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Abstract

About 22.9 million people living with HIV/AIDS reside in sub-Saharan Africa, many of

whom have progressed to AIDS over time. Kenya has high numbers of new infections;

a total of 104,000 in the general population with paediatrics at 13,000 and adults at

91,000. Risk scores constructed using prognostic factors may be valuable in the early

identification and intervention to patients at risk of progression to AIDS. There was

therefore a necessity to come up with robust risk models that use a limited number of

easily available factors. The main objective was to come up with a risk score utilizing

routine care data which can be easily applicable in a clinical setting to asses for risk

of AIDS among HIV infected patients. It was a prospective cohort study done using 2

year follow-up (initiated on Highly Active Antiretroviral Therapy (HAART)) between

1st of June, 2010 and 30th of May, 2011) data from 1454 HIV/AIDS on ART care and

treatment. Age, sex, marital status, CD4 cell count, haemoglobin level, BMI, prior TB

medication and whether or not patients were currently receiving any ART was modelled

to describe the short term risk of new AIDS event. Flexible parametric survival regression

analysis (Royston Parmar) was used instead of Cox-PH regression. Strong predictors of

progression were Body Mass Index, haemoglobin, World Health Organization staging and

Tuberculosis treatment prior to HAART initiation. The study was able to develop a two

group risk categorization based on the risk model developed. The discriminative ability

of the model was moderately strong (Harrell’s c-index of 0.69). The rate of progression

to AIDS between the high and low risk groups was well defined. The rate of progression

was 0.38 and 0.93 per thousand person-years of followup for the low risk and high risk

groups respectively which was more than twofold risk of progression to AIDS among high

risk group, (HR= 2.47 95% CI: 1.66 - 3.69; p <0.001). This study developed a prognostic

risk score model to be utilised in the early identification and intervention to patients at

risk of progression to AIDS.
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Chapter 1

Introduction

1.1 Background to the study

The human immunodeficiency virus (HIV) destroys or impairs the immune system leading

to a deterioration of the well being of the immune system while Acquired immunodefi-

ciency syndrome (AIDS) refers to the most advanced stages of HIV infection. Majority of

the newly infected people, about 22.9 million people living with HIV/AIDS (PLWHA) re-

side in sub-Saharan Africa accounting for about 68 percent of the total number of people

living with HIV/AIDS (PLWHA) worldwide. There were about 1.9 million new infections

in 2010 alone signifying a drop from 2.6 million new infections in the previous year. About

1.2 million deaths of adults and children also occurred in 2010 worldwide [21]. Kenya has

high numbers of new infections, a total of 104,000 in the general population with paedi-

atrics at 13,000 and adults at 91,000. The HIV and AIDS-related deaths stand at about

57,000 in 2011 [20]. The high risk of progression to AIDS among HIV infected patients

on HAART is an issue many care and treatment programs in resource limited settings

especially in Sub Saharan Africa are grappling with currently. This in turn has a great

negative impact on important national aspects of many African nations which includes

economy and business, education and knowledge, health and social welfare. Globally, 56

percent of children orphaned by AIDS live in six countries in sub-Saharan Africa namely

Nigeria (2.5 million), South Africa (1.9 million), Kenya (1.2 million), Uganda (1.2 mil-

lion), Tanzania (1.3 million), and Zimbabwe (1 million). The HIV/AIDS epidemic is

setting back decades of progress in increasing the life expectancy of the people of sub-

Saharan Africa. The vast majority of people in Africa who have HIV/AIDS are between
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the ages of 15 and 49, and millions of adults are dying young or in early middle age [45].

Sub Saharan Africa countries are the most affected by this epidemic, on all components of

human development, as shown by the national human development reports from Zambia,

Mozambique, Kenya, Zimbabwe, South Africa and Botswana [46, 36, 35, 34, 33, 37, 31].

A number of studies carried out in sub-Saharan Africa have indicated high early mortality

among patients starting antiretroviral treatment in sub-Saharan Africa [42]. The major

impediment is late diagnosis of HIV/AIDS hence late start in ART care due to poor

prognosis systems; yet ART care and treatment is readily available [26].There is a great

focus and commitment by many countries to the sixth Millennium Development Goal

(MDG), which is combating HIV/AIDS, malaria and other diseases. These efforts need

to be enhanced, however there are challenges such as shortage of health care providers in

sub-Saharan Africa: provider ratios fall significantly below World Health Organization

recommendations. In the year 2012, an estimated 2.2 physicians and 9.0 nursing personnel

served every 10,000 people in the region. This figure is way below the worldwide average

of 16 physicians and 36 nursing personnel per 10,000 [32]. This in turn impedes the

quality of care by giving inadequate time to each HIV/AIDS infected patient. There is

therefore needed an enhanced system for HIV/AIDS care and treatment delivery. Risk

scores have increasingly been used to quantify the amount of risk that an individual is

predisposed to given their values on a set of prognostic factors. They are useful because

they are derived from models that take into account the contribution of each of the risk

factors jointly [17, 1].

There are several studies previously done which have identified a number of predictors

of HIV progression to AIDS. They include haemoglobin level, cluster of differentiation 4

(CD4) cell count, body mass index (BMI), previous AIDS-defining illness or condition

and age [16, 9, 2, 12, 39, 40, 4, 3, 13]. These prognostic factors can be useful in the

early identification and intervention to patients at risk of progression to AIDS. The risk

models would be crucial in the short term prognosis of early signs and symptoms of

progression to HIV/AIDS indicators which in turn could help in timely interventions to

avert further disease burden. The simplicity of the models is of essence; they should be

able to use minimal laboratory tests and patient demographic characteristics [16]. Taking

into consideration the high volume of patients to service provider ratio in Sub-Saharan
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Africa the simplicity of application would come in handy to the health care providers.

The efforts to develop easy to use risk models have been stepped up in various parts of the

world [16, 21, 22, 43]; but none in particular to Kenya, East Africa and the greater Sub-

Saharan Africa. There was therefore a necessity to come up with robust risk models that

use a limited number of easily available factors but have equally high predictive power to

assist in timely prognosis of HIV patients at risk of AIDS. Most of the previous models

have utilized other statistical methods among them Poisson and proportional hazards

Cox regression, to develop the risk models. However, flexible parametric survival models

are able to accurately estimate the baseline hazard function unlike in Cox model which

does not [27, 30].

1.2 Basic Concepts

HIV

The human immunodeficiency virus (HIV) infects cells of the immune system, destroying

or impairing their function. Infection with the virus results in the progressive deterioration

of the immune system, leading to ”immune deficiency”. The immune system is considered

deficient when it can no longer fulfil its role of fighting infection and disease. HIV can

be transmitted through unprotected sexual intercourse (vaginal or anal), and oral sex with

an infected person; transfusion of contaminated blood; and the sharing of contaminated

needles, syringes or other sharp instruments. It may also be transmitted between a mother

and her infant during pregnancy, childbirth and breastfeeding.

AIDS

Acquired Immunodeficiency Syndrome (AIDS) is a term which applies to the most ad-

vanced stages of HIV infection. It is defined by the occurrence of any of more than 20

opportunistic infections or HIV-related cancers. It may also be defined medically as having

a cluster of differentiation 4 (CD4) count <200 cells/ml or World Health Organization

(WHO) stage III/IV.
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ART

It refers to any treatment that suppresses or stops a retrovirus such as HIV virus that

causes AIDS.

HAART

Highly Active Antiretroviral Therapy (HAART) is the term given to aggressive treatment

regimens used to suppress HIV viral replication and the progression of HIV disease. Usu-

ally comes in a combination of three or more drugs. They work together to lower the

amount of active virus in the body for better outcomes in HIV/AIDS patients.

CD4

Known as cluster of differentiation 4, they are the cells that help initiate the body’s fight

against disease. It is assessed by a blood test called the CD4 count which measures the

number of functioning CD4 cells in the body and therefore measures the health of the

immune system. The fewer functioning CD4 cells, the weaker the immune system and

therefore the more vulnerable a person is to infections and illnesses.

WHO Stage

This a 4 stage HIV disease progression classification system developed by the World Health

Organization (WHO). The four distinct stages are: primary infection (stage I), clinically

asymptomatic stage (stage II), symptomatic HIV infection (Stage III), and progression

from HIV to AIDS (Stage IV). There are certain illnesses and opportunistic infections

that characterize each stage.

BMI

Body mass index is the individual’s body mass (kg) divided by the square of his or her

height (m). The formula is used in medicine to produce a unit of measure expressed in
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(kg/m2).

1.3 Statement of the problem

The intention of study therefore was to come up with such a robust prognostic system

that would be used by various stakeholders among them clinicians, doctors and health

care service providers to immediately assess the risk of progression to AIDS among HIV

patients attending routine treatment and care at clinics and hospitals. This study there-

fore aimed to model easily available demographic, clinical and laboratory variables using

flexible parametric survival models which do not have the restrictive assumption of pro-

portional hazards for covariate effects and has advantages for prediction, extrapolation,

quantification (e.g., absolute and relative difference in risk) and modelling time-dependent

effects to come up with the prognostic risk score model with good predictive power and

which would be easily translated into a simple risk score system.

1.4 Main and Specific Objectives of the study

The main objective of this study was to come up with a risk score utilizing routine care

data which can be easily applicable in a clinical setting to asses for risk of progression to

AIDS among HIV infected patients.

The specific objectives included:

1. To identify baseline patient characteristics that are associated with progression to

AIDS among patients newly initiated on HAART in Nyanza, Kenya

2. To build a multivariable short term risk model for progression to AIDS in Nyanza,

Kenya

3. To refine and test the predictive power of the risk model
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1.5 Significance of the study

Deaths or morbidity due to HIV/AIDS is a big problem that sub-Saharan Africa countries

have to deal with. In the long run this negatively impacts on various aspects of national

economic and social development. A number of prognostic models in different disease

areas have been developed to enable the prognosis of patients to be more accurately

assessed and appropriate treatment and risk management given. There is a great need

to assess the prognostic importance in assessment of the outcomes for each covariate on

its own as well as in a multivariable model. As ART drugs become more available in

places such as sub-Saharan Africa, these risk models may also be used to evaluate the

effectiveness of ART care and treatment programs in such resource limited settings [21].

The development of these models to be easy and readily used by clinicians and other

health care providers would in turn positively impact the delivery of timely quality of

care and treatment to HIV/AIDS patients. The development of these models is also

relevant to the continuing discussion on better ways of HIV/AIDS care and management.

6



Chapter 2

Literature Review

2.1 Introduction

This chapter focuses on the critical aspects of the existing literature in relation to this

study while covering studies on predictors of progression to AIDS and risk scores devel-

opment.

2.2 Studies on predictors of progression to AIDS

There are a number of studies that have been done which highlight some laboratory

and clinical predictors of progression to AIDS. From the TAHOD (TREAT Asia HIV

Observational Database) a collaborative observational cohort study involving 17 sites in

the Asia-Pacific region Srasuebkul et al. [29] found that in both their clinical and CD4 cell

count Poisson risk models,those at high risk of AIDS or death were patients with severe

anaemia, mild anaemia, male gender,age above 40 years, CD4 cell count <50 cells/mL,

51–200 cells/mL and BMI≤ 18. Byakwaga et al.[13] also pointed out that a lower CD4

count at 6 months and hemoglobin level less than 80 mg/dL compared to hemoglobin

level greater than 130 mg/dL from the start of cART was significantly associated with a

greater risk of disease progression [13].

In a study comparing mortality rates observed in HIV-1 infected patients starting ART

with non HIV-related background mortality in four countries in sub Saharan Africa
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from the International epidemiological Databases to Evaluate AIDS (IeDEA) Brinkhof

et al. [23] found that longer time period on ART indicated a risk reduction of 90%

(eHR(estimated Hazard Ratio) 0.10). Females were at 16% (eHR 0.84) lower risk of ex-

cess mortality than males. There was strong evidence for a decline in excess risk with

increasing baseline CD4 count: patients with a baseline CD4 count of 200 cells/ml or

more experienced an 81% (eHR 0.19) reduction in risk over 2 years as compared to pa-

tients with a baseline CD4 count of less than 25 cells/ml (eHR 0.19). There was also a

reduction in the excess risk by 72% (eHR 0.28) in patients with less advanced baseline

disease (WHO stage I/II) compared to those with advanced baseline disease (WHO stage

III/IV). This study however does not find sufficient evidence for an association between

patient’s age, treatment regimen or calendar period and risk of death. This study also

did not look at progression to AIDS but only death as the outcome of interest.

Significant risk factors associated with death of HIV/AIDS patients according to Zachariah

et al. [40] from a study in a rural district hospital in Malawi include WHO stage IV, a

baseline CD4 cell count < 50 cells/ml and low BMI (values < 16.0 kg/m2). They noted

that these factors are important as screening criteria for individuals starting ART who

are at a high risk of death due to AIDS complications. However, this study’s focus was

on death outcome only in the first 3 to 6 months of starting ART and not progression to

AIDS.

Malvy et al. [9] lay emphasis on the importance of age and CD4 count as predictors of

the short term risk of AIDS. They show there is a clear relationship between increasing

risk with increasing age. However Babiker et al. [3] found that the age effect seen on

HAART treatment may be seemingly closer to the natural effect of aging rather than the

pre-treatment, HIV-related increase in mortality, suggesting that HAART modifies the

effect of age at seroconversion on HIV disease progression.

There are no such related studies or literature with a specific focus on predictors of

progression to AIDS that have been done in Nyanza, Kenya , East Africa or sub Saharan

Africa as a whole and in African populations.
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2.3 Studies on Risk scores development for progres-

sion to AIDS

This section has a review of studies that developed risk scores related to AIDS outcome.

The study by Srasuebkul et al. [29] had risk of AIDS or death classified into low, high, and

very high risk groups. The model was able to discriminate very well patients at high risk,

however not quite for low and moderate risk patients. This model was constructed for and

using data from patients in Asian populations to identify high short-term risk of AIDS or

death. The risk model may be generalized, however it may not be suitably adapted for

other populations e.g. patients in sub Saharan Africa. Also of note is that the model was

neither fit on a training dataset nor validated on a separate independent dataset. It is well

known that fitting and validating models on a single dataset can lead to over-optimistic

estimates of predictive value [27, 30]. They also never used formal bootstrap approaches

as an alternative. Poisson regression is fully parametric and assumes a particular form

for the baseline hazard; that it is constant over time . Srasuebkul et al.[29], used a

Poisson regression approach to determine factors associated with the short-term risk

of clinical progression. Brinkhof et al.[23] used generalized linear models with a Poisson

error structure to model the excess mortality and SMRs (Standardized Mortality Ratios).

Majority of the studies have utilized Poisson regression and more so Cox proportional

hazards regression. However parametric survival analysis specifically flexible parametric

models seems to be a more robust method due the flexibility and also its proper handling

of the baseline hazard while predicting the risk scores. The use of flexible parametric

(Royston Parmar) models could impact very positively on the ability of researchers to

accurately predict survival. It may even be used in the validation of earlier published

models for which the original data is unavailable [38, 5].

There are no such related published studies or literature with a specific focus on risk

scores development for progression to AIDS that have been done in Nyanza, Kenya, East

Africa or sub Saharan Africa as a whole and in African populations.
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Chapter 3

Research Methodology

3.1 Study Design, Population and Sample

This was a prospective cohort study done among HIV/AIDS patients (clients) on ART

care and treatment at four KEMRI-FACES-UCSF (Kenya Medical Research Institute

- Family AIDS Care and Education Services - University of California, San Francisco)

clinics from over 50 sites spread across Kisumu, Suba, Migori, Nyatike and Rongo Districts

of Nyanza province, Kenya. The study population consisted of patients who enrolled into

care from 23rd of July 2007 to 30th of May 2011 and were initiated on HAART treatment

between 1st of June, 2010 and 30th of May, 2011 and followed prospectively for two years

up to 1st June , 2013. The study cohort consisted of patients aged 15 years and above

who were previously ART naive. There were 1454 clients who met the inclusion criteria

from a total population of about 10,000 clients on ART care and treatment within the

study period.

3.2 Study Outcomes

The primary outcome was time to progress to AIDS. We defined AIDS as a composite

of clinical or immunologic progression to AIDS in the context of this study. Clinical

progression was defined as a new WHO stage III or IV or, if not correctly re-staged,

presence of any AIDS defining condition such as Tuberculosis after starting HAART
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while Immunologic progression was defined as CD4 count level at <200 cells/mL within

the 2 year follow-up period. Some of the patients may or may not have had a diagnosis

of AIDS prior to start of therapy. Death occurred if the patient died within the 2 year

follow-up period. If no progression to AIDS or death occurred by the date of the last

clinic visit in the 2 year period it was considered the censoring date. This study was a 2

year AIDS-free survival from initiation of HAART. Clinical and laboratory measurement

taken 3 months prior or within a week to ART initiation were considered as valid baseline

measurements.

3.3 Covariates

Baseline variables included age, sex, marital status, history of prior ART use, HAART ini-

tiation date, Prior TB medication (before initiation), baseline WHO staging (at HAART

initiation), follow-up WHO staging and dates, baseline CD4 (at HAART initiation),

follow-up CD4 cell counts and dates, AIDS diagnosis before HAART and date (deter-

mined by WHO staging and follow-up CD4 cell count drop to <200 cells/ml) and death

(date of death).

Age, sex, marital status, CD4 cell count, haemoglobin level, BMI, prior TB medication

and whether or not patients were currently receiving any ART were modeled as time

updated values used to describe the short term risk of new AIDS event. Continuous vari-

ables, such as age or CD4 cell count, were categorized a priori with use of commonly used

cutoff values to ensure roughly equal numbers of events within each category. Further-

more effect of continuous variables with small changes in hazard per unit increase in their

value were reported for every appropriate unit increase. Mild anaemia was defined as a

haemoglobin level of 80–140 g/L for females and 80–120 g/L for males. Severe anaemia

was defined as a haemoglobin level < 80 g/L for both sexes. The BMI (Body Mass Index)

cut-off’s were <18.5 kg/m2 for underweight , 18.5 to 25 kg/m2 normal (healthy weight)

and >25 kg/m2overweight.

11



3.4 Data Extraction and Management

The motivating data was obtained from KEMRI-FACES-UCSF (Kenya Medical Research

Institute –Family AIDS Care and Education Services – University of California San Fran-

cisco) which provides HIV care and treatment technical support to government health

facilities and other local partners who provide direct patient HIV care and treatment.

They offer HIV patient care and management which includes prevention, screening, diag-

nosis, treatment, and management of opportunistic infections and sexually transmitted

infections, reproductive health services, cotrimoxazole prophylaxis and multi-vitamins,

Prevention with Positives (PwP), and close monitoring of HIV disease progression through

physical exams, WHO staging, CD4 cell count taking, and other laboratory investigations.

Thereafter those patients meeting antiretroviral therapy (ART) criteria are initiated on

ART following adherence counselling sessions. All HIV/AIDS services are provided in

compliance with Kenya National Guidelines and best practices.

HIV care and treatment requires efficient information management to monitor patient

clinical care. The routine patient care data collected at KEMRI-FACES-UCSF supported

sites was entered into Open Medical Records System (OpenMRS; http://openmrs.org)

which is an electronic medical record (EMR) system. The data from remote sites was

then synchronized to a central server located at Lumumba Health Center using internet

connectivity. At the central server; the data management, verification and cleaning was

done regularly by a team of data quality officers, records staff and data managers. The

extraction of socio-demographic characteristics, baseline and follow-up clinical and lab-

oratory measurements, and treatment outcomes was done from patient medical record

system using Structured Query Language (MySQL) queries. The extracted data was im-

ported into Stata software, version 12.1 (StataCorp, Texas, USA), for study specific data

management and analyses. All data was entirely observational with tests or interventions

performed according to Kenya national guidelines on HIV Care and treatment at each

clinical site.This study utilized only secondary data which was duly covered under Insti-

tutional Review Board (IRB) and Ethical Review Committee (ERC) obtained through

KEMRI and UCSF, therefore no separate approvals were required.

12



3.5 Background on Survival Analyses approaches

During the past 10 years or more survival analysis has been ruled by two approaches

namely Kaplan-Meier (non-parametric approach) and Cox proportional hazards regres-

sion (semi-parametric approach) [10, 8]. The survival time to develop new AIDS event

T may be evaluated as a random variable having a probability distribution F (t) and

probability density function f(t). The outcome of interest, the survivor function S(t), is

the probability of not developing a new AIDS event up to time t or beyond denoted by

equation (3.1).

S (t) = P (T ≥ t) = 1− F (t) (3.1)

Another function of importance is the hazard function, which basically represents an

instantaneous failure rate. The hazard ratio (HR) has been used as the measure of the

relative survival experience. It is the probability that an individual develops a new AIDS

event at a time point given that the event has not yet occurred as shown in equation

(3.2).

h (t) =
f(t)

S(t)
(3.2)

The following section details the generalized proportional hazards model for new AIDS

free survival data with covariates z as age, sex, marital status, CD4 cell count, haemoglobin

level, BMI and prior TB medication. It is the standard Cox proportional hazards (Cox

PH) model defined through a hazard function h(t; z) as shown in equation (3.3).

h(t; z) = h0(t) exp(β′z) (3.3)

where the baseline hazard function is h0 (t) = h0 (t; 0) and beta is the coefficient. It may

also be written in the integral form as in equation (3.4).

H(t; z) =

(∫ t

0

h0(u)du

)
exp(β′z) = H0(t) exp(β′z) (3.4)
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where H (t; z) represents the cumulative hazard function. According to Bennet [41] the

proportional (cumulative) odds model with covariate vector z is defined as in equation

(3.5)

O(t; z) =
1− S(t; z)

S(t; z)
= O0(t) exp(β′z) (3.5)

where O0 (t) = O (t; 0) and O (t; z) is the odds of a new AIDS event occurring in (0, t)

for an individual with covariate vector z. Covariates in the model act multiplicatively on

the odds of a new AIDS event, as with more familiar logistic regression model.

Taking T as having a Weibull distribution with scale parameter σ = p−1 and with a

characteristic life µ.

We have our cumulative hazard function as in equation (3.6).

H (t) = −lnS(t) (3.6)

Then equation (3.7) below

ln H (t) = ln

{(
t

µ

)p}
= px− plnµ =

x− lnµ

σ
(3.7)

is linearly related to . If T is a distribution similar to a log-logistic, the log cumulative

odds function will have a curvilinear relation to x by a function s = s(x).

The survival function is denoted by equation (3.8).

S (t) = (1 + exp s) −1 (3.8)

The density function is given by equation (3.9).

f (t) =
ds

dt
exp (s) (1 + exp s) −2 (3.9)

Equation (3.10) is the hazard function

h (t) =
ds

dt
exp (s) (1 + exp s) −1 (3.10)
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The approach used by Royston and Parmar [27] to estimate the hazard, density, and

survival functions is to smooth either the baseline cumulative odds function or the baseline

cumulative hazard function. With the same notation previously used in the paragraphs

before, but for the time being suppressing z, suppose that T is a survival-time random

variable to a new AIDS event, having a log-logistic distribution with location parameter

µ and scale parameter σ. Let x = ln (t)

We have it in equation (3.11) as.

S (t) =

{
1 + exp

(
x− lnµ

σ

)}−1
(3.11)

So much in equation (3.12),

lnO (t) = ln
1− S(f)

S(t)
=

x− lnµ

σ
(3.12)

3.6 Limitations of Cox proportional hazard regres-

sion

Cox proportional hazards regression is often widely chosen and used choice of analysis

for modelling survival data in medical studies. However, it has some intrinsic features

that may cause problems for the analyst or the interpreter of the data:

1. It treats the baseline distribution of the observations as a high-dimensional nuisance

parameter and is usually highly erratic. For example, a typical estimate of the

baseline hazard function following Cox is a “noisy” step function. However, the

contribution of the baseline survival is important as it impacts on the absolute

survival probabilities over time.

2. It assumes that covariate effects act proportionally on the baseline hazard function,

independent of time. It is not often the case; however this strong assumption is

often not checked by the analysts.
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3. Extending it to allow for non-proportional hazards is by no means a trivial mod-

elling exercise. It does not give a complete probability specification for the data.

Validation of the model and simulation of data sets realistically similar to a given

one are impeded.

It is for the reasons outlined above that the choice of flexible parametric models is more

desirable . For this thesis we used flexible parametric (RP) models as implemented in

Stata’s stpm2 routine as proposed by Royston and Parmar [27]. When creating a prognos-

tic survival model using regression, emphasis has been placed on value of the prognostic

index based on covariates only, while ignoring the role of the baseline survival function.

However, that is corrected by the use of flexible parametric models. Moreover, the time-

dependent differences between the hazard functions are clearly and easily displayed after

estimating a Royston Parmar (RP) model[38].

3.7 Spline-based parametric survival models

Spline-based parametric survival models are a better alternative to Cox proportional

hazards regression. Splines are flexible mathematical functions defined by piece-wise

polynomials which are used in regression models for non-linear effects. The points at

which the polynomials join each other are called knots. Constraints are introduced to

ensure the function is smooth. Splines can be of any degree (n), however the most

commonly used splines are cubic splines where the function is forced to have continuous

0th, 1st and 2nd derivatives.

Since the distribution of survival times to new AIDS event may be neither log-logistic

nor Weibull, hence the need for more flexible models. The approach taken by Royston

and Parmar [27] is to model the logarithm of the baseline cumulative odds or hazard

function as a natural cubic spline function of log time, so the general function s(x) is

approximated by a spline. The proportional hazards model (PH) spline model with fixed

covariate vector z may be written as below in equation (3.13).

ln {−lnS(t; z)} = lnH (t; z) = lnH0} (t) + β′z=s (x) +β′z(3.13)
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While the proportional odds (PO) spline model is as in equation (3.14).

ln
{
S(t; z)−1 − 1

}
= lnO (t; z) = lnO0} (t) + β′z=s (x) +β′z(3.14)

Summarized in equation (3.15)

Proportional hazards (PH) spline model :

lnH (t; z) =s (x) +β′z (3.15)

and in equation (3.16) as shown Proportional odds (PO) spline model :

lnO (t; z) =s (x) +β′z (3.16)

Natural cubic splines are defined as splines constrained to be linear beyond boundary

knots kmin , kmax . Such knots are usually, but not necessarily, placed at the extreme

observed x-values. In addition, m internal knots k1 < · · · < km with k1 > kmin and

km < kmax are specified. It can be shown that the natural cubic spline may be written

as shown in equation (3.17).

s (x) = γ0 + γ1x + γ2v1 (x) + · · ·+ γm+1vm (x) (3.17)

where the j th basis function for j = 1, . . . , m as in (3.18) , (3.19) and (3.20).

vj (x) = (x− kj)3+ − λ j(x− kmin)3+ − (1− λ j) (x− kmax)3+ (3.18)

λ j =
kmax − kj
kmax − kmin

(3.19)

(x− a)3+ = max
{

0, (x− a)3
}

(3.20)

The curve complexity is dictated by the number of degrees of freedom (df), which ignoring

γ0 equals m+1. By convention, m = 0 is taken to mean that no internal and no boundary

knots are specified. The straight line model x = γ0 + γ1x with df = 1 is then obtained

[27].
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3.8 Statistical Analysis

Baseline descriptive statistics were provided as appropriate for all the variables.

Univariate Flexible parametric regression models were done geared towards identification

of important predictors of the primary outcome (progression to AIDS), for consideration

in the subsequent multivariable models.

Before fitting each of the Flexible parametric models, the proportionality assumption

was informally assessed for categorical variables by graphical techniques. Some of the

continuous variables associated with progression to AIDS were each categorized into

quantiles and subsequently graphed the hazard ratios and corresponding 95% confidence

intervals while assessing their relationship.

Kaplan-Meier graphs were plotted for the categorical variables exhibiting significant as-

sociation with outcome while corresponding log rank test was displayed. P-values from

the likelihood ratio test was reported for each univariable analysis while assessing sta-

tistical significance at 5% level. The effects of continuous variables with small changes

in hazard per unit increase in their value were reported for a number of units increase.

All Hazard ratios were computed from complete cases at this stage. The Kaplan-Meier

2-year survival probability was presented for the risk categories.

Summary of the final prognostic risk models obtained after a priori inclusion of all vari-

ables given their prognostic importance from literature. The significance level for each

predictor in the multivariable model was set at 5% level. Adjusted hazard ratios associ-

ated with the predictors in the final model were shown besides respective P values.

The Akaike information criterion (AIC), equation (3.21), was used in selecting the model

with the lowest AIC, implying it had the best fit [12].

AIC = 2k − 2logeL (3.21)

where k is number of parameters fitted and L is the estimated model’s maximum likeli-

hood function.
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Missing data was expected (if any significant proportion) so there was a plan to that

effect. To deal with missing data the multivariable model was re-estimated after multiple

imputations of missing values using chained equations [7]. Ten imputed datasets were

used to calculate mean estimates of parameters of interest, and appropriate adjusted

standard errors using the within and between imputation standard errors of the estimates

using Rubin’s rules. The new hazard ratios were compared to those estimated from

complete case analysis. However, the proportion of missing data across the variables

was consistently low (less than or equal to 10 percent). In theory, if material variances

were not noted as a consequence of bias then the complete cases represented the ignored

incomplete cases. The estimated coefficients from the complete case analysis were used

to assign risk scores to subjects if there was no marked bias expected.The changes in the

P values are however not directly important as the changes in the actual estimates in the

distribution of risk scores to patients. The imputed multivariable risk score regression

model was also presented.

For model validation, bootstrapping method of internal validation which involved taking

50 samples with replacement from the original sample was used. It provides nearly

unbiased estimates of high predictive accuracy and are of relatively low variance. It also

has the advantage of using fewer model fits than in cross-validation and using the entire

dataset as available [19]. We then used the data to predict 2-year AIDS free survival

probability for each subject. The rate of progression to AIDS was done per 1,000 person-

years of observation or follow-up.

The risk of progression to AIDS was derived from predicted probabilities based on final

multivariable model. We displayed the results of classification of HIV patients into risk

groups or classes according to their progression to AIDS risk scores, which are linear pre-

dictors from the prognostic models obtained. The discriminative power of the model was

measured by Harrell’s C-index ,bias corrected for possible over-fitting using the bootstrap

method [19]. It was aimed at assessing the probability of concordance between predicted

and observed responses where an index of 0.5 depicts no predictive discrimination while

1.0 depicts perfect discrimination [19]. Similarly the Somers’ D-statistic [28] as mea-

sures of discrimination was calculated for the models. The D-statistic was also used as

a measure of discrimination of the survival models because of its ability to stratify the
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risk of progression to AIDS among groups of patients. Larger D statistics in prognostic

models depict greater degree of separation. Given the difficulty of having a very practical

prognostic tool for use by health caregivers that uses a complicated regression model, the

estimated risk scores were translated to simple 18 unit score grading using the Z values

for each covariate from the multivariable Royston Parmar model, by rounding off to the

nearest whole number. These individual scores were then added together to provide an

overall risk score for each patient whereby a score of 10 and above was considered high

risk, if otherwise low risk which would provide the health caregivers with a probability of

progression to AIDS for each possible final risk score. Statistical analyses were performed

using Stata software, version 12.1 (StataCorp, Texas, USA).
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Chapter 4

Results

4.1 Baseline Descriptive Statistics

The mean follow-up time for the clients was 490.8 days with a median of 665 days. The

minimum follow-up time for the clients was 6 days while a maximum of 731 days. The

total sample consisted of 1454 adults. Over half of the clients were female 981 (67.5%)

and with a mean age of 32.1 years (SD = 9.4). Slightly above half of the clients, 716

(53.4%), were married. The mean BMI was 20.9 (SD = 4.1). Over half of the clients

were underweight 798 (56.7%). The mean haemoglobin level of the clients was 112.7

(SD = 22.4), translating to over half, 768 (52.8%), with mild anaemia. Majority of the

clients were either in WHO stage I or II, 559 (38.5%) and 518 (35.6%) respectively. Just

under half, 553 (45.9%), had CD4 counts less than 200. Only 235 (17%) had prior TB

treatment(Table4.1).
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Table 4.1: Baseline Descriptive Statistics

Variables
Total n(%)

Female 981 (67.5)

Age(Years)Mean(SD) 32.1 (9.4)

Marital Status

Married 716 (53.4)

Never Married 44 (3.3)

Single/Divorced 373 (27.8)

Widowed 209 (15.6)

Clinical

Weight(kg) Mean(SD) 57.4 (11.0)

Height(cm) Mean(SD) 165.9 (9.0)

BMI (kg/m2) Mean(SD) 20.9 (4.1)

BMI Categories

Normal 398 (28.3)

Underweight 798 (56.7)

Overweight 212 (15.1)

Hemoglobin(g/L)Mean(SD) 112.7 (22.4)

Anaemia

Normal 605 (41.6)

Mild Anaemia 768 (52.8)

Severe Anaemia 81 (5.6)

WHO Stage

Stage I 559 (38.5)

Stage II 518 (35.6)

Stage III 347 (23.9)

Stage IV 30 (2.1)

CD4 Median(IQR) 212 (100 - 299)

CD4 categories

<200 cells/ml 553 (45.9)

200 – 349 cells/ml 535 (44.4)

>= 350 cells/ml 118 (9.8)

Medical History

Prior TB treatment 235 (17.0)
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4.2 Baseline Descriptive Statistics by progression to

AIDS

A total of 221 out of a total sample of 682 (who had no AIDS at baseline) followed

up progressed to AIDS (outcome) either clinically or immunologically while 461 did not

progress to AIDS. There was no notable difference in the mean baseline age and gender

proportions among those who progressed to AIDS or not. The percentage of married or

widowed clients also didn’t differ markedly among those who progressed to AIDS or not.

The baseline BMI (kg/m2) for those who progressed to AIDS was lower by a single unit,

21.5 vs. 22.5. In terms of the BMI categories, those with AIDS were less likely to be

overweight, 16.5% vs. 24.2%. Similarly the mean baseline haemoglobin was lower by a

unit among those with AIDS and when categorized a higher proportion had either mild or

severe anaemia compared to those who did not progress to AIDS. Majority of those who

progressed to AIDS had a baseline WHO stage II compared to those who did not, 57.9%

vs. 35.8%. Clients without AIDS had a slightly higher baseline CD4 compared to those

without, 283 vs. 280 cells/ml. A larger percentage of those who progressed to AIDS had

a history of TB treatment prior to HAART initiation, 15% vs. 4.6% (Table 4.2). There

were 55 (3.8%) who died during the follow-up period. We had low proportions of missing

data; 4% missing BMI values, 9% missing haemoglobin values, 5% missing WHO staging

and 10% missing CD4 values.
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Table 4.2: Patient Characteristics by progression to AIDS from Baseline

Variables
AIDS Baseline

n(%)

AIDS Follow-up

n(%)

No AIDS n(%)

Female 485 (62.8) 158 (71.5) 338 (73.3)

Age(Yrs)Mean(SD) 32.5 (9.8) 33 (9.2) 31 (8.7)

Marital Status

Married 362 (50.1) 104 (51.7) 250 (59.7)

Never Married 19 (2.6) 10 (5.0) 15 (3.6)

Single/Divorced 227 (31.4) 49 (24.4) 97 (23.2)

Widowed 114 (15.8) 38 (18.9) 57 (13.6)

Clinical

Weight(kg)Mean(SD) 54.6 (10.2) 58.6 (10.2) 61.6 (11.2)

Height(cm)Mean(SD) 166.2 (9.3) 165.7 (9.2) 165.5 (8.4)

BMI (kg/m2)Mean(SD) 19.9 (3.9) 21.5 (4.2) 22.5 (3.9)

BMI Categories

Normal 297 (39.6) 50 (22.9) 51 (11.6)

Underweight 384 (51.1) 132 (60.6) 282 (64.2)

Overweight 70 (9.3) 36 (16.5) 106 (24.2)

Hgb (g/L) Mean(SD) 110 (23.0) 111.5 (20.5) 117.8 (21.5)

Anaemia

Normal 329 (42.6) 78 (35.3) 198 (43.0)

Mild Anaemia 395 (51.2) 131 (59.3) 242 (52.5)

Severe Anaemia 48 (6.2) 12 (5.4) 21 (4.6)

WHO Stage

Stage I 170 (22.0) 93 (42.1) 296 (64.2)

Stage II 225 (29.2) 128 (57.9) 165 (35.8)

Stage III 347 (45.0) 0 (0) 0 (0)

Stage IV 30 (3.9) 0 (0) 0 (0)

CD4 Median(IQR) 124 (49-188) 280 (237-328) 283 (239-329)

CD4 categories

<200 cells/ml 553 (79.3) 0 (0) 0 (0)

200 – 349 cells/ml 95 (13.6) 131 (86.8) 309 (86.3)

>= 350 cells/ml
49 (7.0) 20 (13.3) 49 (13.7)

Medical History

Prior TB treatment 183 (24.7) 32 (15.5) 20 (4.6)
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4.3 Univariable Flexible Parametric (RP) Models for

progression to AIDS

On univariable analysis there was a significant increase in risk of progression to AIDS

per five year increase in the age of the client (HR=1.08 95% CI: 1.01 - 1.16; p = 0.024).

The widowed clients compared to the married were associated with a 49% increase in risk

of progression to AIDS (HR=1.49 95% CI: 1.03 - 2.16; p = 0.036). Clients with higher

baseline BMI values were significantly less likely to progress to AIDS (HR=0.93 95% CI:

0.90 - 0.97; p = 0.001). Higher baseline haemoglobin counts were associated with a small

but significant lowered risk of progression to AIDS. Clients initiating HAART at WHO

stage 2 almost had a twofold risk of progressing to AIDS in comparison to those starting

at WHO stage 2 (HR= 1.94 95% CI: 1.48 - 2.53; p <0.001). Similarly, clients with a

history of TB treatment prior to HAART initiation had a twofold risk of progression to

AIDS (HR= 2.40 95% CI: 1.65 - 3.50; p <0.001). The higher baseline CD4 values showed

a trend of reduced risk of progression, however without any statistical significance. There

was no clear association of risk to gender (Table 4.3).
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Table 4.3: Univariable RP models for progression to AIDS

Variables
Crude HR (95% CI) P value

Demographics

Gender

Female Ref

Male 1.05 0.78 - 1.41 0.747

Age (per 5 years)
1.08

1.01 - 1.16 0.024

Marital Status

Married Ref

Never Married 1.22 0.64 - 2.34 0.542

Single/Separated/Divorced 1.2 0.86 - 1.69 0.289

Widowed
1.49

1.03 - 2.16 0.036

Clinical characteristics

Weight (kg)
0.97

0.96 - 0.99 <0.001

Height (cm) 1 0.99 - 1.02 0.722

BMI (kg/m2) 0.93 0.9 - 0.97 0.001

BMI Categories

Normal Ref

Underweight
0.52

0.37 - 0.72 <0.001

Overweight
0.38

0.25 - 0.58 <0.001

Hgb (g/L)
0.99

0.98 - 0.99 <0.001

Hgb Categories

Normal Ref

Mild Anaemia 1.11 0.84 - 1.48 0.448

Severe Anaemia 1.25 0.68 - 2.3 0.468

Hgb 10 g/dL cutoff

<=10 g/dL Ref

>10 g/dL 0.62 0.46 - 0.83 0.002

WHO Stage

Stage I Ref

Stage II
1.94

1.48 - 2.53 <0.001

CD4(per 100 cells/ml) 0.97 0.84 - 1.11 0.643

Medical History

Prior TB treatment
2.4

1.65 - 3.5 <0.001
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4.4 Multivariable Flexible Parametric (RP) Models

for progression to AIDS

Complete data results

On multivariable analysis of the covariate and factors associated with progression to

AIDS. There was a difference in trend towards a reduced risk per five year increase in

age, however, without any significance. There was no association of risk with respect

to gender. The widowed still had an increased risk compared to the rest of the marital

categories, however with borderline significance (HR=1.64 95% CI: 0.99 - 2.72; p =

0.056). Higher baseline BMI and haemoglobin levels were significantly associated with a

reduced risk of progression to AIDS. Clients initiating HAART at WHO stage 2 had a

64% increased risk of progression to AIDS compared to those starting at WHO stage 1

(HR=1.64 95% CI: 1.09 - 2.47; p = 0.016). There was no association of baseline CD4

counts with an increased or lowered risk of progression. Clients with a history of TB

treatment prior to HAART initiation still had a twofold risk of progression adjusting for

the other covariates and factors (HR=2.39 95% CI: 1.38 - 4.13; p = 0.002) (Table 4.4).

The Akaike Information Criterion (AIC) was used to select the optimum number of spline

knots which was optimally determined as 2 internal spline knots (d.f. = 3 for the stpm2

command).
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Table 4.4: Complete data multivariable RP model

Variables
Adj. HR (95% CI) P value

Demographics

Gender

Female Ref

Male 1 0.56 - 1.78 0.999

Age (per 5 years) 0.94 0.83 - 1.07 0.335

Marital Status

Not widowed Ref

Widowed 1.64 0.99 - 2.72 0.056

Clinical characteristics

BMI (kg/m2) 0.94 0.89 - 1 0.045

Haemoglobin (g/L)
0.99

0.98 - 1 0.046

WHO Stage

Stage I Ref

Stage II
1.64

1.09 - 2.47 0.016

CD4 (per 100 cells/ml) 1.01 0.87 - 1.18 0.884

Medical History

Prior TB treatment
2.39

1.38 - 4.13 0.002

Imputed data results

The hazard ratios of the imputed predictors in the multivariable model did not indicate

any major variations in the hazard ratios with the exception of marital status variable

‘widowed and previous TB treatment where there was a change of 0.5 and 0.4 in the
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hazard ratio respectively. The confidence intervals are also not fundamentally different

after imputation (Table 4.5).

Table 4.5: Imputed data multivariable RP model for progression to AIDS

Variables
Adj. HR (95% CI) P value

Demographics

Gender

Female Ref

Male 1.08 0.74 - 1.57 0.697

Age (per 5 years) 1.03 0.95 - 1.12 0.407

Marital Status

Not widowed Ref

Widowed 1.14 0.78 - 1.65 0.496

Clinical characteristics

BMI (kg/m2) 0.95 0.91 - 0.98 0.007

Haemoglobin (g/dL) 0.99 0.98 - 1 0.073

WHO Stage

Stage I Ref

Stage II
1.68

1.27 - 2.24 <0.001

CD4 (per 100 cells/ml) 0.98 0.85 - 1.08 0.748

Medical History

Prior TB treatment
2

1.36 - 2.93 <0.001

The KM survival curves and the AIDS hazard rate show a clear separation in the curves

and also indicates that clients in WHO stage 2 at HAART initiation have lower AIDS

free survival and high risk of progression to AIDS compared to clients at WHO stage 1

throughout the entire follow-up period as shown in Figure 4.1 and Figure 4.2 respectively.
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Logrank test P <0.001
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Figure 4.1: KM AIDS free survival estimates by WHO stage
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Figure 4.2: Rate of progression to AIDS by WHO stage

30



In terms of baseline BMI categories, the underweight clients had the poorest AIDS free

survival and also had the highest AIDS progression rate as depicted in Figure 4.3 and

Figure 4.4 respectively.

Logrank test P <0.001
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Figure 4.3: KM AIDS free survival estimates by BMI
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Figure 4.4: Rate of progression to AIDS by BMI

Clients with a history of TB treatment prior to HAART initiation had a poor AIDS free

survival compared to those without and also had a higher AIDS progression rate as shown

in Figure 4.5 and Figure 4.6 respectively.
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Logrank test, P <0.001
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Figure 4.5: KM AIDS free survival estimates by TB trx
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Figure 4.6: Rate of progression to AIDS by TB trx
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4.5 Risk Score for progression to AIDS

Subjects were divided into two risk groups with individuals in the risk group 1 (Low Risk)

having the lowest risk scores and those in risk group 2 (High Risk) having the highest

risk scores. The risk score cutoff was developed based on the lowest score of the upper

quintile (High risk group) which was 0.572.

The median risk score was 0.41 (IQR: 0.28 - 0.48) in the Low Risk group and 0.95 (IQR:

0.70 - 1.89) in the High Risk group. The rate of progression to AIDS in the Low Risk

group was 0.38 per thousand person-years of observation while 0.93 per thousand person-

years of observation in High Risk group (Table 4.6).

The hazard of progression to AIDS for the High Risk group was twice more than that of

the Low Risk group (HR=2.47 95% CI: 1.66 - 3.69; p <0.001) (Table 4.6).

An assessment of the predictive power of the prognostic survival model estimated by

internal validation using bootstrap samples showed a moderately strong concordance and

discrimination ability, Harrell’s C-index ( C 0.69 95% CI 0.62 - 0.77) and Somers’ D (D

0.41 95% CI 0.24 - 0.58).

Table 4.6: Risk group statistics for progression to AIDS

Risk Median Risk

(IQR)

Events Rate per 1000

pyo (95%CI)

KM HR(95%CI)

1 (Low) 0.41 (0.28 - 0.48) 35 0.38 (0.27 - 0.52) 0.81 Ref.

2 (High) 0.95 (0.70 - 1.89) 72 0.93 (0.74 - 1.17) 0.65 2.47 (1.66 - 3.69)

pyo - Person Years of Observation, KM- Kaplan-Meier estimate, HR- Hazard Ratio,

CI- Confidence Interval

Figure 4.7 and Figure 4.8 respectively shows the AIDS free survival experiences of subjects

in the two risk groups for the prognostic model. The individual Kaplan Meier (KM)

survival curves (Log rank test p<0.001) are well separated from each other, suggesting

a good discriminative potential, with wider gaps between high and low risk groups of
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throughout the 2 year follow-up period. Similarly the line graphs of AIDS hazard rate

show a good discrimination, with higher hazard rate in the first few days and stabilizing

with a difference in the curves throughout the follow-up period. There is very high

discrimination in the curves especially during the first 90 days of ART initiation.

Logrank test P <0.001
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Figure 4.7: KM AIDS free survival estimates by Risk group
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Figure 4.8: Rate of progression to AIDS by Risk group

4.6 Scoring System

The risk score was translated from the prognostic risk score model using the z values

in table 4.7, to derive a simple score by rounding off to the nearest whole number. The

score was assigned as follows; If the client was widowed the score was 2 and 0 if otherwise.

For age we had a 1 point increase in risk for each 5 year increase in age up to the age

of 35 years (capped at risk score of 4 for age 15 to 19 year and risk core of 0 for age 35

and above). Clients with a BMI of less than 15 were high risk were a score of 4 while

BMI of 15 to 18 attracted a score of 2 while those with BMI greater than 18 scored

0. Haemoglobin value of less than or equal to 10 g/dL was assigned a score of 2 while

haemoglobin value of more than 10 g/dL was assigned a score of 0. Clients with WHO

stage II at baseline got a score of 3 while those with WHO stage I got a score of 0. Gender

and CD4 did not contribute meaningfully to the prognostic model hence scored at 0 for

either. Clients with a history of TB scored 3 while those without assigned a score of 0.

The total maximum score is 18; the risk score grading classification is High risk (Score
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of 10 and above) and Low risk (Score of 9 and below).

Based on this scoring system a female (Score = 0 ) , aged 32 years (Score = 1 ) , widowed

(Score = 2 ), BMI of 12 (Score = 4 ), haemoglobin value of 9 (Score = 2 ) , WHO stage II

(Score = 3 ) , CD4 of 400 (Score = 0 ) and without any TB treatment prior to HAART

initiation (Score = 3 ): The total score for this client is 15, classified as high risk.
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Table 4.7: Scoring system based on Multivariable prognostic model’s Z values

Variables
Z value Risk Score

Demographics

Gender

Female 0.00 0

Male 0.00 0

Age(per 5 year increase) -0.96

15 - 19 4

20 - 24 3

25 - 29 2

30 - 34 1

35 + 0

Marital Status

Widowed 1.91 2

Not widowed 0

Clinical characteristics

Body Mass Index (kg/m2) -2.01

< 15 4

15 - 18 2

> 18 0

Haemoglobin (g/L) -2.00

<=10 g/dL 2

>10 g/dL 0

WHO Stage

Stage I 2.40 0

Stage II 3

CD4 (per 100 cells/l) 0.15 0

Medical History

Prior TB treatment 3.11

Yes 3

No 0
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Chapter 5

Summary, Conclusion and

Recommendations

5.1 Introduction

This chapter cover the summary of the thesis accomplishments, conclusion and recom-

mendations drawn.

5.2 Summary

The aim of the study was to develop a prognostic risk score model for predicting progres-

sion to AIDS from a set of associated variables. The study utilized flexible parametric

models developed by Royston and Parmer and implemented in Stata’s stpm2 routine.

The prognostic risk score model specifically utilized demographic, clinical and medical

variables that are easily available within a clinic or hospital setting in Sub Saharan Africa.

The prognostic model included deomgraphic, lab and clinical variables.

The study found out that the strong predictors were BMI, haemoglobin, WHO staging

and TB treatment prior to HAART initiation. Other factors trending towards statistical

significance only included marital status, specifically being widowed or not. Age, CD4
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count and gender did not have a statistically significant effect on risk of progression to

AIDS in this study sample.

The study was able to develop a two group risk categorization based on the prognostic

risk score model developed. The discriminative ability of the risk model was moderately

strong (Harrell’s c-index of 0.69). The rate of progression to AIDS between the high and

low risk groups was well defined. The rate of progression was 0.38 and 0.93 per thousand

person-years of followup for the low risk and high risk groups respectively representing

more than twofold risk of progression to AIDS among high risk group, (HR= 2.47 95%

CI: 1.66 - 3.69; p <0.001). The risk groups were finally translated into an easy to use 18

point prognostic index where a score of 10 and above was considered high risk and score

below 10 considered low risk.

5.3 Conclusions

Baseline haemoglobin, Body Mass Index (BMI), WHO staging and TB treatment prior to

HAART initiation were among the factors strongly associated with progression to AIDS

in the prognostic risk score model developed. Baseline haemoglobin was significantly

associated with 7% reduction in the risk of progression to AIDS in the prognostic model

developed. This result is consistent with what was reported in a previous study [13].

Increasing age has been associated with the increased risk of progression to AIDS in sev-

eral studies [9, 29, 24]. In one study when age was fitted as a continuous variable and

adjusted for exposure group, the relative risk of developing AIDS by any time after sero-

conversion was 34% for a 10-year increase difference [24]. However, in this multivariable

prognostic risk score model the positive significant effect of age at univariable analysis

was diminished and was not statistically significant. The effect changed from 8% increase

in risk of AIDS per 5-year increase difference in age at univariable analysis to 4% decrease

in risk of AIDS per five year increase in age, however without statistical significance. The

change in direction of age effect as a predictor in the prognostic model could be the due

to HIV stigma leading to late HAART initiation among the younger HIV clients. This
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in turn leaves them exposed to a high risk of progression to AIDS.

An increased baseline body mass index (BMI) has been associated with reduced risk

of progression to AIDS [13]. Consistent with our results there was a 1% significant

reduction in risk of progression to AIDS for increased BMI values. Even though weight

loss is only noted in about one-third of the HIV-infected individuals who develop AIDS

it is highly predictive for AIDS. The higher WHO staging has been previously associated

with an increased risk of progression to AIDS. The results from this study indicated a

64% increase in risk of progression to AIDS among those initiating HAART at WHO

stage II in comparison to WHO stage I. We would naturally expect those in WHO stage

II to progress easily to WHO stage III or IV.

History of Tuberculosis (TB) among HIV is usually associated with increased risk of

progression to AIDS according to studies conducted previously [15] . Clients who had

received TB treatment prior to HAART initiation had a two fold increase in the risk

of progression to AIDS, hazard ratio of 2.39. This is consistent with the results from

the studies done which indicate that prior TB has been reported to increase the risk

of subsequent TB illness among HIV infected clients [6]. Opportunistic infections occur

in the course of increasing HIV immunosuppression and are largely an indication of

decreased immunity. The baseline CD4 has been pointed as a significant predictor of

progression to AIDS among HIV clients by several earlier studies [40, 29, 23]. In the

univariable prognostic model there was a trend towards reduction of risk for higher CD4

counts, about 4% reduction in risk, however this effect is lost in the multivariable model.

This could be due to challenges

Male gender has been identified as a risk factor for death outcome, however not clearly

identified in previous research as risk factor for progression to AIDS [29]. This study

did not find any association of risk with gender. There have been some reports that

HIV disease progresses at different rates by gender, however, the majority of studies have

not found significant differences. Bereavement, depression, stress and other psychological

factors have been hypothesized to affect disease progression, even though majority of

studies have shown no association of psycho-social aspects of the clients and overall HIV

disease progression [44]. This was able to highlight the social and emotional impact of
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HIV on clients’ risk of progression to AIDS. However some studies have reported an

association with depressive symptoms and more rapid loss of CD4 lymphocytes. Our

results, 64% increase in risk, indicated a trend toward rapid progression to AIDS among

those who were widowed compared to those who were not [18].

The data used was obtained from adult (15 years and above) male and female HIV clients

in Nyanza region of Western Kenya. The client’s demographic characteristics could be

homogeneous but they could still differ in other unmeasured ways. However, it is clear

risk score really predicts progression very well in the first 90 days. The prognostic model

built in this study may also not be well prognostic in all HIV patients including those

from different countries, races, ethnicity because of the geographic setting from which

the data was acquired. However we can be able to generalize the prognostic model to

some extent. It is well known that fitting and validating the prognostic model on a same

set of data can lead to over-optimistic estimates of predictive value [27, 30]. However

we tried to remedy the situation using formal bootstrapping approaches to evaluate the

prognostic ability of the prognostic model developed. This study was able to incorporate

demographic variables such as marital status and test the prognostic ability of such a

variable. This was able to highlight the social and emotional impact of HIV on clients’

risk of progression to AIDS.

Overall, the prognostic risk score model developed had a good predictive value and dis-

criminative ability and can be applied in predicting progression to AIDS in similar settings

in Sub Saharan Africa. The tool has utilised the flexible parametric model which is able

to model the baseline and use it in the final risk score which is an advantage over the

traditional Cox proportional hazards regression. The risk score model should however be

used with caution in HIV-infected clients as it has not been externally validated in other

populations where their performance may be unreliable.

5.4 Recommendations

This simple and clinically sensible prognostic risk score model can be used for timely

prognosis (especially in the first 90 days of ART initiation) of HIV clients at risk of
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progression to AIDS, timely change in regimen, change in clinic schedule and appropriate

medical action to slow down progression to AIDS. It may also be used to study and

monitor the health status of a group of patients on HAART in comparison to other

cohorts in assessing changes in the short term risk of clinical progression. The risk score

may also be used by the individual and their clinician in future planning; to assess if the

risk of disease progression was sufficiently low that the patient could be seen in 6 months

or later rather than 3 months. Overall, it is of such a great importance to prevent

progression to AIDS among HIV infected clients.

There are however limitations of the prognostic risk score model developed that could be

addressed by future studies. It is clear that the risk score really predicts progression very

well in the first 90 days but would need further calibration for longer periods. However,

the prognostic risk score model built in this study may not perform uniformly in all

HIV patients including those from different countries, races, ethnicity because of the

geographic setting from which the data was acquired, genetic response and other factors

at play. However we can be able to generalize the risk score model to some extent.

It is also well known that fitting and validating the prognostic model on same set of

data can lead to over-optimistic estimates of predictive value [27, 30]. The prognostic

model was developed and internally validated through bootstrap re-sampling of relevant

statistics. Further research could fit the model on data from different populations and

study how the model performs. In this instance, given absence of an external population

data for validation, the situation was remedied using formal bootstrapping approaches

to evaluate the prognostic ability of the prognostic risk score model developed. Even

though the results of the validation suggested good precision, external validation of the

prognostic risk score models to different or similar populations would be a better way

of objectively testing the validity of this prognostic risk score model. Further modelling

could be done to look at a combined outcome of AIDS or death, notwithstanding the

challenge of obtaining accurate death records, to be able to come up with a modified

prognostic risk score model of progression to AIDS or death for such purposes as a next

step.
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Appendix

This section contains the various Stata code snippets that were used for the descriptive,

regression, imputation and graphing analyses.

/* Analysis Codes. The symbols or characters * and */ */ denote comments about the

code */ use ”C:\data\Kev thesis\Thesis data clean\Merged Data.dta”, clear

/*set survival data and describe */

stset time event, failure(AIDS followup==1)

stdes

stptime, per(1000)

/* Descriptive Statistics*/

* tabulate the categorical variables

foreach var of varlist gender marital status prev tb discsp deceased who baseline1 hgb category

hgb categ10 BMI category cd4base category {

tab2 ‘var’ case, col

}

/* Summarize continuous variables */

foreach var of varlist age weight height BMI hgb gL hgb baseline cd4base {

tabstat ‘var’ , by(case) stats(mean sd median p25 p75)

}

/* CD4 tabulation */

tabstat cd4base , by(case) stats(mean sd median p25 p75)
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/* sensitivity to knots */

* /Investigate the optimum number of degrees of freedom for the baseline.

forvalues i = 1/5 {

stpm2 i.hgb categ1, scale(hazard) df(‘i’) eform

estimates store df‘i’

predict h df‘i’, hazard per(1000)

predict s df‘i’, survival

}

/* Univariable and Multivariable Flexible parametric analysis */

/* Flexible parametric model */

/* gender age marital status height weight prev tb who baseline1 cd4base */

xi: stpm2 i.gender , scale(hazard) df(2) eform

stpm2 age , scale(hazard) df(2) eform

/* age per 5 year units */

stpm2 age 5 , scale(hazard) df(2) eform

xi: stpm2 i.marital status , scale(hazard) df(2) eform

xi: stpm2 weight , scale(hazard) df(2) eform

xi: stpm2 height , scale(hazard) df(2) eform

xi: stpm2 i.prev tb , scale(hazard) df(2) eform

xi: stpm2 i.who baseline1 , scale(hazard) df(2) eform

/* CD4 per 100 units */

xi: stpm2 cd4per100, scale(hazard) df(2) eform
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xi: stpm2 i.cd4base category, scale(hazard) df(2) eform

xi: stpm2 hgb gL, scale(hazard) df(2) eform

xi: stpm2 i.hgb category, scale(hazard) df(2) eform

xi: stpm2 i.hgb categ10, scale(hazard) df(2) eform

xi: stpm2 i.BMI category, scale(hazard) df(2) eform

xi: stpm2 BMI, scale(hazard) df(2) eform

/* Change reference of BMI category to Normal */

char BMI category [omit] 2

xi: stpm2 i.BMI category, scale(hazard) df(2) eform

**

/* Missing data analysis (for AIDS followup==1 |NO AIDS followup==1)*/

misstable tree cd4base if AIDS followup==1 |NO AIDS followup==1

misstable tree BMI if AIDS followup==1 |NO AIDS followup==1

misstable tree age 5 if AIDS followup==1

misstable tree who baseline1 if AIDS followup==1 |NO AIDS followup==1

misstable tree hgb gL if AIDS followup==1 |NO AIDS followup==1

misstable tree Imarital s 4 if AIDS followup==1 |NO AIDS followup==1

misstable tree marital status coded if AIDS followup==1 |NO AIDS followup==1

misstable tree prev tb if AIDS followup==1 |NO AIDS followup==1

/** Multivariable Analysis*/

xi: stpm2 i.gender age 5 i.marital status4 BMI i.prev tb hgb gL i.who baseline1 cd4per100

, scale(hazard) df(2) eform
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**

/** Explained variation (D method)*/

xi: str2d stpm2 age 5 i.marital status BMI i.prev tb hgb gL i.who baseline1 cd4per100 ,

scale(hazard) df(2) eform

**

sts graph, by(stage) censored(single) risktable

/* Explore PH assumption for gender*/

stphplot, by(gender)

estat phtest, plot(gender)

***

/* stcstat2 calculates and reports Harrell’s c-index and Somer’s D after fitting a model

with stpm2.*/

stcstat2

*run command after fitting model

/** Bootstrap procedure for Harrell’s c-index and Somer’s D */

bootstrap , reps(50) seed(12345): stpm2 i.BMI category, scale(hazard) df(2) eform

stcstat2

/* Generate quintiles of Hazard score (3 quintiles, appears approriate and well distin-

guished)*/

xtile hr quintile3 = h1 , nq(3)

sts graph, by( hr quintile3 )

strate hr quintile3 , per(1000)
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/* Predict the baseline survival */

predict surv baseline, survival ci zeros

/* Perform for HGB category, marital status (1,4) */

/* Obtain predicted values of the survival and hazard functions and plot them */

predict s1, survival

predict h, hazard

predict h1, hazard per(1000)

**

strate marital status coded , per(1000)

strate who baseline1 , per(1000)

stset time event, failure(AIDS followup==1)

stdes

stptime, per(1000)

/* Multivariate Analysis */

xi: stpm2 i.gender age 5 i.marital status4 BMI i.prev tb hgb gL i.who baseline1 cd4per100

, scale(hazard) df(2) eform

predict s1, survival

predict h, hazard

predict h1, hazard per(1000)

/* Setting up dataset and performing the Imputed Data Analysis */

use ”C:\data\Kev thesis\Thesis data clean\Merged Data - Copy.dta”, clear
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stset, clear

mi set flong

** vars to be imputed BMI hgb gL cd4base

mi register imputed cd4per100 BMI hgb gL marital status4 prev tb who baseline1

mi misstable patterns, frequency

mi impute chained (reg) cd4per100 BMI hgb gL (ologit) who baseline1 (logit) mari-

tal status4 prev tb = age 5 gender coded ///

, burnin(15) rseed(100) add(10) replace

/* set survival data and describe */

mi stset time event, failure(AIDS followup==1)

/* Fit model Survival model on imputed and original data */

* Original data (in imputed set , original data is represented by mi m ==0)

xi: stpm2 i.gender age 5 i.marital status4 BMI i.prev tb hgb gL i.who baseline1 cd4per100

if mi m==0 ///

, scale(hazard) df(2) eform

// Imputed data stpm2 model

mi estimate, dots cmdok sav(mi stpm2,replace): stpm2 i.gender coded age 5 i.marital status4

BMI i.prev tb hgb gL ///

i.who baseline1 cd4per100, scale(hazard) df(2) eform

/* Justification for the number of iterations used (15 in our case). Current literature

suggests that in many practical

applications between 5-20 iterations (low number of burn-in iterations) are adequate for

convergence.
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Also taking consideration that we have few missing values */

/* Generate quintiles of Hazard score (2 quintiles, appeared appropriate and well distin-

guished)*

xtile hr quintile3 = h1 , nq(3)

xtile hr quintile2 = h1 , nq(2)

xtile hr quintile4 = h1 , nq(4)

sts graph, by( hr quintile3 )

sts graph, by( hr quintile2 )

sts graph, by( hr quintile4 )

strate hr quintile3 , per(1000)

strate hr quintile2 , per(1000)

strate hr quintile4 , per(1000)

tabstat h1, by( hr quintile3) stats(mean sd median p25 p75)

tabstat h1, by( hr quintile2) stats(mean sd median p25 p75)

tabstat h1, by( hr quintile4) stats(mean sd median p25 p75)

/* Quantile charts */

xi: stpm2 i.hr quintile2 , scale(hazard) df(2) eform

predict hq2, hazard per(1000)

twoway (line hq2 t if hr quintile2==1, sort) ///

(line hq2 t if hr quintile2==2, sort) ///

, legend(order(1 ”Low Risk” 2 ”High Risk”) ring(0) pos(1) col(1)) ///

xtitle(”Time since HAART initiation (Days)”) ///
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ytitle(”AIDS rate (per 1000 py’s)”)

/* Kaplan Meier Curve */

sts graph, by( hr quintile2 )

sts test hr quintile2, logrank

/* HR and KM by WHO */

xi: stpm2 i.who baseline1 , scale(hazard) df(2) eform

predict hw1, hazard per(1000)

twoway (line hw1 t if who baseline1==1, sort) ///

(line hw1 t if who baseline1==2, sort) ///

, legend(order(1 ”WHO Stage 1” 2 ”WHO Stage 2”) ring(0) pos(1) col(1)) ///

xtitle(”Time since HAART initiation (Days)”) ///

ytitle(”AIDS rate (per 1000 py’s)”)

/* Kaplan Meier Curve */

sts graph if who baseline1 <3, by(who baseline1)

sts test who baseline1 if who baseline1 <3, logrank

* BMI category

xi: stpm2 i.BMI category , scale(hazard) df(2) eform

predict hb1, hazard per(1000)

twoway (line hb1 t if BMI category==1, sort) ///

(line hb1 t if BMI category==2, sort) ///

(line hb1 t if BMI category==3, sort) ///
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, legend(order(1 ”Underweight” 2 ”Normal” 3 ”Overweight”) ring(0) pos(1) col(1))

///

xtitle(”Time since HAART initiation (Days)”) ///

ytitle(”AIDS rate (per 1000 py’s)”)

* Kaplan Meier Curve

sts graph , by(BMI category)

sts test BMI category, logrank

twoway (line s1 t if hgb categ1==1, sort) ///

(line s1 t if hgb categ1==2, sort) ///

, legend(order(1 ”HGB <=10” 2 ”HGB>10”) ring(0) pos(1) col(1)) ///

xtitle(”Time since HAART initiation (Days)”) ///

ytitle(”Survival”)

**

* BMI category

xi: stpm2 i.prev tb , scale(hazard) df(2) eform

predict htb, hazard per(1000)

twoway (line htb t if prev tb==0, sort) ///

(line htb t if prev tb==1, sort) ///

, legend(order(1 ”No TB treatment” 2 ”Previous TB treatment”) ring(0) pos(1)

col(1)) ///

xtitle(”Time since HAART initiation (Days)”) ///

ytitle(”AIDS rate (per 1000 py’s)”)

* Kaplan Meier Curve
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sts graph , by(prev tb)

sts test prev tb, logrank

twoway (line s1 t if hgb categ1==1, sort) ///

(line s1 t if hgb categ1==2, sort) ///

, legend(order(1 ”HGB <=10” 2 ”HGB>10”) ring(0) pos(1) col(1)) ///

xtitle(”Time since HAART initiation (Days)”) ///

ytitle(”Survival”)

**

strate marital status coded , per(1000)

strate who baseline1 , per(1000)

twoway (line h t if who baseline1==1, sort) ///

(line h t if who baseline1==2, sort) ///

, legend(order(1 ”WHO Stage 1” 2 ”WHO Stage 2”) ring(0) pos(1) col(1)) ///

xtitle(”Time since HAART initiation (Days)”) ///

ytitle(”HIV/AIDS rate (per 1000 py’s)”) yscale(log)

/* Baseline Hazard */

predict h0, hazard zeros per(1000) ci

line h0* t, sort ///

legend(on) ///

xtitle(”Time since HAART initiation (Days)”) ///

ytitle(”Baseline Hazard ratio (Log scale)”)

twoway (rarea h0 lci h0 uci t, sort) ///

(line h0 t, sort) ///
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,legend(on) yscale(log) ylabel(5 10 25 50 100 250) ///

xtitle(”Time since HAART initiation (Days)”) ///

ytitle(”Baseline Hazard ratio (Log scale)”)

/* hazard values and graphs on log scale */

predict h2, hazard per(1000)

twoway (line h2 t if hr quintile3==1, sort) ///

(line h2 t if hr quintile3==2, sort) ///

(line h2 t if hr quintile3==3, sort) ///

, legend(order(1 ”Q1” 2 ”Q2” 3 ”Q3”) ring(0) pos(1) col(1)) ///

xtitle(”Time since HAART initiation (Days)”) ///

ytitle(”HIV/AIDS rate (per 1000 py’s)”) yscale(log)

twoway (line h1 t if who baseline1==1, sort) ///

(line h1 t if who baseline1==2, sort) ///

, legend(order(1 ”WHO Stage 1” 2 ”WHO Stage 2”) ring(0) pos(1) col(1)) ///

xtitle(”Time since HAART initiation (Days)”) ///

ytitle(”HIV/AIDS rate (per 1000 py’s)”) yscale(log)

/** Measures of the predictive power of the survival model*/

gene invhr=1/h1

gene censind=1- d if st==1

somersd t invhr if st==1, cenind(censind) tdist transf(c)

somersd t invhr if st==1, cenind(censind) tdist transf(z)

***
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** Difference in Hazard Ratios (WHO stage 1 vs. 2

predict hdiff who2, hdiff1( Iwho basel 2 1) ci per(1000)

twoway (rarea hdiff who2 lci hdiff who2 uci t, sort) ///

(line hdiff who2 t, sort) ///

,legend(off) /// or on

xtitle(”Time since HAART initiation (Days)”) ///

ytitle(”Difference in hazard rate (WHO stage 1 vs. 2)”)

/* Compare the hazard ratios, AIC and BIC from the different models */

estimates table df*, eq(1) se stats(AIC BIC)

/* Predict and plot the baseline hazard function for this model */

/* predict baseline hazard and graph it*/

predict h0, hazard zeros per(1000) ci

line h0* t, sort ///

legend(off) ///

xtitle(”Time since diagnosis (years)”) ///

ytitle(”Cause specific mortality rate (per 1000 py’s)”)

/* end */
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