the outstanding balance of the credit at time T.R is the delinquency index

threshold.

IYt = Is an indicative random variable:

IYt =

 1 if event Yt occurs

0 if event Yt does not occur

Then, we have;

OCRt = EQ[B−1
u f(T )|Ft0 ] = EQ[B−1

u ∗%Cov ∗ (OB)IT ∗ IYt≥R|Ft0 ]

Since Yt is modelled as Geometric Brownian motion, it conforms to a diffusion process,

and it thus possess the markovian property. Consequently we can reorganize the terms

in the above equation as:

OCRt = EQ[B−1
u ∗%Cov ∗ (OB)IT ∗ IYt≥R|Ft0 ] = EQ[B−1

u ∗%Cov ∗ (OB)IT ∗ IYt≥R|Yt0 ]

(3.33)

OCRt = %Cov∗EQ[B−1
u ∗(OB)IT |Yt0]∗EQ[IYt≥R|Yt0 ] = %Cov∗EQ[B−1

u ∗(OB)IT ]∗Q[Yt ≥ R|Yt0 ]

(3.34)

Since Yt is a Geometric Brownian Motion, we have;

Yt = Yt0e
σ(W̃t−W̃t0 )+(r− 1σ2

2 )(t−t0) = Yt0e
σ
√
t−t0∗ε+(r− 1σ2

2 )(t−t0), with ε ∼ N(0, 1)
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Yt ≥ R⇔ ln Yt = ln Yt0 + σ
√
t− t0 ∗ ε+ (r − 1

2σ
2)(t− t0) ≥ lnR

η = −ε ≤
ln Yt0

R
+ (r − 1

2σ
2)(t− t0)

σ
√
t− t0

, η ∼ N(0, 1)

Taking the notation of the Black-Scholes we have;

d2 =
ln Yt0

R
+ (r − 1

2σ
2)(t− t0)

σ
√
t− t0

d2 captures the idea of credit risk in the Merton Model. It denotes the probability of

default. Formula (3.34) turns into:

OCRt = %Cov ∗EQ[B−1
u ∗ (OB)IT ] ∗Q[η ≤ d2|Yt0 ] = %Cov ∗EQ[B−1

u ∗ (OB)It+u] ∗Φ(d2)

(3.35)

We thus have managed to obtain the formula to forecast loss reserves in credit insurance

if we know just the percentage of outstanding balance covered by the insurer,the value of

the delinquency index, a risk-free rate, and the distribution of the random variable u. We

can write equation (3.37)as:

OCRt = %Cov ∗ (
∫ n−t

0
e−ru(OB)It+up(u)du) ∗ Φ(d2) (3.36)

Where:

p(u) is the probability density function of u.

n is the loan term.

(OB)It+u is the outstanding balance of the loan at time t plus interest at the rate c:

(OB)It+u = (OB)It ∗ (1 + tc)u

We can simplify this calculation by taking u as a constant:

OCRt = %Cov ∗ e−ru ∗ (OB)It+u ∗ Φ(d2) (3.37)

Since this formula was obtained under the probability measure Q we have a replicating

portfolio Pt, which matches the future losses of the insurance company. Thus:

Pt = φtA(Yt) + ψtBt = φtAtYt + ψtBt (3.38)

dPt = φtAtdYt + ψtdBt (3.39)
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Where; φt denotes number of units of A(Yt).

ψt denotes number of units of the cash bond. Let Gt be the process representing the

present value of the portfolio:

Gt = B−1
t Pt = φtDt + ψt (3.40)

Considering the following equation and applying Ito’s lemma we have;

OCRt = h(t, x) = EQ[B−1
u ∗%Cov ∗ (OB)It+u ∗ IYt≥R|Yt0 = x]

φtAt = d

dYt
(%Cov ∗ e−ru ∗ (OB)It+u ∗ Φ(d2)) = %Cov ∗ e−ru ∗ (OB)It+u ∗

d

dYt
(Φ(d2))

= (%Cov ∗ e−ru ∗ (OB)It+u ∗
1√
2π
e
d2

2
2 )

ψt can be obtained from (3.40). We’ve therefore found an alternative method for project-

ing losses in credit insurance products and a replicating portfolio to match them.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Analysis and Discussions

We used data simulation in this project as a means of explaining our model. The geometric

brownian motion simulation for instance has been used to estimate the probability of

default which has been incoporated in estimation of loss reserve in credit insurance for

asset based lending companies (see appendix).

The outstanding balances of 30% of 100 loanees from car loan business with assets valued

at between 1 million and 10 million were simulated and fitted to the model. The result

of the future loss was estimated by considering the following assumptions:

Assumed Constants Values

Risk Free Rate (Annual) 9.195%

Volatility (Monthly) 12%

Risk Free Rate (Monthly) r 0.0883%

Initial Delinquency (Monthly) 6 months

u 5 months

tc 12%

% Coverage 25%

Table 4.1: Table showing the assumed constants.

u is a random variable representing the time to recover the collateral while c is a simple

interest and t is the time of valuation. Since most car loan businesses have a loan term

of 5 years, we assumed this in our simulation.
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Table 4.2: Estimates of the delinquency index (Yt)

(W̃t − W̃t0) ∼ N(0, 1) log return ( Yt
Yt−1

) Estimate of (Yt) Time(t− t0)

0.930 0.048 6.297 10

-1.162 -0.437 3.878 47

0.062 -0.163 5.096 27

1.980 0.142 6.921 15

-2.382 -0.614 3.246 52

-0.566 -0.137 5.230 11

The estimates of the delinquency index were estimated as follows:

Yt
Yt−1

= (r − 1/2σ2)(t− t0) + σ(W̃t − W̃t0)

Yt = Yt0e
σ(W̃t−W̃t0 )+(r− 1σ2

2 )(t−t0)

Table 4.3: Estimate of default probability d2

Yt Monthly d2 Φ(d2) Time (t-t0)

6.297 -0.039 0.484 10

3.878 -0.892 0.186 47

5.097 -0.535 0.296 27

6.921 0.103 0.541 15

3.246 -1.09 0.138 52

5.23 -0.51 0.302 11

The default probability d2 was obtained using the following formula:

d2 =
ln Yt0

R
+ (r − 1

2σ
2)(t− t0)

σ
√
t− t0
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Table 4.4: OCRt Estimates

Φ(d2) (OB)It+u OCRt Time (t-t0)

0.484 10,655,530.20 826,743.89 10

0.186 4,302,346.59 367,103.35 47

0.296 1,120,095.03 73,176.88 27

0.541 7,263,327.35 492,791.52 15

0.138 7,280,272.26 311,157.83 52

0.302 13,466,898.73 1,321,563.40 11

The OCRt was obtained as: OCRt = %Cov ∗ e−ru ∗ (OB)It+u ∗ Φ(d2)

Figure 4.1: Graph of OCRt against Default probability.

From table 4.4, it’s clear that an increase in the value of the probability of default in-

creases the value of the reserve estimated depending on the outstanding balance of the

borrower. We can therefore deduce that a borrower with higher chances of default will

make the insurance company to have longer reserve requirements. Despite this, it’s also

possible to have shorter reserve requirements as also seen in figure 4.1 An increase in
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the loan term or the time to maturity of the payment of the insurance has the effect of

reducing the probability of default by the borrower (see Table 4.3). This will result to

shorter reserve requirements by the insurance company.

The number of defaultable periods(delinqunecy index) has the effect of increasing the

estimate of future reserve by the insurance company. Therefore if an insurance company

insures policies with a large number of defaultable periods, it will have longer reserve

requirements otherwise it will have shorter reserve requiremnt (see figure 4.2)

Figure 4.2: Graph of OCRt against delinquency index.

A longer loan term or time to maturity of the payment of the insurance reduces the

value of the delinqunecy index. This has the effect of reducing the value of the final

reserve estimate.

32



Figure 4.3: Graph of delinquency index against time.

The delinquency index which is modelled as Geometric Brownian Motion is controlled by

trend. If we do hundreds of simulations of the delinquency index, most of the graphs will

be heading towards a certain direction with some deviation. The volatility factor and the

random noice of the Wiener process, will make the graphs to have different shapes in the

simulations. When we change the constant risk free rate of interest(r) and volatility rate

factor σ in our calculations, we will have an insight on how this inputs affect the final

prediction value.We thus expect that for any given value r and σ,there is an interval of

range for which the final prediction value falls into. If we find this interval range,we can

have a rough idea about how the value of our delinquency index and reserve will be in

future despite of the random fluctuations that affect the delinquency index.
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Based on the above calculations and results we can see that some methods of stochastic

calculus can be used in the prediction of loss reserves in credit insurance for asset-based

lending companies.

Our discrete-continous time model allows the adjustment of claim forecasting using the

replicating of asset portfolio strategy(free arbitrage and asset liability matching point of

view).

A very significant result is that this technique outputs specific formulas for forecasting

loss reserves because it considers time to repossession of the collateral by the lending

institution.

It’s possible to have shorter reserve requirements depending on the outstanding balances,

delinquency index and default probabilities.

A very relevant result of this project is that the continous model permits removal of the

the Markovian approach used currently.

5.2 Recommendations

Based on the results of our project and the above conclusions, we propose the following

recommendations;

• The credit insurers for asset-based lending companies already using other valuation

methods to adopt our discrete-continous time model as a reasonable check for their

reserve levels.
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• Proper attention must be paid in the assumptions of normality that the continous

model imply.

• Further research and analysis should be done to provide a wider view of the accuracy

of our model.
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Appendix

Figure 5.1: Assumptions.

(OB)It+u = (OB)It ∗ (1 + tc)u
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(OB)It+u is the outstanding balance at time t plus interest at the rate c.

OCRt = %Cov ∗ e−ru ∗ (OB)It+u ∗ Φ(d2)
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