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ABSTRACT

Completely positive maps is an important field due to its significance,

application and mathematics itself. While discussing the properties of the

positive maps, researchers have questioned whether the properties of the

positive maps also hold for completely positive maps. In chapter 1, we

have started with a C∗-algebra A, generated on A other C∗-algebras and

then investigated these forms of C∗-algebras. We investigated whether

the properties of A such as self-adjointedness and completeness under

norm still hold on the C∗-algebras generated on A. In chapter 2, the con-

dition for the positivity of the elements of these generated C∗-algebras

is given. This has been done by showing that their inner product with

elements from a Hilbert space is positive. A unital contraction is nec-

essarily positive. Conditions under which positive maps are completely

positive are discussed. In chapter 3, boundedness and complete bound-

edness of these maps have been investigated. This, we have done by

showing that, indeed, whenever the operator system is a C∗-algebra, then

a positive map is bounded and completely bounded, if its norm is equal

to its complete bound which must be finite. All completely positive maps

are completely bounded, however the converse is not always true. This

has been shown by giving examples and counter examples. The results

of this study will pave way for construction of new C∗-algebras from the

known ones, which will be helpful in the development of the research on

positive maps on these generated C∗-algebras and may also be applied by

mathematicians in solving spectral problems.
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Chapter 1

INTRODUCTION

In this chapter, literature review, definitions of some of the terms, theo-

rems and propositions and in some cases examples that are essential in

this study are given. Most of these have been obtained from the refer-

ences, see [GK08, Mur90, Pau03, Tak79].

LetH be a Hilbert space, B(H) be the set of all bounded linear oper-

ators onH andH(n) be the direct sum of n−copies ofH. If Mn(B(H)), is

the set of n×nmatrices with entries from B(H) and B
(
H(n)

)
is the space

of all bounded linear operators on H(n), then it is shown that there exist

linear maps φ : Mn(B(H))→ B
(
H(n)

)
such that φ is a ∗−isomorphism,

where n ∈ N. Moreover, this φ is a representation of Mn(B(H)) on the

Hilbert space H(n). Therefore, we can identify Mn(B(H)) with B
(
H(n)

)
.

Thus Mn(B(H)) ∼= B
(
H(n)

)
. This identification gives us a unique norm

that makes the ∗-algebra Mn(B(H)) a C∗-algebra, see [Mur90].

If A is any C∗-algebra and φ : A → B(H) a ∗-homomorphism, then

the collection of norms on Mn(φ(A)) is independent of the particular

representation φ. By Gelfand Naimark Segal theorem, see [Mur90,

1
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Tak79], A is a closed self-adjoint subalgebra of B(H).

1.1 Literature Review

The development of the theory of positive and completely positive maps

are areas that have attracted a lot of interest from Mathematicians.

In 1943, M.A. Naimark published two unrelated results. That is, the

possibility of dilation of a positive operator valued measure to a spec-

tral measure and the characterization of certain operator valued posi-

tive functions on groups in terms of representations on a larger space,

see [Nai43a, Nai43b, Pau03]. A few years later, B. Sz.-Nagy obtained a

theorem of unitary dilations of contractions on a Hilbert space, whose

importance turned out to open a new and vast field of investigations

of models of linear operators on Hilbert space in terms of a generalized

Fourier analysis, see [NF70, Mur90, Pau03]. One of the better known

dilation theorems is due to Sz.-Nagy and asserts that every contrac-

tion operator can be dilated to a unitary operator. The most famous

application of this idea is Sz.-Nagy’s elegant proof of an inequality of

von Neumann to the effect that the norm of a polynomial in a con-

traction operator is at most the supremum of the absolute value of the

polynomial over the unit disk, in this way revealing its spectral char-

acter, see [NF70, Pau03]. In 1955, W.F. Stinespring obtained a theo-

rem characterizing certain operator valued positive maps on C∗-algebras

in terms of representations of those C∗-algebras, what is called Stine-

spring Representation, see [NF70, Pau03, Sti55]. M.A. Naimark showed

that every C∗−algebra can be faithfully represented as a subalgebra of
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B(H). Every representation π of A on B(H) and vector x ∈ H defines

a linear functional f on A by f(a) = 〈π(a)x, x〉. Such a functional

is positive, (and is automatically continuous and contractive). There

exists a Hilbert space Hf , a vector xf ∈ Hf and a representation πf

of A on Hf such that f(a) = 〈πf (a)xf , xf〉 ∀ a ∈ A. This con-

struction is known as the Gelfand-Naimark-Segal (GNS) construction,

see [Mur90, Nai43a, Nai43b, Pau03]. W.F. Stinespring introduced the

theory of positive maps as a means of giving abstract necessary and suf-

ficient conditions for the existence of dilations, a technique for studying

operators on a Hilbert space (H) by representing a given operator, say

T1 as the restriction of a (hopefully) better understood operator, say

T2, acting on a larger Hilbert space, to the original space. He showed

that completely positive maps always have a representation of the form

π2[φ(A)] = V ∗π1(A)V , where π1 and π2 are representations of the al-

gebras A1 and A2 in A respectively, that is, π1 : A1 → B(H) and

π2 : A2 → B(H), φ is a completely positive operator and V is a bounded

operator from H to another Hilbert space say, K ⊆ A, see [Pau03, Sti55].

Theorem 1.1.1 (The Stinespring Representation Theorem)

Let A be a unital C∗-algebra and let φ : A −→ B(H) be a completely

positive map, then there exists a Hilbert space K, a bounded operator

V : H → K and a unital ∗-homomorphism, π : A −→ B(H) such that

φ(a) = V ∗π(a)V, for every a ∈ A.

In this theorem, we also have that, ‖φ‖cb = ‖φ(1)‖ = ‖V ∗V ‖ = ‖V ‖2,

see [Pau03]. This theorem opened a large field of investigations on a

new concept in operator algebra that is now called complete positivity,

mainly due to the pioneering work of M.D. Choi, see [Cho75, Cho72,
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Pau03, Sti55]. The connections between completely positive maps and

dilation theory were broadened further by Arverson , who developed a

deep structure theory for these maps. He showed that, if S ⊆ A is an

operator system and φ : S −→ B(H) is completely positive, then there

exists a completely positive map ψ : A −→ B(H) that extends φ such

that ψ(a) = φ(a) for every a ∈ S, see [Pau03, Arv76, Arv69].

This result by Arverson yielded another result due to Wittstock, who

worked on operator spaces instead of operator systems.

Theorem 1.1.2

( Wittstock’s Extension Theorem) Let M ⊆ A be an operator

space and φ : M −→ B(H) be completely bounded, then there exists a

completely bounded map ψ : A −→ B(H) that extends φ and satisfies

‖φ‖cb = ‖ψ‖cb, see [Pau03].

Let A and B be C∗-algebras and φ : A −→ B be a linear map, then

‖φ‖ = sup{‖φ(a)‖ : ‖a‖ ≤ 1}, ∀ a ∈ A.

We can define the maps φn : Mn(A) −→ Mn(B) by φn([ai,j]) = [φ(ai,j)]

for all [ai,j] ∈Mn(A). Then,

‖φn‖ = sup{‖φn([ai,j])‖ : n ∈ N; ‖ai,j‖ ≤ 1}

and

‖φ‖cb = sup{‖φn‖ : n ∈ N}.
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Wittstock and Haagerup generalised Stinespring Representation The-

orem to completely bounded maps. The generalised Stinespring theorem

states that if A is a unital C∗-algebra and φ : A → B(H) is a com-

pletely bounded map, then there exists a Hilbert space H′, operators

V,W ∈ B(H;H′) and a unital ∗-homomorphism ( a ∗-representation),

π : A → B(H′), such that ‖V ‖‖W‖ = ‖φ‖cb and φ(a) = W ∗π(a)V, a ∈

A.

In the early 1980’s, researchers began extending much of the theory

of completely positive maps to the family of completely bounded maps,

completely positive maps and completely bounded maps as the analogue

of positive measures and bounded measures respectively, see [Pau03]. To

discuss completely positive maps and completely bounded maps between

two spaces, their domains and ranges need to be operator system and

operator space, respectively. Such spaces arise naturally as subspaces of

the space of bounded operators on a Hilbert space. However results of

Choi, Effros and Ruan gave abstract characterizations of operator systems

and operator spaces that enabled researchers to treat their theory and

the corresponding theories of completely positive maps and completely

bounded maps in a way that was free of dependence on this underlying

Hilbert space. These characterizations have had an impact on this field

similar to the impact of the Gelfand-Naimark-Segal theorem on the C∗-

algebras and led to a deeper understanding of many results of C∗-algebras

and Von Neumann algebras, see [ER91, Mur90, Cho75, Cho72, Pau03].

The aim of this work was to study the properties of completely positive

maps. In particular, the conditions under which positivity imply complete

positivity and when a map is completely bounded.
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1.2 Statement Of The Problem

Let A and B be unital C∗-algebras and φ : A −→ B be a linear map, we

define maps φn : Mn(A) −→Mn(B), by the formula

φn([aij]) = [φ(aij)], ∀ n ∈ N, i, j = 1, ..., n,

where [ai,j] ∈ Mn(A) and Mn(A) and Mn(B) are C∗-algebras of n × n

matrices with entries from A and B. Properties of φn have not been

exhaustively studied. We have investigated some properties of positive

maps, of interest is on how assumptions of positivity of φ is related to its

norm and conversely, when the norm of φ guarantees that it is positive. It

is not true that every positive map is completely positive or every bounded

map is completely bounded. In this study, we investigated some of the

elementary properties of these classes of maps and determined conditions

when positive maps are automatically completely positive. Further, we

have investigated conditions for which φ is completely bounded.

1.3 Objectives Of The Study

The purpose of this study was to do the following:

1. Establish how the notion of positivity is introduced to the C∗-

algebras

2. Investigate some of the elementary properties of completely positive

maps and determine conditions when positive maps are automati-
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cally completely positive.

3. Investigate conditions for which a map is completely bounded.

1.4 Significance Of The Study

The results of this study would pave way for construction of new C∗-

algebras from the known ones, which would be helpful in the development

of the research on positive maps on these generated C∗-algebras and may

also be applied by mathematicians in solving spectral problems.

1.5 Research Methodology

In this study, we have determined when positive maps are automatically

completely positive. That is, given that φ is positive, we have determined

the properties for which φn is positive for every n. Further, the condi-

tions for which a map is completely bounded have been investigated. By

showing that the estimation ‖φn‖ ≤ n‖φ‖ < ∞ is sharp for all n ∈ N,

has proved the complete boundedness of φ. To show that a completely

positive map is completely bounded, this study has proved the equality

‖φ‖ = ‖φ(I)‖ = ‖φn‖ = ‖φ‖cb <∞ and that φ∗ = φ.

1.6 C∗-algebras

Most of the literature and results in this thesis have been obtained from

the references see [Mur90, Cho75, Pau03, Tak79], from which the proofs
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of the results may also be obtained.

1.6.1 Algebra

Definition 1.6.1

An algebra over a field K is a vector space A together with a bilinear

map (vector multiplication) A2 → A, (a, b) 7→ ab, such that

1) a(bc) = (ab)c (a, b, c ∈ A);

2) (αa+ βb)c = αac+ βbc and c(αa+ βb) = αca+ βcb (α, β ∈ C).

Definition 1.6.2

A subalgebra of A is a vector subspace B such that

b, b′ ∈ B ⇒ bb′ ∈ B.

Definition 1.6.3

A normed algebra A is a vector space with a norm defined on it.

A norm ‖.‖ on A is said to be multiplicative if

‖ab‖ ≤ ‖a‖‖b‖ a, b ∈ A.

The pair (A, ‖.‖) is called a normed algebra. If A admits a unit e

(ae = ea = a, ∀ a ∈ A) and ‖e‖ = e, then A is a unital normed

algebra.

Definition 1.6.4

A Banach algebra is a complete normed algebra. A complete unital

normed algebra is called a unital Banach algebra.
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Example 1.6.5

Let X be a Banach space, then set B(X) of all bounded linear maps

(operators) from X to itself is a normed algebra where the operations are

defined pointwise for addition and scalar multiplication, multiplication

given by (u, v) 7→ u ◦ v, and

‖u‖ = sup
x 6=0

‖u(x)‖
‖x‖

= sup
‖x‖≤1

‖u(x)‖.

Since X is a Banach space, B(X) is complete and therefore it is a Banach

algebra.

Example 1.6.6

The algebra Mn(C) of n× n matrices with entries in C is identified with

B(Cn). It is therefore a unital Banach algebra. Upper and lower trian-

gular matrices are subalgebra of Mn(C) .

Definition 1.6.7

An element a of a Banach algebra A is invertible if there is an element

b ∈ A such that ab = ba = 1, b = a−1 is unique.

Inv(A) = {a ∈ A | a is invertible}.

Definition 1.6.8

The spectrum of an element a is the set

σ(a) = σA(a) = {λ ∈ C|λI − a /∈ Inv(A)}.

= {λ ∈ C|a− λI ∈ Inv(A)}.

Theorem 1.6.9

(Spectrum). Let A be a C∗-algebra with unit and a ∈ A. Then σ(a) is a
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nonempty compact subset of {z : |z| ≤ ‖a‖}.

Definition 1.6.10

The spectral radius r(a) of an element a ∈ A is given by

r(a) = sup{|λ| : λ ∈ σ(a)}

Definition 1.6.11

An involution on an algebra A is a conjugate-linear map a 7→ a∗ on A,

such that

(i) a∗∗ = a

(ii) (ab)∗ = b∗a∗ and

(iii) (αa+ βb)∗ = ᾱa∗ + β̄b∗ ∀ a, b ∈ A.

The pair (A, ∗) is called an involutive algebra, or a ∗-algebra.

Definition 1.6.12

An element a ∈ A is self-adjoint or hermitian if a = a∗. For each

a ∈ A, there exists unique hermitian elements b, c ∈ A such that a = b+ic

where b = 1
2
(a + a∗) and c = 1

2i
(a − a∗). The elements a∗a and aa∗ are

hermitian. Denote the set of hermitian elements ofA byAsa. a is normal

if a∗a = aa∗.

If A is unital, then e∗ = e (e∗ = (ee∗)∗ = e). If a ∈ Inv(A), then

(a∗)−1 = (a−1)∗. Hence

σ(a∗) = σ(a)∗ = {λ̄ ∈ C|λ ∈ σ(a)}.
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An element a ∈ A is a unitary if a∗a = aa∗ = e. If a∗a = e, then a is an

isometry, and if aa∗ = e then a is a co-isometry.

Definition 1.6.13

A Banach ∗-algebra is a ∗ -algebra A together with a complete sub-

multiplicative norm such that

‖a∗‖ = ‖a‖ (a ∈ A).

Definition 1.6.14

A C∗−algebra is a Banach ∗-algebra such that

‖a∗a‖ = ‖a‖2 (a ∈ A).

A closed ∗-subalgebra of a C∗−algebra is a C∗−subalgebra.

Example 1.6.15

The scalar field C is a unital C∗−algebra with involution given by complex

conjugation λ 7→ λ̄.

Example 1.6.16

If H is a Hilbert space, then B(H) is C∗−algebra. (Gelfand Naimark

Segul theorem).

Theorem 1.6.17

If a is a self-adjoint element of a C∗−algebra A, then r(a) = ‖a‖, [3.3]

Corollary 1.6.18

There is at most one norm on a ∗−algebra making it a C∗−algebra.

Lemma 1.6.19

LetA be a Banach algebra endowed with involution such that ‖a‖2 ≤ ‖a∗a‖

(a ∈ A). Then A is a C∗−algebra.
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1.6.2 Positive Elements Of C∗−Algebra.

Definition 1.6.20

An element a of a C∗−algebra A is positive, if and only if a is of the form

a = b∗b for some b ∈ A or if a is hermitian and σ(a) ⊆ R+. Denote by

A+ the set of positive elements of A. In this thesis, the symbol a ≥ 0

will be used to denote an element a which is positive.

Definition 1.6.21

A ∗-homomorphism from ∗-algebra A to ∗-algebra B is a linear map

φ : A → B such that

(i) φ(ab) = φ(a)φ(b)

(ii) φ(a∗) = φ(a)∗, ∀ a, b ∈ A.

φ is unital if A and B are unital and φ(IA) = IB, that is φ(1) = 1.

If in addition, φ is a bijection, it is a ∗-isomorphism.

Theorem 1.6.22

A ∗-homomorphism ϕ : A → B from a Banach ∗-algebraA to a C∗−algebra

B is necessarily norm decreasing.

Proof. We suppose that A,B and ϕ are unital. If a ∈ A, then

σ(ϕ(a)) ⊆ σ(a), so

‖ϕ(a)‖2 = ‖ϕ(a)∗ϕ(a)‖ = ‖ϕ(a∗a)‖ = r(ϕ(a∗a)) ≤ r(a∗a) = ‖a∗a‖ ≤ ‖a‖2.

Taking the square root of both sides, we have

‖ϕ(a)‖ ≤ ‖a‖. (1.1)
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� From inequality 1.1, we get that ϕ is a contraction.

‖ϕ‖ = sup
‖a‖≤1

‖ϕ(a)‖

≤ sup
‖a‖≤1

‖a‖ = 1

Thus, ‖ϕ‖ ≤ 1.

Theorem 1.6.23

Let H1 and H2 be Hilbert spaces.

1. If u ∈ B(H1,H2), then there is a unique element u∗ ∈ B(H2,H1)

such that

〈u(x1), x2〉 = 〈x1, u∗(x2)〉, x1 ∈ H1, x2 ∈ H2.

2. The map u 7→ u∗ is conjugate-linear and u∗∗ = u. Also

‖u‖ = ‖u∗‖ = ‖u∗u‖1/2.

1.6.3 Positive Linear Functionals

If φ : A → B is a linear map between C∗-algebras, it is said to be positive

if φ maps positive elements of A to positive elements of B. In this case

φ(Asa) ⊆ Bsa.

Theorem 1.6.24

If τ is a positive linear functional on a C∗−algebra A, then it is bounded.

Proof. If τ is not bounded, then supa∈S τ(a) = +∞; S is the set of

all positive elements of A of norm not greater than 1. Hence there is a
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sequence (an) in S such that 2n ≤ τ(an), ∀ n ∈ N. Set

a =
∞∑
n=0

an/2
n ⇒ a ∈ A+.

1 ≤ τ(an/2
n), therefore

N ≤
N−1∑
n=0

τ (an/2
n) = τ

(
N−1∑
n=0

an/2
n

)
≤ τ(a).

Hence, τ(a) is an upper bound for the set N which is impossible. Thus τ

is bounded. �

Theorem 1.6.25

Let τ be a bounded linear functional on a C∗−algebra A. The following

conditions are equivalent:

1. τ is positive .

2. For each approximate unit (uλ)λ∈∧ of A, ‖τ‖ = limλ τ(uλ).

3. For some approximate unit (uλ)λ∈∧ of A, ‖τ‖ = limλ τ(uλ).

Corollary 1.6.26

If τ is a bounded linear functional on a unital C∗-algebra, then τ is positive

iff τ(1) = ‖τ‖.

Definition 1.6.27

A state on a C∗-algebra A is a positive linear functional on A of norm

1. Denote by S(A) the set of all states of A.

Theorem 1.6.28

If a is a normal element of a non-zero C∗-algebra A, then there is a state

τ of A such that ‖a‖ = |τ(a)|.
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Theorem 1.6.29

Let a be a self-adjoint element of a C∗-algebra A. Then a ∈ A+ if and

only if τ(a) ≥ 0, ∀ positive linear functionals τ on A.

Proof. The forward implication is plain. Suppose conversely that

τ(a) ≥ 0 for all positive linear functionals τ on A. Let (H, φ) be the

universal representation of A, and let x ∈ H. Then the linear functional

τ : A → C, b 7→ 〈φ(b)(x), x〉 ,

is positive, so τ(a) ≥ 0; that is, 〈φ(a)(x), x〉 ≥ 0. Since this is true

∀ x ∈ H, and since φ(a) is self-adjoint, therefore φ(a) is a positive

operator on H. Hence, φ(a) ∈ φ(A)+, so a ∈ A+, because the map

φ : A → φA is a ∗-isomorphism. �

1.6.4 The Gelfand-Naimark Representation

Definition 1.6.30

A representation of a C∗-algebraA is a pair (H, ϕ), whereH is a Hilbert

space and ϕ : A → B(H) is a ∗-homomorphism. (H, ϕ) is faithful if ϕ

is injective.

With each positive linear functional there is associated a representa-

tion. Suppose that τ is a positive linear functional on a C∗-algebra A.

Setting

Nτ = {a ∈ A | τ(a∗a) = 0} ,
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Nτ is a closed left ideal of A and the map

(A/Nτ )2 → C, (a+Nτ , b+Nτ ) 7→ τ(b∗a),

is a well-defined inner product on A/Nτ . Denote by Hτ the Hilbert

completion of A/Nτ . If a ∈ A, define an operator ϕ(a) ∈ B(A/Nτ ) by

setting

ϕ(a)(b+Nτ ) = ab+Nτ .

ϕ(a) is clearly linear and bounded, i.e. ‖ϕ(a)‖ ≤ ‖a‖ holds. Since

‖ϕ(a)(b+Nτ )‖2 = τ(b∗a∗ab) ≤ ‖a‖2τ(b∗b) = ‖a‖2‖b+Nτ‖2.

The operator ϕ(a) has a unique extension to a bounded operator ϕτ (a)

on Hτ . The map

ϕτ : A → B(Hτ ), a 7→ ϕτ (a)

is a ∗-homomorphism. The representation (Hτ , ϕτ ) of A is the Gelfand-

Naimark-Segal representation (GNS) associated to τ . If A is non-zero,

its universal representation is the direct sum of all the representations

(Hτ , ϕτ ), where τ range over S.

This shows that every C∗-algebra can be regarded as a C∗-subalgebra

of B(H) for some Hilbert space H as indicated in the theorem 1.6.31

below. See [Mur90, Pau03]

Theorem 1.6.31

( Gelfand-Naimark ). If A is a C∗-algebra, then it has a faithful repre-

sentation. Specifically, its universal representation is faithful.
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Most of the results above were obtained from [Mur90, Tak79]

1.7 Matrices of C∗-algebra

Most of the results in this section were obtained from [Pau07, Pau03].

Let H be a Hilbert space, B(H), the set of bounded linear operators

onH and Mn(B(H)), the set of all n×n matrices with entries from B(H).

We show that Mn(B(H)) is a ∗-algebra.

We first show that Mn(B(H)) is an algebra, that is, it is associative

and linear. Let a = (ai,j), b = (bi,j), c = (ci,j) ∈Mn(B(H)), i , j = 1 , ... , n.

Define

(ab)i,j = (ai,j).(bi,j) =
n∑
k=1

ai,kbk,j,

then we have

((ab)c)i,j =
n∑
k=1

(ab)i,k ck,j =
n∑
k=1

n∑
l=1

ai,lbl,kck,j

=
n∑
l=1

ai,l

n∑
k=1

bl,kck,j

=
n∑
l=1

ai,l(bc)l,j = (a(bc))i,j

Thus, Mn(B(H)) is associative. Linearity follows from multiplication of

a matrix by scalar. Hence Mn(B(H)) is an algebra.



CHAPTER 1. INTRODUCTION 18

Infact, Mn(B(H)) is a ∗-algebra, if involution is defined as

(ai,j)
∗ = a∗j,i.

Now consider H(n) the orthogonal (or direct) sum of n copies of H

with an orthogonal basis, then there is a norm and inner product on H(n)

that makes it into a Hilbert space. That is,

〈h, k〉 =

〈
h1
...

hn

 ,


k1
...

kn


〉
H(n)

= 〈h1, k1〉H + ...+ 〈hn, kn〉H,

where

h =


h1
...

hn

 , k =


k1
...

kn

 ∈ H(n).

‖h‖2 =

∥∥∥∥∥∥∥∥∥


h1
...

hn


∥∥∥∥∥∥∥∥∥
2

= ‖h1‖2 + ...+ ‖hn‖2

We prove that an element of Mn(B(H)) is a linear map on H(n).

Indeed, for
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T = [Tij] ∈Mn(B(H)), h ∈ H(n), we have the definition

[Tij]h =


T11 T12 . . . T1n

T21 T22 . . . T2n
...

Tn1 Tn2 . . . Tnn




h1

h2
...

hn

 =


∑n

j=1 T1jhj
...∑n

j=1 Tnjhj

 .

Let


h1
...

hn

 ,


k1
...

kn

 ∈ H(n) and α, β be any scalars, then

[Tij]

α


h1
...

hn

+ β


k1
...

kn


 = [Tij]




αh1
...

αhn

+


βk1

...

βkn




= [Tij]


αh1 + βk1

...

αhn + βkn



=


∑n

j=1 T1jαhj +
∑n

j=1 T1jβkj
...∑n

j=1 Tnjαhj +
∑n

j=1 Tnjβhj



=


∑n

j=1 T1jαhj
...∑n

j=1 Tnjαhj

+


∑n

j=1 T1jβkj
...∑n

j=1 Tnjβhj



= α


∑n

j=1 T1jhj
...∑n

j=1 Tnjhj

+ β


∑n

j=1 T1jkj
...∑n

j=1 Tnjhj


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= α

[Tij]


h1
...

hn


+ β

[Tij]


k1
...

kn




Thus [Tij] is linear.

1.7.1 Operator norm

Definition 1.7.1

Let T : X → X be an operator from the vector space X into itself, then

the norm of T is given by

‖T‖ = sup{‖Tx‖ : ‖x‖ ≤ 1, x ∈ X}

We prove that the norm on Mn(B(H)) can be approximated as

‖[Tij]‖ ≤

√√√√ n∑
i,j=1

‖Ti,j‖2.

We show that [Tij] is bounded, i.e., there exists a c ∈ R+ such that

‖[Tij]h‖ ≤ c‖h‖. Letting ‖h‖ ≤ 1, we have

‖[Tij]h‖2 =

〈
T11 . . . T1n
...

Tn1 . . . Tnn




h1
...

h1

 ,


T11 . . . T1n
...

Tn1 . . . Tnn




h1
...

h1


〉
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=

〈
∑n

j=1 T1,jhj
...∑n

j=1 Tn,jhj

 ,


∑n

j=1 T1,jhj
...∑n

j=1 Tn,jhj


〉

=

∥∥∥∥∥
n∑
j=1

T1,jhj

∥∥∥∥∥
2

+ ...+

∥∥∥∥∥
n∑
j=1

Tn,jhj

∥∥∥∥∥
2

=
n∑
i=1

∥∥∥∥∥
n∑
j=1

Ti,jhj

∥∥∥∥∥
2

≤
n∑
i=1

n∑
j=1

‖Ti,jhj‖2

≤
n∑
i=1

n∑
j=1

‖Ti,j‖2 ‖hj‖2

≤
n∑
i=1

(
n∑
j=1

‖Ti,j‖2
)

n∑
j=1

‖hj‖2

=

(
n∑

i,j=1

‖Ti,j‖2
)

n∑
j=1

‖hj‖2

=

〈
n∑
j=1

T1,jhj,
n∑
j=1

T1,jhj

〉
+ ...+

〈
n∑
j=1

Tn,jhj,
n∑
j=1

Tn,jhj

〉

=

∥∥∥∥∥
n∑
j=1

T1,jhj

∥∥∥∥∥
2

+ ...+

∥∥∥∥∥
n∑
j=1

Tn,jhj

∥∥∥∥∥
2

=
n∑
i=1

∥∥∥∥∥
n∑
j=1

Ti,jhj

∥∥∥∥∥
2

≤
n∑
i=1

n∑
j=1

‖Ti,jhj‖2

≤
n∑
i=1

n∑
j=1

‖Ti,j‖2 ‖hj‖2
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≤
n∑
i=1

(
n∑
j=1

‖Ti,j‖2
)

n∑
j=1

‖hj‖2

=

(
n∑

i,j=1

‖Ti,j‖2
)

n∑
j=1

‖hj‖2

Taking the squareroot of both sides we have,

‖[Tij]h‖ ≤

√√√√ n∑
i,j=1

‖Ti,j‖2
n∑
j=1

‖hj‖2 =

√√√√ n∑
i,j=1

‖Ti,j‖2
√√√√ n∑

j=1

‖hj‖2 = c‖h‖,

where c =
√∑n

i,j=1 ‖Ti,j‖2.

Since
∑n

j=1 ‖hj‖2 = 1, we have ‖[Tij]‖ ≤
√∑n

i,j=1 ‖Ti,j‖2. Since [Tij] was

arbitrarily chosen, we have

‖[Tij]‖ ≤

√√√√ n∑
i,j=1

‖Ti,j‖2,

Lemma 1.7.2

Let H be a Hilbert space and φ : Mn(B(H))→ B(H(n)) be a linear map

from the C∗−algebra Mn(B(H)) to the C∗−algebra B(H(n)), then

max
i,j
‖Tij‖ ≤ ‖[Tij]‖ ≤

(
n∑

i,j=1

‖Tij‖2
) 1

2

≤ nmax
i,j
‖Tij‖, ∀ Tij ∈Mn(B(H))

Proof. Define a projection Ei : H → H(n) by Eix = 0⊕ 0⊕ ...x...⊕ 0⊕

...⊕ 0, where x ∈ H. Therefore, E∗iEi = IH, E∗jEi = 0 and
∑n

i=1E
∗
iEi =

IHn , i = 1, ..., n. Clearly, ‖Ei‖ = 1.

Now,

Tij = E∗i [Tij]Ej.



CHAPTER 1. INTRODUCTION 23

Therefore,

‖Tij‖ = ‖E∗i [Tij]Ej‖ ≤ ‖E∗i ‖‖[Tij]‖‖Ej‖ ≤ ‖[Tij]‖.

This implies that

max
i,j
‖Tij‖ ≤ ‖[Tij]‖. (1.2)

Let h ∈ H, then

‖[Tij]h‖2 =

∣∣∣∣∣∣∣∣∣
〈

T11 . . . T1n
...

Tn1 . . . Tnn




h1
...

h1

 ,


T11 . . . T1n
...

Tn1 . . . Tnn




h1
...

h1


〉∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣∣∣
〈

∑n
j=1 T1,jhj

...∑n
j=1 Tn,jhj

 ,


∑n

j=1 T1,jhj
...∑n

j=1 Tn,jhj


〉2
∣∣∣∣∣∣∣∣∣∣

≤
n∑
j=1

〈
n∑
j=1

|Tk,jhj, Tk,jhj|2
〉

≤
n∑
j=1

n∑
j=1

‖Tk,j‖‖hj‖‖Tk,j‖‖hj‖

=
n∑
i=1

n∑
j=1

‖Tk,j‖2‖hj‖2

=
n∑
i=1

n∑
j=1

(‖Tk,j‖‖hj‖)2

≤
n∑
i=1

(
n∑
j=1

‖Tk,j‖2
)1/2( n∑

j=1

‖hj‖2
)1/2

by Schwarz inequality.
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=
n∑

i,j=1

‖Ti,j‖2
n∑
j=1

‖hj‖2

Taking the supremum with ‖hj‖ ≤ 1, we get ‖[Tij]‖2 ≤
∑n

i,j=1 ‖Ti,j‖2.

Taking the squareroot of both sides, we have

‖[Tij]‖ ≤

(
n∑

i,j=1

‖Tij‖2
) 1

2

. (1.3)

Since ‖[Tij]‖ = sup{‖[Tij]h‖ : ‖h‖ ≤ 1}, We also have that,

(
n∑

i,j=1

‖Tij‖2
) 1

2

≤ nmax
i,j
‖Tij‖. (1.4)

From the equations (1.2), (3.1) and (3.2) the assertion follows.

�

Proposition 1.7.3

Let Mn(B(H)) and B
(
H(n)

)
be C∗−algebras, then there exists a linear

map φ : Mn(B(H))→ B
(
H(n)

)
such φ is a ∗−isomorphism.

To prove this proposition, we need to show the following :

• φ is linear

• φ is bijective, i.e both injective and surjective

• φ is homomorphic and that

• φ([Tij]
∗) = [Tij]

∗, ∀ [Tij] ∈Mn(B(H)), i.e it preserves the adjoint.

Let [Tij] ∈Mn(B(H)), we define the map by φ([Tij]) = [Tij]. Set
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φ([Tij])


h1
...

hn

 = φ


T11 · · · T1n
...

Tn1 · · · Tnn




h1
...

hn



=


∑n

j=1 T1,jhj
...∑n

j=1 Tn,jhj



=


T11 · · · T1n
...

Tn1 · · · Tnn




h1
...

hn

 ,∀


h1
...

hn

 ∈ H(n)

. =


∑n

j=1 T1,jhj
...∑n

j=1 Tn,jhj



=


T11 · · · T1n
...

Tn1 · · · Tnn




h1
...

hn

 ,∀


h1
...

hn

 ∈ H(n)

.

Thus φ is just the ordinary matrix multiplication.

We show the linearity of φ. Let α, β ∈ C, [Ti,j], [Si,j] ∈ Mn(B(H))

and h ∈ H(n), then

φ(α[Ti,j] + β[Si,j])(h) =


Σn
j=1(αT1,j + βS1,j)(hj))

...

Σn
j=1(αTn,j + βSn,j)(hj))


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=


Σn
j=1(αT1,j(hj) + βS1,j(hj))

...

Σn
j=1(αTn,j(hj) + βSn,j(hj))



=


Σn
j=1αT1,j(hj) + Σn

j=1βS1,j(hj)
...

Σn
j=1αTn,j(hj) + Σn

j=1βSn,j(hj)



= α


Σn
j=1T1,j(hj)

...

Σn
j=1Tn,j(hj)

+ β


Σn
j=1S1,j(hj)

...

Σn
j=1Sn,j(hj)


= αφ ([Ti,j]) (h) + βφ([Si,j])(h)

= (αφ([Ti,j]) + βφ([Si,j]))(h)

=


Σn
j=1αT1,j(hj) + Σn

j=1βS1,j(hj)
...

Σn
j=1αTn,j(hj) + Σn

j=1βSn,j(hj)



= α


Σn
j=1T1,j(hj)

...

Σn
j=1Tn,j(hj)

+ β


Σn
j=1S1,j(hj)

...

Σn
j=1Sn,j(hj)


= αφ([Ti,j])(h) + βφ([Si,j])(h)

= (αφ([Ti,j]) + βφ([Si,j]))(h)

Thus, φ is linear.

We now show that φ is a bijection. That is, it is injective and surjec-

tive.

That φ is injective, let Ek : H → H(n) be a map defined by

Ek(hk) = vector that has hk for its k−th entry and is 0 elsewhere.



CHAPTER 1. INTRODUCTION 27

Now suppose that φ([Ti,j]) = 0, then


0
...

0

 = φ([Ti,j]Ek(hk)) =


T1,khk

...

Tn,khk

 ; k = {1, ..., n}.

Thus, Ti,khk = 0, ∀ hk ∈ H and ∀ i, k = {1, ..., n}. Hence [Ti,j] = 0, so

that φ is injective.

We now show that φ is surjective.

Define a map

E∗j : H(n) → H.

We first show that this map sends a vector in H(n) to its j-th component.

From Ek : H → H(n), we have
∑n

k=1Ekhk =


h1
...

hn

 .

Let hj ∈ H,


h1
...

hn

 ∈ H(n). Then by the definition of adjoints,

〈
E∗j


h1
...

hn

 , hj

〉
=

〈
h1
...

hn

 , Ejhj

〉
= 〈hj, h.〉

Thus, E∗j is the map that sends


h1
...

hn

 to hj as required. We show that

φ is surjective. To show this, it suffices to show that φ([Ti,j]) = T for any
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T ∈ B(H(n)).

To show this, let Ti,j = E∗i TEj, and


h1
...

hn

 ,


f1
...

fn

 ∈ H(n).

Then

〈
φ([Ti,j])


h1
...

hn

 ,


f1
...

fn


〉

=

〈
∑n

j=1 T1,jhj
...∑n

j=1 Tn,jhj

 ,


f1
...

fn


〉

=
n∑

i,j=1

〈Ti,jhj, fi〉

=
n∑

i,j=1

〈E∗i TEjhj, fi〉

=
n∑

i,j=1

〈TEjhj, Eifi〉

=

〈
n∑
j=1

TEjhj,
n∑
i=1

Eifi

〉

=

〈
T

(
n∑
j=1

Ejhj

)
,

n∑
i=1

Eifi

〉

=

〈
T


h1
...

hn

 ,


f1
...

fn


〉
.

Thus, 〈φ([Ti,j])h, f〉 = 〈Th, f〉 ⇒ 〈φ([Ti,j])h, f〉 − 〈Th, f〉 = 0 ⇒

〈(φ([Ti,j])− T )h, f〉 = 0 ⇒ φ([Ti,j])− T = 0, thus φ([Ti,j]) = T And in

addition since H is a Hilbert space, it follows that φ([Ti,j]) = T , so that

φ is surjective.

We now, show that φ is a homomorphism. Let [Si,j], [Ti,j] ∈Mn(B(H)).
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Then

φ([Si,j][Ti,j])(h) =


Σn
j=1(Si,j.Ti,j)(hj)

...

Σn
j=1(Si,j.Ti,j)(hj)

 =


Σn
k=1Σ

n
j=1S1,kTk,j(hj)

...

Σn
k=1Σ

n
j=1Sn,kTk,j(hj)



=


Σn
k,j=1S1,kTk,j(hj)

...

Σn
k,j=1Sn,kTk,j(hj)

 .

So,

φ([Si,j][Ti,j])(h) =


Σn
k,j=1S1,kTk,j(hj)

...

Σn
k,j=1Sn,kTk,j(hj)

 . (1.5)

Also,

(φ([Si,k])φ([Tk,j]))(h) =

φ([Si,k])


Σn
j=1T1,j(hj)

...

Σn
j=1Tn,j(hj)




=


Σn
k=1S1,k(Σ

n
j=1Tk,j(hj))
...

Σn
k=1Sn,k(Σ

n
j=1Tk,j(hj))



=


Σn
k=1Σ

n
j=1S1,kTk,j(hj)

...

Σn
k=1Σ

n
j=1Sn,kTk,j(hj)



=


Σn
k,j=1S1,kTk,j(hj)

...

Σn
k,j=1Sn,kTk,j(hj)


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=


Σn
k=1Σ

n
j=1S1,kTk,j(hj)

...

Σn
k=1Σ

n
j=1Sn,kTk,j(hj)



=


Σn
k,j=1S1,kTk,j(hj)

...

Σn
k,j=1Sn,kTk,j(hj)


Thus,

(φ([Si,k])φ([Tk,j]))(h) =


Σn
k,j=1S1,kTk,j(hj)

...

Σn
k,j=1Sn,kTk,j(hj)

 . (1.6)

Thus, from the equations (1.5) and (1.6), we have φ([Si,k][Tk,j]) = φ([Si,k])φ([Tk,j]),

so that φ is a homomorphism.

Next, we show that φ([Ti,j])
∗ = φ([T ∗j,i]), i.e. that φ is a ∗-homomorphism.

Let h =


h1
...

hn

 , f =


f1
...

fn

 ∈ H(n). Then

〈
h1
...

hn

 , φ([Ti,j])
∗


f1
...

fn


〉

=

〈
φ([Ti,j])


h1
...

hn

 ,


f1
...

fn


〉

=

〈
Σn
j=1T1,j(hj)

...

Σn
j=1Tn,j(hj)

 ,


f1
...

fn


〉

=
〈
Σn
j=1T1,jhj, f1

〉
+ ...+

〈
Σn
j=1Tn,jhj, fn

〉
= Σn

i=1Σ
n
j=1〈Ti,jhj, fi〉



CHAPTER 1. INTRODUCTION 31

= Σn
i,j=1〈Ti,jhj, fi〉

= Σn
i,j=1〈hj, T ∗j,ifi〉

=
〈
h1,Σ

n
i=1T

∗
1,ifi〉+ ...+ 〈hn,Σn

i=1T
∗
n,ifi

〉
=

〈
h1
...

hn

 ,


Σn
i=1T

∗
1,ifi

...

Σn
i=1T

∗
n,ifi


〉

=

〈
h1
...

hn

 , φ([T ∗1,i])


f1
...

fn


〉
.

Thus, 〈h, φ([Ti,j])
∗f〉 = 〈h, φ([T ∗j,i])f〉

⇒ 〈h, φ([Ti,j])
∗f〉 − 〈h, φ([T ∗j,i])f〉 = 0

⇒ 〈h, (φ([Ti,j])
∗ − φ([T ∗j,i]))f〉 = 0

⇒ φ([Ti,j])
∗ − φ([T ∗j,i]) = 0

⇒ φ([Ti,j])
∗ = φ([T ∗j,i]). Thus φ is a ∗−homomorphism.

and hence a ∗−isomorphism. Moreover, this φ is a representation

of Mn(B(H)) on the Hilbert space H(n). φ is called ∗-isomorphism of

Mn(B(H)) onto B(H(n)). Therefore, we can identify Mn(B(H)) with

B(H(n)). Thus, Mn(B(H)) ∼= B(H(n)). This identification gives us a

norm that makes the ∗-algebraMn(B(H)) a C∗-algebra by the proposition

1.7.4 below.

Proposition 1.7.4

Let φ : Mn(B(H))→ B(H(n)) be a ∗-isomorphism. Then

‖[Ti,j]‖ = ‖φ([Ti,j])‖

is a norm and hence Mn(B(H)) is a C∗-algebra.
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Proof. It is clear that ‖[Ti,j]‖ is a norm and that it is submultiplicative.

We now show the condition ‖[Ti,j]∗[Ti,j]‖ = ‖[Ti,j]‖2, ∀ [Ti,j] ∈Mn(B(H)).

‖[Ti,j]∗[Ti,j]‖ = sup{|〈([Ti,j]∗[Ti,j])h, h〉| : h ∈ H, ‖h‖ = 1}

= sup{|〈([Ti,j])h, [Ti,j]h〉| : h ∈ H, ‖h‖ = 1}

= sup{‖([Ti,j])h‖2 : h ∈ H, ‖h‖ = 1}

= ‖[Ti,j]‖2

We have, ‖[Ti,j]‖2 = ‖[Ti,j]∗[Ti,j]‖. Hence Mn(B(H)) and B(H(n)) are

∗-isomorphic ∗-algebras via [Tij] ↔ [Tij]. This means that Mn(B(H)) is

a C∗-algebra if we define the norm on it by considering the elements as

operators on H(n).

We also have that

‖φ([Ti,j]
∗[Ti,j])‖ = ‖φ([Ti,j]

∗)φ([Ti,j])‖

≤ ‖φ([Ti,j]
∗)‖‖φ([Ti,j])‖

≤ ‖φ‖‖([Ti,j]∗)‖‖φ‖‖([Ti,j])‖

≤ ‖([Ti,j]∗)‖‖([Ti,j])‖

= ‖[Ti,j]‖2

since Mn(B(H)) is a ∗-algebra. Hence

‖φ([Ti,j]
∗[Ti,j])‖ ≤ ‖[Ti,j]‖2. (1.7)

It remains to show ‖φ([Ti,j]
∗[Ti,j])‖ ≥ ‖[Ti,j]‖2. Let h ∈ H(n) and
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‖h‖ = 1, then

‖[Ti,j]‖2 = ‖φ([Ti,j])‖2

= sup{〈φ([Ti,j])h, φ([Ti,j])h〉 : ‖h‖ = 1}

= sup{〈φ([Ti,j])
∗φ([Ti,j])h, h〉 : ‖h‖ = 1}

= sup{〈φ([Ti,j]
∗[Ti,j])h, h〉 : ‖h‖ = 1}

= sup{|〈φ([Ti,j]
∗[Ti,j])h, h〉| : ‖h‖ = 1}

≤ sup{‖φ([Ti,j]
∗[Ti,j])h‖‖h‖ : ‖h‖ = 1}

≤ sup{‖φ([Ti,j]
∗[Ti,j])‖‖h‖2 : ‖h‖ = 1}

≤ ‖φ([Ti,j]
∗[Ti,j])‖.

Hence

‖[Ti,j]‖2 ≤ ‖φ([Ti,j]
∗[Ti,j])‖. (1.8)

From the inequalities (1.7) and (1.8), we have

‖φ([Ti,j]
∗[Ti,j])‖ = ‖[Ti,j]‖2.

�

Proposition 1.7.5

If ‖.‖ is a complete C∗−norm on a ∗−algebra A, then it is given by the

expression

‖a‖ = r(a∗a)
1
2 , ∀ a ∈ A,

where r(a) is the spectral radius of a. Hence a C∗−norm on a ∗−algebra

is unique if it exists

Theorem 1.7.6

There is a unique norm on Mn(B(H)) making it a C∗-algebra.
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Proof. That Mn(B(H)) is a C∗-algebra has been shown in Proposition

1.7.4. It remains to show the uniqueness of this norm. For if ‖.‖1 and

‖.‖2 are norms on the ∗−algebra Mn(B(H)) making it a C∗-algebra, then

‖[Ti,j]‖21 = ‖[Ti,j]∗[Ti,j]‖1 = r([Ti,j]
∗[Ti,j]) = sup

λ∈σ([Ti,j ]∗[Ti,j ])
|λ|2.

Similarly,

‖[Ti,j]‖22 = ‖[Ti,j]∗[Ti,j]‖2 = r([Ti,j]
∗[Ti,j]) = sup

λ∈σ([Ti,j ]∗[Ti,j ])
|λ|2.

Thus, ‖[Ti,j]‖1 = ‖[Ti,j]‖2. Hence the norm is unique. �

In conclusion, given an arbitrary C∗-algebra A, by Gelfand Naimark

Segal, A is a closed self-adjoint subalgebra of B(H) for some Hilbert

space H. This means that Mn(A) is a closed self-adjoint subalgebra of

the C∗-algebra Mn(B(H)) ∼= B(H(n)) and hence a C∗-algebra.



Chapter 2

COMPLETELY POSITIVE

MAPS

In this chapter, the notion of complete positivity has been introduced.

Examples of positive and completely positive maps are discussed.

2.1 Properties of Positive Maps and oper-

ator systems

Definition 2.1.1

A linear map φ : Mn →Mk is called positive semidefinite if for any real

number l, matrices A1, ..., Al ∈ Mn, and any vectors x1, ..., xl ∈ Ck, we

have
l∑

i,j=1

〈φ(A∗iAj)xj, xi〉 . ≥ 0,

or equivalently if it satisfies x∗Ax ≥ 0 for all x ∈ Cn.

Definition 2.1.2

A matrix A ∈ Mn is called positive if it is Hermitian and all its eigen-

35
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values are non-negative, or if there exists some matrix B such that it can

be written A = B∗B, or equivalently if it is positive-semidefinite or if

eigenvalues of A are nonnegative.

Definition 2.1.3

A linear map φ : A → B between C∗-algebras is said to be positive

if it maps positive elements of A to positive elements of B. That is, if

φ(A+) ⊆ φ(B+).

This map is bounded if there exists an element x ∈ A such that

‖φ(x)‖ ≤ c‖x‖, c ∈ C.

φ is contractive if ‖φ‖ ≤ 1

Definition 2.1.4

An operator space is any subspaceM of some C∗-algebra, in particular,

B(H) for some Hilbert space H, together with a well-defined sequence of

matrix norms on Mn(M) where Mn(M) ⊆Mn(B(H)) for all n ≥ 1.

Thus an operator space carries not just an inherited norm structure, but

these additional matrix norms, see Proposition 1.7.4

Definition 2.1.5

If A is a unital C∗-algebra, then a subspace S ⊆ A such that 1 ∈ S and

S = S∗ is called an operator system, where

S∗ = {a∗ : a ∈ S}.

The following proposition shows that a positive map must be contin-

uous.
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Proposition 2.1.6

Let S be an operator system and B be a C∗-algebra with unit. If

φ : S → B is positive then ‖φ(1)‖ ≤ ‖φ‖ ≤ 2‖φ(1)‖.

Proof. Let p be positive element in S. Then 0 ≤ p ≤ ‖p‖1. By using

linearity of φ we obtain that 0 ≤ φ(p) ≤ ‖p‖φ(1). So ‖φ(p)‖ ≤ ‖p‖‖φ(1)‖.

Any selfadjoint element h ∈ S is the difference of two positive elements

in S since

h =
‖h‖.1 + h

2
− ‖h‖.1− h

2
.

Again by linearity

φ(h) = φ

(
‖h‖.1 + h

2

)
− φ

(
‖h‖.1− h

2

)
.

So φ(h) is the difference of two positive elements. By the first part of the

proof we see that

‖φ(h)‖ ≤ 1

2
max ‖φ (‖h‖.1 + h) ‖, ‖φ (‖h‖.1− h) ‖ ≤ ‖h‖‖φ(1)‖.

Finally, let a ∈ S be an arbitrary element. We can write a = b+ ic where

b and c are selfadjoint with ‖b‖, ‖c‖ ≤ ‖a‖.

Hence

‖φ(a)‖ ≤ ‖φ(b)‖+ ‖φ(c)‖ ≤ ‖b‖‖φ(1)‖+ ‖c‖‖φ(1)‖ ≤ 2‖a‖‖φ(1)‖.

This shows that ‖φ‖ ≤ 2‖φ(1)‖. Since the other inequality is trivial,

i.e ‖φ(1)‖ ≤ ‖φ‖‖1‖ = ‖φ‖.1 = ‖φ‖, the assertion follows. �
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Theorem 2.1.7

Let S be an operator system and B be a C∗-algebra with unit. If φ : S → B

is a positive, linear functional on an operator system, then

‖φ‖ = φ(1).

Proof. 0 ≤ ‖φ(1)‖ ≤ ‖φ‖‖1‖ ≤ ‖φ‖. Set φ(1) = 0 Then,

φ(1) ≤ ‖φ‖. (2.1)

On the other hand, let a ∈ S be positive. Then, 0 ≤ a ≤ ‖a‖.1.

Since φ is linear, we have

0 ≤ φ(a) ≤ ‖a‖.φ(1).

Taking the supremum with ‖a‖ ≤ 1, we get

‖φ‖ ≤ φ(1). (2.2)

From inequalities (2.1) and (2.2) we obtain, ‖φ‖ = φ(1).

�

2 is the best constant in Proposition 2.1.6 as illustrated in the following

example.

Example 2.1.8

Let T denote the unit circle in C, C(T ) the space of continuous functions

on T , z the coordinate function, and S ⊆ C(T ) the subspace spanned by
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1, z, z̄. Define φ : S −→ B by

φ(a+ bz + cz̄) =

 a 2b

2c a

 .

a+ bz+ cz̄ ∈ S is positive if and only if c = b̄ and a ≥ 2|b|. A self-adjoint

element of M2(C) is positive if and only if its diagonal entries and its

determinant are nonnegative real numbers. Thus φ is positive. However

2‖φ(1)‖ = 2 = ‖φ(z)‖ ≤ ‖φ‖ ⇒ ‖φ‖ = 2‖φ(1)‖.

We now consider properties of the domain that ensure that unital, positive

maps are contractive.

Lemma 2.1.9

Let A be a C∗-algebra with a unit, and let pi, i = 1, ..., n, be positive

elements of A such that
n∑
i=1

pi ≤ 1.

If λi, i = 1, ..., n, are scalars with |λi| ≤ 1, then

∥∥∥∥∥
n∑
i=1

λipi

∥∥∥∥∥ ≤ 1.

Proof. We have

∑n
i=1 λipi 0 · · · 0

0 0 · · · 0
...

0 0 · · · 0


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=


p
1/2
1 · · · p

1/2
1

0 · · · 0
...

0 · · · 0

×


λ1 0 · · · 0

0 0 · · · 0
...

0 0 · · · λn

 .


p
1/2
1 · · · 0

0 · · · 0
...

p
1/2
1 · · · 0

 .

The norm of the matrix on the left is ‖
∑n

i=1 λipi‖, while each of the

three matrices on the right have norms less than 1.

Thus, ‖
∑n

i=1 λipi ‖ ≤ 1. �

Theorem 2.1.10

Let B be a C∗-algebra with unit, Ω be a compact Hausdorff space and

C(Ω) be the space of continuous functions on Ω. Let φ : C(Ω) → B be

a positive map, then ‖φ‖ = ‖φ(1)‖.

Proof. Assume that φ(1) ≤ 1. Let f ∈ C(Ω), ‖f‖ ≤ 1 and ε > 0

be given. First, choose a finite open covering {Ui}ni=1 of Ω such that

|f(ω) − f(ωi)| < ε for ω ∈ Ui, and let {pi} be a partition of unity

subordinate to the covering. I.e, {pi} are nonnegative continuous func-

tions satisfying
∑n

i=1 pi = 1 and pi(x) = 0 for x /∈ Ui, i = 1, ..., n. Set

λi = f(ωi), and if pi(ω) 6= 0 for some i, then ω ∈ Ui and so |f(ω)− λi| < ε.

Hence for any ω,

∣∣∣∣∣f(ω)−
n∑
i=1

λipi(ω)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

(f(ω)− λi)pi(ω)

∣∣∣∣∣
≤

n∑
i=1

|f(ω)− λi| pi(ω) <
n∑
i=1

ε.pi(ω) = ε.
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Finally by Lemma 2.1.9, ‖
∑n

i=1 λiφ(pi)‖ ≤ 1, so that

‖φ(f)‖ ≤

∥∥∥∥∥φ(f −
n∑
i=1

λipi)

∥∥∥∥∥+

∥∥∥∥∥
n∑
i=1

λiφ(pi)

∥∥∥∥∥ < 1 + ε.‖φ‖,

and since ε was arbitrary, ‖φ‖ ≤ 1. �

Lemma 2.1.11

(Fejer-Riesz). Let τ(eiθ) =
∑+N

n=−N ane
inθ be a strictly positive function

on the unit circle T . Then there is a polynomial p(z) =
∑N

n=0 pnz
n such

that

τ(eiθ) = |p(eiθ)|2.

Proof. Since τ is real-valued, a−n = ān and a0 is real. Assume a−N 6= 0.

Set

g(z) =
+N∑

n=−N

anz
n+N ,

so that g is a polynomial of degree 2N with g(0) 6= 0. We have g(eiθ) =

τ(eiθ).eiNθ 6= 0. Antisymmetry of the coefficients of g implies

g(1/z̄) = z−2Ng(z).

This means that 2N zeros of g may be written as z1, ..., zN , 1/z̄1, ..., 1/z̄N .

Set q(z) = (z−z1)...(z−zN), h(z) = (z−1/z̄1)...(z−1/z̄N) and have that

g(z) = aNq(z)h(z),

with

h(z) =
(−1)N z̄Nq(1/z̄)

z1...zN
.
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Thus

τ(eiθ) = e−iNθg(eiθ) = |g(eiθ)|

= |aN |.|q(eiθ)|.|h(eiθ)|

= | aN
z1...zN

|.|q(eiθ)|2,

so that τ(eiθ) = |p(eiθ)|2, where p(z) = | aN
z1...zN

|1/2q(z). �

Writing p(z) = α0 + ... + αNz
N , then τ(eiθ) =

∑N
l,k=0 αlᾱke

i(l−k)θ, so

that the coefficients of every strictly positive trigonometric polynomial

(positive trigonometric polynomial) have this special form.

Theorem 2.1.12

Let T be an operator on a Hilbert space H with ‖T‖ ≤ 1, and let

S ⊆ C(T ) be the operator system defined by

S = {p(eiθ) + q(eiθ) : p, q are polynomials}.

Then the map φ : S −→ B(H) defined by φ(p + q̄) = p(T ) + q(T )∗ is

positive.

Proof. We prove that φ(τ) is positive for every strictly positive τ . In-

deed, if τ is only positive, then τ + εI is strictly positive for every ε > 0,

and hence we have φ(τ) + εI = φ(τ + εI) ≥ 0, it follows that φ(τ) ≥ 0.

Let τ(eiθ) be strictly positive in S, so that τ(eiθ) =
∑+n

l,k=0 αlᾱke
i(l−k)θ.

We must prove that

φ(τ) =
+n∑
l,k=0

αlᾱkT (l − k)
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is a positive operator, where we define

T (j) =

 T j, j ≥ 0;

T ∗−j, j < 0.
Fix a vector x in H and note that

〈φ(τ)x, x〉 =

〈


I T ∗ · · · T ∗n

T · · ·
...

. · · · T ∗

T n · · · T I




ᾱ1x

...

ᾱnx

 ,


ᾱ1x

...

ᾱnx


〉
. (2.3)

Thus, we just show that the matrix operator is positive. Set

R =



0 · · · 0

T · · ·

0 · · ·
...

0 · · · 0 T 0


and note that Rn+1 = 0, ‖R‖ < 1. Using I to denote the identity operator

on H(n), then the matrix operator in 2.3 can be written as

I +R +R2 + ...+Rn +R∗ + ...+R∗n = (I −R)−1 + (I −R∗)−1 − I.

This latter operator is positive, for, fix h ∈ H(n), and let h = (I−R)y for

y ∈ H(n). We obtain

〈
((I −R)−1 + (I −R∗)−1 − I)h, h

〉
= 〈y, (I −R)y〉+
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〈(I −R)y, y〉 − 〈(I −R)y, (I −R)y〉

= ‖y‖2 + ‖Ry‖2 ≥ 0,

since R is a contraction.

�

Corollary 2.1.13

Let B, C be C∗−algebras with unit, let A be a subalgebra,1 ∈ A, and let

S = A+A∗. If φ : S −→ C is positive, then ‖φ(a)‖ ≤ ‖φ(1)‖.‖a‖ for all

a ∈ A.

Proof. Let a ∈ A, ‖a‖ ≤ 1. By Proposition 2.1.6 and Example 2.1.8,

we may extend φ to a positive map on the closure, S, of S. There is a

positive map ψ : C(T ) −→ B with ψ(p) = p(a). Since A is an algebra,

the range of ψ is contained in S.

Clearly, the composition of positive maps is positive.

‖φ(a)‖ = ‖φ ◦ ψ(eiθ)‖ ≤ ‖φ ◦ ψ(1)a‖.‖eiθ‖ = ‖φ(1)a‖ ≤ ‖φ(1)‖‖a‖.

If ‖φ(1)‖ = 1, then φ is a contraction. �

Corollary 2.1.14

(Russo-Dye). LetA and B be C∗-algebras with unit, and let φ : A −→ B

be a positive map. Then ‖φ‖ = ‖φ(1)‖.

Proof. By Corollary 2.1.13, we have ‖φ(a)‖ ≤ ‖φ(1)‖.‖a‖ for all a ∈ A.

Taking the supremum over all a with ‖a‖ ≤ 1, we have

‖φ‖ ≤ ‖φ(1)‖. (2.4)
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On the other hand, let a = 1 be the unit in A then from

‖φ(a)‖ ≤ ‖φ(1)‖.‖a‖ for all a ∈ A, we have ‖φ(a)‖ ≤ ‖φ(1)‖.‖a‖ ⇒

‖φ(1)‖ ≤ ‖φ(1)‖.‖1‖ ≤ ‖φ‖‖1‖‖1‖ = ‖φ‖. Thus,

‖φ(1)‖ ≤ ‖φ‖. (2.5)

From inequalities (2.4) and (2.5), we have ‖φ‖ = ‖φ(1)‖. �

Proposition 2.1.15

Let S be an operator system, B a unital C∗-algebra and φ : S −→ B a

unital contraction. Then φ is positive.

Proof. Define f(a) = 〈φ(a)x, x〉, with ‖x‖ = 1. Then, we have

‖f‖ = sup |〈φ(a)x, x〉| : ‖a‖ ≤ 1,

= sup
‖a‖≤1

‖φ(a)x‖‖x‖

≤ sup
‖a‖≤1

‖φ‖‖a‖‖x‖‖x‖

= ‖φ‖.

Since ‖φ‖ ≤ 1, is a contraction, ‖f‖ ≤ 1. Thus, f > 0⇒ f(a) > 0 so

f(a) = 〈φ(a)x, x〉 > 0 for all a > 0, which implies that φ(a) > 0 so that

φ is positive. �

2.2 Examples of positive Maps

Example 2.2.1

Let S be an operator system, B a unital C∗-algebra and φ : S −→ B a

unital contraction. Then φ is positive by proposition (2.1.15)



CHAPTER 2. COMPLETELY POSITIVE MAPS 46

Example 2.2.2

Let f : A → C be a bounded linear functional on a C∗-algebra A, then f

is positive by theorem 1.6.24

Example 2.2.3

Let A be a C∗−algebra, π : A → B(H) a representation and

φ : B(H)→ C a homomorphism defined by φ(a) = 〈π(a)h, h〉, a ∈ A, h ∈ H,

then φ is positive.

For, let a ∈ A be positive, then there exists a b ∈ A such that a = b∗b.

φ(a∗a) = 〈π(a∗a)h, h〉 = 〈π(a∗)π(a)h, h〉 = 〈π(a)h, π(a)h〉 = ‖π(a)‖ ≥ 0.

Therefore, φ(a) is positive and so is φ.

Example 2.2.4

Let A be a C∗-algebra and {Ei,j}2i,j=1 ∈ M2(A) denote the system of

matrix units for Mn(A) with 1 at the i-row and j-column and zero else-

where, i.e.

E11 =

 1 0

0 0

 , E12 =

 0 1

0 0

 , E21 =

 0 0

1 0

 and E22 =

 0 0

0 1

 .

Let φ : A −→ A be the transpose map, defined by

φ(A) = AT ; ∀ A ∈ A.

Thus, φ(Ei,j) = Ej,i.

Let A → B(H) and x ∈ H.

If x = (−1, 2) ∈ H, we have

〈E11x, x〉 =

〈 1 0

0 0

 −1

2

 ,

 −1

2

〉
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=

〈 −1

0

 ,

 −1

2

〉 = 1.

We also have

〈φ(E11)x, x〉 =

〈 1 0

0 0

 −1

2

 ,

 −1

2

〉

=

〈 −1

0

 ,

 −1

2

〉 = 1.

Therefore, E11 and φ(E11) are positive. Hence a transpose map is positive.

2.3 Completely Positive Maps

If S ⊆ A is an operator system, we endow Mn(S) with the norm and

order structure that it inherits as a subspace of Mn(A).

Definition 2.3.1

Let B be a C∗−algebra, and φ : S −→ B a linear map, then we define maps

φn : Mn(S) −→Mn(B) by φn([ai,j]) = [φ(ai,j)] for all n ∈ N, [ai,j] ∈ Mn(S).

φ is n-positive if φn is positive, and we call φ completely positive if φ

is n-positive for all n ∈ N, equivalently, if φn is positive for all n ∈ N .

Proposition 2.3.2

Let [Ti,j] ∈Mn(B(H)), then [Ti,j] is positive if and only if for every choice

of n vectors x1, ..., xn ∈ H, the scalar matrix [〈Ti,jx, x〉] is positive.

Proof. Let [Ti,j] ∈ Mn(B(H)) be positive. We prove that, for every

choice of n vectors x1, ..., xn ∈ H, the scalar matrix [〈Ti,jxj, xi〉] is positive.
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Since [Ti,j] ∈ Mn(B(H)) is positive, there exists [Si,j] ∈ Mn(B(H)) such

that

Ti,j = S∗j,iSi,j.

We have

〈Ti,jxj, xi〉 =
〈
S∗j,iSi,jxj, xi

〉
= 〈Si,jxj, Si,jxi〉

= ‖Si,jx‖2 ≥ 0.

Conversely, let the scalar matrix [〈Ti,jxj, xi〉] be positive for every

x ∈ B(Hn), we prove that [Ti,j] ∈ Mn(B(H)) is positive. This implies

that

〈Ti,jxj, xi〉 = 〈x∗iTi,jxj, 1〉 =
n∑

i,j=1

x∗iTi,jxj ≥ 0.

Let {π,H, x0} be an arbitrary cyclic representation of B(H). Then for

each vector x =
∑n

j=1 xj
⊗

ej ∈ H̃ = H
⊗
Hn, we have

(π̃(T )x|x) =
n∑

i,j=1

(
π(T )

(
xj
⊗

ej

)
|xi
⊗

ei

)
=

n∑
i,j,k=1

(
π(Tk,j)

(
xj
⊗

ek

)
|xi
⊗

ei

)
=

n∑
i,j=1

(π(Ti,j)xj|xi) .

Choose sequences {xmi : m = 1, 2, ...} ∈ B(H) with xi = limm→∞ π(xmi )x0.
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We have

(π̃(T )x|x) = lim
m→∞

n∑
i,j=1

(
π(Ti,j)π

(
xmj
)
x0|π(xmi )x0

)
= lim

m→∞

(
π

(
n∑

i,j=1

(xmi )∗Ti,jx
m
j

)
x0|x0

)
≥ 0.

Hence π̃(T ) is positive for any cyclic representation π so that T > 0. Thus

[Ti,j] is positive.

�

Proposition 2.3.3

Let A be a C∗−algebra, H be a Hilbert space and M ⊆ A be an op-

erator space. We set M∗ = {a∗ : a ∈ M}, an operator space. If

φ : M → B(H) is a linear map, then the map φ∗ : M∗ → B(H)∗

defined by φ∗(a∗) = φ(a∗)∗ is also linear. We can define their corre-

sponding linear maps: φn : Mn(M)→Mn(B(H)) by φn([ai,j] = [φ(ai,j)])

where [ai,j] ∈ Mn(M) and φ∗n : Mn(M∗) → Mn(B(H)∗) by φ∗n([ai,j]
∗) =

[φ∗(ai,j)
∗] = [φ((ai,j)

∗)∗], ∀ i, j = 1, ..., n, then φ∗ = φ and φ∗n = φn.

Proof. Let α, β ∈ C and a, b ∈M, then by definition, αa+ βb ∈M so

that (αa+ βb)∗ ∈M∗. We have

φ∗ ((αa+ βb)∗) = φ ((αa+ βb)∗)∗

= φ(ᾱa∗ + β̄b∗)∗

= φ(¯̄α(a∗)∗ + ¯̄β(b∗)∗)

= (¯̄αφ(a∗)∗ + ¯̄βφ(b∗)∗)

= αφ∗(a∗) + βφ∗(b∗)
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Hence φ∗ is linear.

Let h ∈ H, then

〈[φ∗(ai,j)∗]h, h〉 = 〈φ∗n([ai,j])
∗h, h〉

= 〈φn([ai,j])
∗∗h, h〉

= 〈φn([ai,j])h, h〉

= 〈[φ(ai,j)]h, h〉.

This implies that

0 = 〈[φ∗(ai,j)∗]h, h〉 − 〈[φ(ai,j)]h, h〉

= 〈[(φ∗ − φ)(ai,j)]h, h〉 since [ai,j] ∈Mn(A) is self adjoint.

Thus φ∗ − φ = 0, so that φ∗ = φ.

We also have,

〈φ∗n([ai,j]
∗)h, h〉 = 〈φn([ai,j])

∗∗h, h〉 = 〈φn([ai,j])h, h〉.

0 = 〈[φ∗n(ai,j)
∗]h, h〉 − 〈[φn(ai,j)]h, h〉

= 〈[(φ∗n − φn)(ai,j)]h, h〉 since [ai,j] ∈Mn(A) is self adjoint.

Thus φ∗n − φn = 0, so that φ∗n = φn. Thus, φn is hermitian. �
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2.4 Examples Of Completely Positive Maps

Example 2.4.1

Let A and B be unital C∗-algebras and π : A → B be a ∗-homomorphism

with π(1) = 1. Let also each of the maps πn : Mn(A) → Mn(B) defined

by

πn([ai,j]) = [π(ai,j)] for all [ai,j] ∈ Mn(A) and for all n ∈ N be a ∗ -

homomorphism, then π is completely positive.

Let [ai,j] ∈ Mn(A) be positive, then there exist [bi,j] ∈ Mn(A) such

that

[ai,j] = [(bi,j)
∗bi,j].

We show that π is positive and completely positive. We have that

π(ai,j) = π((bi,j)
∗bi,j) = π(bi,j)

∗π(bi,j) ≥ 0.

This implies that π is positive.

Since each map, πn : Mn(A)→Mn(B) defined by πn([ai,j]) = [π(ai,j)]

is a ∗-homomorphism, by definition we have

πn([ai,j]) = πn([(bi,j)
∗bi,j]) = [π((bi,j)

∗bi,j)]

= [π(bi,j)
∗π(bi,j)] ≥ 0.

Thus, πn([ai,j]) ≥ 0 for every n ∈ N. This implies that π is completely

positive.

Example 2.4.2

LetA be a C∗−algebra, π : A → B(H) a representation and φ : B(H) → C

a homomorphism defined by φ(a) = 〈π(a)h, h〉, a ∈ A, h ∈ H. Let also
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φn : Mn(B(H)) → Mn(C) be linear maps defined by φn([aij]) = [φ(aij)],

for all [aij] ∈ Mn(A), then φ is completely positive. For, let a ∈ A be

positive, then

φ(a∗a) = 〈π(a∗a)h, h〉 = 〈π(a∗)π(a)h, h〉 = 〈π(a)h, π(a)h〉 = ‖π(a)‖ ≥ 0.

Therefore, φ(a) is positive and so is φ.

Let [aij] be positive and Let h ∈ Hn, we have

φn([aij]
∗[aij]) = [φ(aij)

∗(aij)] = 〈[π((aij)
∗(aij))]h, h〉

= 〈[π(b∗ji)π(bij)]h, h〉

= 〈[π(bij)]h, π(bij)h〉

= ‖[π(aij)]h‖2 ≥ 0.

Hence φ is completely positive.

Example 2.4.3

Let A and B be unital C∗-algebras and x and y in A be diagonal matrices,

where [xi,j] =

 x, i=j;

0, i 6= j.
and [yi,j] =

 y, i=j;

0, i 6= j.

Define φ : A −→ A by φ(a) = xay. Then φn : Mn(A) −→ Mn(A) is

given by φn([ai,j]) = [xi,j][ai,j][yi,j], [xi,j], [ai,j], [yi,j] ∈ Mn(A), then Let

x = y∗ and we may assume without loss of generality that (ai,j) is a unit

matrix. Then,

φ(a) = y∗ay
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=


y∗ 0 · · · 0

0 · · ·
...

0 · · · 0 y∗




1 0 0 · · · 0

0 1 0 · · · 0
...

0 0 0 · · · 1




y 0 · · · 0

0 · · ·
...

0 · · · 0 y



=


y∗ 0 · · · 0

0 · · ·
...

0 · · · 0 y∗




y 0 · · · 0

0 · · · .
...

0 · · · 0 y

 =


y∗y 0 · · · 0

0 · · ·
...

0 · · · 0 y∗y

 ,

φ(a) =


y∗ 0 · · · 0

0 · · ·
...

0 · · · 0 y∗




1 0 0 · · · 0

0 1 0 · · · 0
...

0 0 0 · · · 1




y 0 · · · 0

0 · · ·
...

0 · · · 0 y



=


y∗ 0 · · · 0

0 · · ·
...

0 · · · 0 y∗




y 0 · · · 0

0 · · ·
...

0 · · · 0 y

 =


y∗y 0 · · · 0

0 · · ·
...

0 · · · 0 y∗y

 ,

which is positive.



Chapter 3

COMPLETELY BOUNDED

MAPS

In this chapter, we have given the relationship of boundedness and com-

plete boundedness. Some of the elementary properties of the completely

bounded norm and relationship of complete positivity against complete

boundedness have been investigated. Examples and counter examples

have also been discussed.

Definition 3.0.4

LetA and B be C∗−algebras,M⊆ A be an operator space and φ : M → B

a linear map, then we define maps φn : Mn(M)→Mn(B) by

φn([ai,j]) = [φ(ai,j)] for all n ∈ N, [ai,j] ∈ Mn(M). φ is completely

bounded if the completely bounded norm ‖φ‖cb is finite, that is, the

sup{‖φn‖ : n ∈ N} is finite. We set

‖φ‖cb = sup{‖φn‖ : n ∈ N} <∞.

Completely contractive indicates that ‖φ‖cb ≤ 1.

54
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Proposition 3.0.5

Let φ : A → B be a linear map from the C∗-algebra A to C∗-algebra

B. Let the maps φn : Mn(A) → Mn(B) defined by φn([ai,j]) = [φ(ai,j)],

[ai,j] ∈ Mn(A) be positive for all n, then ‖φ‖cb = sup{‖φn‖ : n ∈ N} is a

norm on [ai,j] ∈Mn(A).

Proof. (a) We show that ‖φ‖cb is non-negative.

We have that

‖φn‖ = sup
n∈N
{‖φn([ai,j])‖ : ‖ai,j‖ ≤ 1} = sup{‖[φ(ai,j)]‖ : ‖ai,j‖ ≤ 1} ≥ 0.

Therefore,

‖φ‖cb = sup{‖φn‖ : n ∈ N} <∞

= sup

{
sup
n∈N
{‖φn([ai,j])‖ : ‖ai,j‖ ≤ 1}

}
≤ sup

{
sup
n∈N
{‖φn‖‖([ai,j])‖ : ‖ai,j‖ ≤ 1}

}
= sup

n∈N
‖φn‖.

we have that

‖φ‖cb ≤ sup ‖φn‖ <∞,

for some n ∈ N. That is, there is an n ∈ N such that

‖φ‖cb ≤ ‖φn‖. (3.1)
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Also, the complete bound norm of φ is given by

‖φ‖cb = sup
n
‖φn‖ <∞.

This implies that

‖φ‖cb ≥ ‖φn‖, ∀ n ∈ N. (3.2)

So from inequalities (3.1) and (3.2) we have

‖φ‖cb = ‖φn‖ > 0. (3.3)

Thus,

‖φ‖cb = sup
n
‖φn‖

is non-negative.

(b) We prove that ‖φ‖cb = supn ‖φn‖ = 0 if and only if φn = 0.

If φn = 0, ∀ n ∈ N, then ‖φn‖ = 0, ∀ n ∈ N. Thus,

‖φ‖cb = sup{‖φn‖ : n ∈ N} = 0.

(c) Next, we show that ‖αφ‖cb = |α|‖φ‖cb, α ∈ C.

We have,

‖αφ‖cb = sup{‖αφn‖ : n ∈ N} = sup
n∈N
|α|‖φn‖

= |α| sup
n∈N
‖φn‖

= |α|‖φ‖cb.
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(d) Finally, we show the triangle inequality.

Let A and B be C∗-algebras and ϕ : A → B also be a linear map.

Then, it is clear that φ+ ϕ : A → B is also linear. Let the maps

ϕn : Mn(A) → Mn(B) be defined by ϕn([ai,j]) = [ϕ(ai,j)], for all

[ai,j] ∈ Mn(A). Then,

‖φ+ ϕ‖cb = sup
n∈N
‖φn + ϕn‖ ≤ sup

n∈N
{‖φn‖+ ‖ϕn‖}

≤ sup
n∈N
‖φn‖+ sup

n∈N
‖ϕn‖

= ‖φ‖cb + ‖ϕ‖cb (triangle inequality).

Thus, ‖φ‖cb = sup{‖φn‖ : n ∈ N} is indeed a norm on [ai,j] ∈ Mn(A).

�

If φ is n-positive, then φ is k-positive for k ≤ n. Also ‖φk‖ ≤ ‖φn‖

for k ≤ n.

To show the first part of this statement, suppose that φ is completely

positive, then by definition φ is n-positive for all n = 1, 2, ..., k, ... , n − 1

so that φ is k-positive. For the second part, we prove the following propo-

sition.

Proposition 3.0.6

Given a C∗−algebra A, an operator space M ⊆ A and a linear map φ :

M→ B. Let the maps φn : Mn(M)→ Mn(B) be defined by φn([ai,j]) =

[φ(ai,j)], ∀ [ai,j] ∈ Mn(A), then norms ‖φn‖, n ∈ N form an increasing

sequence

‖φ‖ ≤ ‖φ2‖ ≤ ... ≤ ‖φn‖

and ‖φn‖ ≤ n‖φ‖, ∀ n ∈ N.
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Proof. We define the linear map φ :M→ B(H) by φ(a) = 〈φ(a)x, x〉,

where a ∈M and x ∈ H

Let n = 1, then by definition φn([ai,j]) = [φ(ai,j)], i, j = 1, we have

φ1([a11]) = [φ(a11)]. Therefore

‖φ1‖ = sup{‖φ1([ai,j])‖ : ‖ai,j‖ ≤ 1, i, j = 1}

= sup{‖[φ(ai,j)]‖ : ‖ai,j‖ ≤ 1, i, j = 1}

= sup{‖[φ(a11)]‖ : ‖a1,1‖ ≤ 1} = ‖φ‖.

φ1 coincides with φ so that ‖φ‖ = ‖φ1‖.

We now consider case when n = 2.

Let [ai,j] ∈M2(M) i, j = 1, 2, then for the maps φ2 : M2(M) → M2(B(H)),

defined by φ2([ai,j]) = [φ(ai,j)], i, j = 1, 2 where φ(ai,j) = 〈φ(ai,j)xj, xi〉

We have

‖φ2‖ = sup {‖φ2([ai,j])‖ : ‖ai,j‖ ≤ 1, i, j = 1, 2}

= sup {‖[φ(ai,j)]‖ : ‖ai,j‖ ≤ 1, i, j = 1, 2}

≥ sup{‖[φ(a1,1)]‖ : ‖a1,1‖ ≤ 1} = ‖φ1‖.

Thus ‖φ2‖ ≥ ‖φ1‖.

We have

‖φ3‖ = sup{‖φ3([ai,j])‖ : ‖ai,j‖ ≤ 1, i, j = 1, 2, 3}

= sup{‖[φ(ai,j)]‖ : ‖ai,j‖ ≤ 1, i, j = 1, 2, 3}

≥ sup{‖[φ(ai,j)]‖ : ‖ai,j‖ ≤ 1, i, j = 1, 2} = ‖φ2‖.
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Thus ‖φ3‖ ≥ ‖φ2‖.

In general, consider the maps

φn : Mn(M)→Mn(B(H))

defined by φn([ai,j]) = [φ(ai,j)] ∀ i, j = 1, 2, ..., n. By the above calcula-

tion we have that

‖φn‖ = sup{‖φn([ai,j])‖ : ‖ai,j‖ ≤ 1, i, j = 1, ..., n}

= sup{‖[φ(ai,j)]‖ : ‖ai,j‖ ≤ 1, i, j = 1, ..., n}

≥ sup{‖[φ(ai,j)]‖ : ‖ai,j‖ ≤ 1, i, j = 1, ..., n− 1} = ‖φn−1‖.

Thus ‖φn‖ ≥ ‖φn−1‖.

Thus, by upward induction we have,

‖φ‖ ≤ ‖φ2‖ ≤ ... ≤ ‖φn−1‖ ≤ ‖φn‖.

In the second part of the proposition, we show that ‖φn‖ ≤ n‖φ‖.

Let ‖ai,j‖ ≤ 1 for all i, j = 1, ..., n. Define ‖[ai,j]‖ for all [ai,j] ∈ Mn(M)

by

‖[ai,j]‖ =

√√√√ n∑
i,j=1

‖ai,j‖2.

Then we have,

‖φn‖ = sup{‖φn([ai,j])‖ : ‖ai,j‖ ≤ 1, i, j = 1, ..., n; n ∈ N}
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= sup {‖[φ(ai,j)]‖ : ‖ai,j‖ ≤ 1, i, j = 1, ..., n}

= sup


√√√√ n∑

i,j=1

‖φ(ai,j)‖2 : ‖ai,j‖ ≤ 1, i, j = 1, ..., n


≤ sup


√√√√ n∑

i,j=1

‖φ‖2‖ai,j‖2 : ‖ai,j‖ ≤ 1, i, j = 1, ..., n


= ‖φ‖ sup


√√√√ n∑

i,j=1

‖ai,j‖2 : ‖ai,j‖ ≤ 1, i, j = 1, ..., n


= n‖φ‖.

Thus ‖φn‖ ≤ n‖φ‖ for all n ∈ N

�

3.1 Properties of Completely bounded Maps

Lemma 3.1.1

Let A and B be unital C∗-algebras and π : A → B be a ∗-homomorphism

with π(1) = 1. Let also each of the maps πn : Mn(A) → Mn(B) defined

by πn([ai,j]) = [π(ai,j)] for all [ai,j] ∈ Mn(A) and for all n ∈ N be a

∗-homomorphism, then π is completely positive and completely bounded

and that ‖π‖ = ‖πn‖ = ‖π‖cb = 1.

Proof. Complete positivity of the map has been shown in example 2.4.1.

We now prove the boundedness and complete boundedness of π. Let

π([ai,j]) = [π(ai,j)] = [ci,j] ∈Mn(B) for some [ai,j] ∈Mn(A). Then,

‖π‖ = sup{‖π([ai,j])‖ : ‖ai,j‖ ≤ 1; n ∈ N}
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= sup{‖[π(ai,j)]‖ : ‖ai,j‖ ≤ 1}

= sup{‖[ci,j]‖ : ‖ci,j‖ ≤ 1}

= 1.

This implies that π is bounded. That is, a positive map is bounded.

Now, let n ∈ N be finite, then

‖πn‖ = sup{‖πn([ai,j])‖ : ‖ai,j‖ ≤ 1, i = 1, ..., n; j = 1, ...,m;

1 ≤ m ≤ n ∈ N; i× j = n× n}

= sup {‖[π(ai,j)]‖ : ‖ai,j‖ ≤ 1, i = 1, ..., n; j = 1, ...,m}

= sup


√√√√ n∑

i=1

m∑
j=1

‖π(ai,j)‖2 : ‖ai,j‖ ≤ 1


≤ sup


√√√√ n∑

i=1

m∑
j=1

‖π‖2‖ai,j‖2 : ‖ai,j‖ ≤ 1


= ‖π‖ sup


√√√√ n∑

i=1

m∑
j=1

‖ai,j‖2 : ‖ai,j‖ ≤ 1


= n‖π‖ = n.

Thus ‖πn‖ ≤ n.

Taking the supremum of both sides, we get

sup{‖πn‖ : n ∈ N} = n.
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Therefore,

‖π‖cb = sup{‖πn‖ : n ∈ N} = n <∞.

Thus π is completely bounded.

We now show that ‖π‖ = ‖πn‖ = ‖π‖cb = 1 with π(1) = 1.

‖π‖ = sup{‖π([ai,j])‖ : ‖ai,j‖ ≤ 1, n ∈ N, i, j = 1, ..., n}.

= sup{‖[π(ai,j)]‖ : ‖ai,j‖ ≤ 1 i, j = 1, ..., n}, π is linear.

‖πn‖ = sup{‖πn([ai,j])‖ : ‖ai,j‖ ≤ 1, n ∈ N, i, j = 1, ..., n}.

= sup{‖[π(ai,j)]‖ : ‖ai,j‖ ≤ 1, i, j = 1, ..., n}.

= ‖π‖.

⇒ ‖πn‖ = ‖π‖.

From equation (3.3), we have that ‖πn‖ = ‖π‖cb.

We now let ai,j = 1, then

‖πn‖ = sup{‖πn([1])‖ : n ∈ N}.

= sup{‖[π(1)]‖}

= sup{‖[1]‖} = 1.

⇒ ‖πn‖ = 1. Furthermore, taking the supremum of both sides of this

equation, we have

sup{‖πn‖ : n ∈ N} = 1,
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which implies that ‖π‖cb = sup{‖πn‖ : n ∈ N} = 1 < ∞. Thus, π is

completely bounded and that,

‖π‖ = ‖πn‖ = ‖π‖cb = 1.

�

Proposition 3.1.2

Let A be a C∗−algebra, H be a Hilbert space and M ⊆ A be an op-

erator space. We set M∗ = {a∗ : a ∈ M}, an operator space. If

φ : M → B(H) is a linear map, then the map φ∗ : M∗ → B(H)∗

defined by φ∗(a∗) = φ(a∗)∗ is also linear. We can define their corre-

sponding linear maps: φn : Mn(M)→Mn(B(H)) by φn([ai,j] = [φ(ai,j)])

where [ai,j] ∈ Mn(M) and φ∗n : Mn(M∗) → Mn(B(H)∗) by φ∗n([ai,j]
∗) =

[φ∗(ai,j)
∗] = [φ((ai,j)

∗)∗], ∀ i, j = 1, ..., n, then ‖φn‖ = ‖φ∗n‖ and hence

‖φn‖cb = ‖φ∗n‖cb, for all n ∈ N.

Proof. By definition,

‖φ∗n‖ = sup
n∈N
{‖φ∗n([ai,j]

∗)‖ : ‖ai,j‖ ≤ 1}

= sup{‖[φ(a∗j,i)
∗]‖ : ‖ai,j‖ ≤ 1}

= sup{‖[φ(a∗∗i,j)]‖ : ‖ai,j‖ ≤ 1}

= sup{‖[φ(ai,j)]‖ : ‖ai,j‖ ≤ 1}

= sup
n∈N
{‖φn([ai,j])‖ : ‖ai,j‖ ≤ 1}

≤ sup
n∈N
{‖φn‖‖[ai,j]‖ : ‖ai,j‖ ≤ 1}

= ‖φn‖.
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Thus,

‖φ∗n‖ ≤ ‖φn‖. (3.4)

Similarly,

‖φn‖ = sup
n∈N
{‖φn([ai,j])‖ : ‖ai,j‖ ≤ 1}

= sup
n∈N
{‖φn([a∗∗i,j])‖ : ‖ai,j‖ ≤ 1}

= sup{‖[φ(a∗j,i)
∗]‖ : ‖ai,j‖ ≤ 1}

= sup{‖[φ∗(a∗j,i)]‖ : ‖ai,j‖ ≤ 1}

= sup
n∈N
{‖φ∗n([ai,j]

∗)‖ : ‖ai,j‖ ≤ 1}

≤ sup
n∈N
{‖φ∗n‖‖[ai,j]∗‖ : ‖ai,j‖ ≤ 1}

= ‖φ∗n‖.

Thus,

‖φn‖ ≤ ‖φ∗n‖. (3.5)

From (3.4) and (3.5), we have

‖φn‖ = ‖φ∗n‖. (3.6)

Taking the supremum over n on both sides of equation (3.6), we get

‖φ‖cb = sup
n∈N
‖φn‖ = sup

n∈N
‖φ∗n‖ = ‖φ∗‖cb.

�
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3.2 Examples Of Completely Bounded Maps.

Example 3.2.1

Let A and B be unital C∗-algebras and φ : A → B be a ∗-homomorphism,

then φ is completely positive and completely bounded by Lemma 3.1.1.

Example 3.2.2

LetA be a C∗−algebra, π : A → B(H) a representation and φ : B(H) → C

a homomorphism defined by φ(a) = 〈π(a)h, h〉, a ∈ A, h ∈ H. Let also

φn : Mn(B(H)) → Mn(C) be linear maps defined by φn([aij]) = [φ(aij)],

for all [aij] ∈Mn(A), then φ is completely bounded.

Let π(ai,j) = ci,j ∈Mn(B(H)). We have,

‖φ([ai,j])‖ = sup{|〈[π(ai,j)]h, h〉| : ‖h‖ ≤ 1, ‖ai,j‖ ≤ 1}

= sup{‖[π(ai,j)]h‖‖h‖ : ‖h‖ ≤ 1, ‖ai,j‖ ≤ 1}

≤ sup{‖π(ai,j)‖‖h‖‖h‖ : ‖h‖ ≤ 1, ‖ai,j‖ ≤ 1}

= sup{‖ci,j‖‖h‖2 : ‖h‖ ≤ 1, ‖ci,j‖ ≤ 1}

= 1.

That is,

‖φ‖ ≤ 1 (3.7)

Hence φ is contractive. This also implies that φ, is bounded.

Now,

‖φn([aij])‖ = ‖[φ(aij)]‖

= sup{|〈[π(aij)h, h]〉| : ‖h‖ ≤ 1, ‖ai,j‖ ≤ 1 i, j = 1, ..., n ∈ N}

= sup{‖[π(aij)]h‖‖h‖ : ‖h‖ ≤ 1, ‖ai,j‖ ≤ 1 i, j = 1, ..., n}
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≤ sup{‖π(aij)‖‖h‖‖h‖ : ‖h‖ ≤ 1, ‖ai,j‖ ≤ 1 i, j = 1, ..., n}

≤ sup{‖π‖‖aij‖‖h‖2 : ‖h‖ ≤ 1, ‖ci,j‖ ≤ 1 i, j = 1, ..., n}

= ‖π‖ = 1.

From this, ‖φn‖ ≤ 1. Thus, φn is bounded. Taking the supremum on

both sides of this equation. That is, supn∈N ‖πn‖ = 1, which implies that

φ is completely bounded.

Let a = 1, then φ(1) = 〈π(1)h, h〉 = 〈h, h〉 = ‖h‖2 = 1.

We also have that ‖φn([aij])‖ = ‖[φ(aij)]‖ ≤ ‖φ‖‖(aij)‖ so that ‖φn‖ ≤ ‖φ‖.

On the other hand ‖φ‖ ≤ ‖φn‖ by the lemma above, so that the

equality holds.

1 = φ(1). Taking the norm on both sides, we get

1 = ‖1‖ = ‖φ(1)‖ ≤ ‖φ‖‖1‖ = ‖φ‖ ⇒ ‖φ‖ ≥ 1.

Together, we have ‖φ‖ = 1.

Example 3.2.3

Let A and B be unital C∗-algebras and x and y in A be diagonal matrices,

where [xi,j] =

 x, i=j;

0, i 6= j.
and [yi,j] =

 y, i=j;

0, i 6= j.

Define φ : A −→ A by φ(a) = xay. Then φn : Mn(A) −→ Mn(A) is

given by φn([ai,j]) = [xi,j][ai,j][yi,j], [xi,j], [ai,j], [yi,j] ∈Mn(A), then

‖φn((ai,j))‖ = ‖(xai,jy)‖
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=


x 0 · · · 0

0 · · · 0
...

0 · · · 0 x




a11 · · · a1n
...

an1 · · · ann




y 0 · · · 0

0 · · · 0
...

0 · · · 0 y


≤ ‖x‖‖(ai,j)‖‖y‖

Taking the supremum over all (ai,j) with ‖(ai,j)‖ ≤ 1, we obtain

‖φn‖ ≤ ‖x‖‖y‖.

Thus, φ is completely bounded, and taking the supremum over all n ∈ N,

sup
n
‖φn‖ = ‖φ‖cb ≤ ‖x‖.‖y‖.

Example 3.2.4

LetH1 andH2 be Hilbert spaces, Vi : H1 −→ H2, i = 1, 2, be bounded op-

erators and π : A −→ B(H2) be a ∗-homomorphism. Define φ : A → B(H1)

by

φ(a) = V ∗2 π(a)V1 ∀ a ∈ A.

Then φ is completely bounded and that

‖φ‖cb ≤ ‖V1‖‖V2‖.

Let x, y ∈ H1 be of unit lengths, then

|〈φn(a)x, y〉| = |〈V ∗2 ⊗ Inπ(a)V1 ⊗ Inx, y〉|

= |〈π(a)V1 ⊗ Inx, V2 ⊗ Iny〉|
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≤ ‖π(a)V1 ⊗ Inx‖‖V2 ⊗ Iny‖

≤ ‖π‖‖(a)‖‖V1‖‖x‖‖V2‖‖y‖

≤ ‖(a)‖‖V1‖‖x‖‖V2‖‖y‖ since ‖π‖ = 1

≤ ‖π(a)‖‖V1 ⊗ In‖‖x‖‖V2 ⊗ In‖‖y‖

≤ ‖π‖‖(a)‖‖V1‖‖x‖‖V2‖‖y‖

≤ ‖(a)‖‖V1‖‖x‖‖V2‖‖y‖ since ‖π‖ = 1

Taking the supremum over all n ∈ N with ‖a‖ ≤ 1, ‖x‖ ≤ 1, ‖y‖ ≤ 1,

we have that supn ‖φn‖ ≤ ‖V1‖‖V2‖ < ∞, since V1 and V2 are bounded.

Thus φ is completely bounded and ‖φ‖cb ≤ ‖V1‖‖V2‖.

Example 3.2.5

This is a counter example. That is, a map that is completely bounded

but not completely positive.

Let A be a C∗-algebra and {Ei,j}2i,j=1 ∈ M2(A) denote the system of

matrix units for M2(A) with 1 at the i-row and j-column and zero else-

where, i.e.

E11 =

 1 0

0 0

 , E12 =

 0 1

0 0

 , E21 =

 0 0

1 0

 and E22 =

 0 0

0 1

 .

Let φ : A −→ A be the transpose map, defined by

φ(A) = AT ; ∀ A ∈ A.

φ is positive by example 2.2.4

Also, ‖Ei,j‖ = sup{‖Ei,jx‖ : x ∈ H, ‖x‖ = 1} = 1.

So ‖φ(Ei,j)‖ = ‖Ej,i‖ = sup{‖Ej,ix‖ : x ∈ H, ‖x‖ = 1} = 1.
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Taking supremum with ‖Ei,j‖ ≤ 1, we have ‖φ‖ = 1.

Alternatively, ‖Ei,j‖ = sup |〈Ei,jx, x〉| = 1 <∞. Thus Ei,j is bounded

and

‖φ(Ei,j)‖ = sup |〈φ(Ei,j)x, x〉| = 1 <∞. Hence, φ = φ1 is bounded.

Thus, the transpose of a positive matrix is positive.

Let the matrix of the matrix units be A such that

A =

 E11 E12

E21 E22

 =


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 .

Let x = (−1 2 − 1 − 1) ∈ H be arbitrarily chosen and let B(H) 7→ C,

then

〈Ax, x〉 =

〈


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1




−1

2

−1

−1

 ,


−1

2

−1

−1


〉

=

〈

−2

0

0

−2

 ,


−1

2

−1

−1


〉

= 4.
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=

〈

−2

0

0

−2

 ,


−1

2

−1

−1


〉

= 4.

Since 〈Ax, x〉 = 4 > 0, A is positive. In addition,

‖A‖ = sup |〈Ax, x〉| = 4 <∞.

Thus A is bounded.

Now, consider (φ2)2 : M2(M2(A)) −→M2(M2(A)), such that

B = φ2

 E11 E12

E21 E22

 =

 φ(E11) φ(E12)

φ(E21) φ(E22)

 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



Let x = (−1 2 − 1 − 1) ∈ H be arbitrarily chosen as before, then

〈Bx, x〉 =

〈


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




−1

2

−1

−1

 ,


−1

2

−1

−1


〉
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=

〈

−1

−1

2

−1

 ,


−1

2

−1

−1


〉

= −2.

〈Bx, x〉 = 〈φ2(M2(A))x, x〉 < 0. Thus B and hence φ2 are not positive.

However,

‖B‖ = sup |〈Bx, x〉| = | − 2| = 2 <∞.

Thus, B is bounded and so ‖φ2‖ = sup ‖φ2(M2(A))‖ = 2.

Thus, φ is positive but not 2-positive hence not completely positive.

It turns out that φ2 is bounded, hence completely bounded.

We check positivity and boundedness of C by induction.

Let

C =


E11 E12 E13

E21 E22 E23

E31 E32 E33

 =



1 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1



and x =
(
−1 −1 −1 2 −1 2 −1 −1

)
∈ H be arbitrarily
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chosen.

Then,

〈Cx, x〉 =

〈



1 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1





−1

−1

−1

2

−1

2

−1

−1

−1



,



−1

−1

−1

2

−1

2

−1

−1

−1



〉

=

〈



−3

0

0

0

−3

0

0

0

−3



,



−1

−1

−1

2

−1

2

−1

−1

−1



〉

= 9 > 0.

Thus, C is positive.

‖C‖ = sup |〈Cx, x〉| = 9 <∞.
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Now, consider (φ3)3 : M3(M3(A)) −→M3(M3(A)).

Then, let D = φ3(M3(A)) =



1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1



.

〈Dx, x〉 =

〈



1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1





−1

−1

−1

2

−1

2

−1

−1

−1



,



−1

−1

−1

2

−1

2

−1

−1

−1



〉
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=

〈



−1

2

−1

−1

−1

−1

−1

2

−1



,



−1

−1

−1

2

−1

2

−1

−1

−1



〉
= −3 < 0.

So, 〈Dx, x〉 = 〈φ3(M3(A))x, x〉 = −3 < 0, not positive. However,

‖D‖ = ‖φ3‖ = 3. So by induction 〈φn(Mn(A))x, x〉 = −n. Hence not

completely positive. In addition ‖φn‖ = n. Thus, completely bounded for

a finite n.

Thus a transpose map is completely bounded but not completely positive.



Chapter 4

CONCLUSIONS AND

RECOMMENDATIONS

4.1 Conclusions

In chapter 1, the space Mn (B(H)) of n × n matrices with entries from

B(H) is identified with the space B
(
H(n)

)
of bounded linear operators

on the n-dimensional Hilbert space H(n). This identification gives us a

unique norm that makes the ∗-algebra Mn(B(H)) a C∗-algebra. Given

an arbitrary C∗-algebra A, by Gelfand Naimark Segul representation, A

is a closed selfadjoint subalgebra of B(H) for some Hilbert space H. This

means that Mn(A) is a closed selfadjoint subalgebra of the C∗-algebra

Mn(B(H)) ∼= B
(
H(n)

)
and hence a C∗-algebra.

In chapter 2, its been shown that [Tij] ∈ Mn(B(H)) is positive if and

only if 〈[Tij]xj, xi〉 is positive. Some properties of the norm of completely

positive maps have been investigated. Conditions for which a map is

completely positive are discussed. A completely positive map satisfies

75
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the condition φn ≥ 0 for all n ∈ N and that φ = φ∗.

In chapter 3, conditions for complete boundedness are discussed. A

map is completely bounded if its completely bounded norm is finite. In

addition, a completely bounded and completely positive map satisfies the

conditions ‖φ(1)‖ = ‖φ‖ = ‖φn‖ = ‖φ‖cb = 1 and ‖φ‖cb = ‖φ∗‖cb. This

study has also shown that completely positive maps are all completely

bounded for a finite-dimensional space. However, the converse does not

always hold. Consequently, examples and Counter examples that not

all positive maps are completely positive were illustrated. See Counter

example [3.2.5]

Contributions of this thesis to mathematics are illustrated in : Theo-

rem 2.1.7; Proposition 2.1.15; Proposition 2.3.2; Proposition 2.3.3; Propo-

sition 3.0.5; Lemma 3.1.1; Proposition 3.1.2 and examples of positive

(see 2.2), completely positive (see 2.4) and completely bounded maps

(see 3.2) given.

4.2 Recommendations

From this study, although several properties of completely positive maps

have been investigated, it is evident that completely positive maps is still

an interesting and rich area of research in pure mathematics. Several

other properties of completely positive maps could still be investigated.

Areas such as the properties of non unital linear maps, the adjoining of

a unit to them and determining whether they are completely positive or

not, could also be of future interest to researchers.
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