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Abstract

Sturm-Liouville operators and Jacobi matrices have so far been de-

veloped in parallel for many years. A result in one field usually leads

to a result in the other. However not much in terms of spectral the-

ory has been done in the discrete setting compared to the continuous

version especially in higher order operators. Thus, we have investigated

the defficiency indices of fourth order difference operator generated by

a fourth order difference equation and located the absolutely continuous

spectrum of its self-adjoint extension as well as the spectral multiplicity

using the M-matrix. The results are useful to mathematicians and can be

applied in quantum mechanics to calculate time dilation and length con-

traction as used in Lorentz-Fotzgeralds transformations. The study has

been carried out through asymptotic summation as outlined in Levinson

Benzaid Lutz-theorem. This involved: reduction of a fourth order differ-

ence equation into first order, computation of the eigenvalues, proof of

uniform dichotomy condition, calculating the deficiency indices and lo-

cating absolutely continuous spectrum. In this case we have found the

absolutely continuous spectrum to be the whole set of real numbers of

spectral multiplicity one.
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Chapter 1

Introduction

1.1 Background

Sturm-Liouville operators and Jacobi matrices have been developed in

parallel in recent years. Actually, Sturm-Liouville equations and their

discrete counterparts, Jacobi matrices are analysed using similar and re-

lated methods. Therefore, there is no doubt that the theory of Jacobi

matrices is far much developed. This shows that the theory of difference

equations have surely grown.

In this study, we have investigated the absolutely continuous spectrum of

a fourth order self-adjoint extension operator of minimal operator gener-

ated by difference equation;

Ly(t) = w−1(t)44y(t− 2)− i{4(q(t)42y(t− 2)) +

42(q(t)4y(t− 1)} −4(p(t)4y(t− 1)) +

i{r(t)4y(t− 1) +4(r(t)y(t)}+m(t)y(t), (1.1)
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defined on a weighted Hilbert space `2w(N) with the weight function w(t) >

0, t ∈ N where p(t), q(t), r(t) and m(t) are real-valued functions.Here the

equation is in the form that makes it symmetric and also of order 4. In

this case the coefficients are allowed to be unbounded. ∆ is a forward dif-

ference operator such that ∆f(t) = f(t+ 1)− f(t); for t ∈ N.The method

applied is asymptotic summation as outlined in Levinson-Benzaid -Lutz

theorem [8] and whose spectral parameter uniform version is given in

[1,4,5]. For simplicity in computation and analysis ,we have assumed

that w(t) = 1 unless otherwise stated. For the spectral analysis we

have solved the equation Ly(t) = zy(t) where L is the difference oper-

ator generated by (1.1) and z is the spectral parameter,z ∈ C. We have

applied the M-matrix theory as developed in Hinton and Shaw [14] in

order to compute the spectral multiplicity and the location of the ab-

solutely continuous spectrum of self-adjoint extension operator. These

results has been an extension of some known spectral results of fourth

order differential operators to difference setting. Similarly,they have ex-

tended results found in Jacobi matrices [10] .In this thesis,chapter 1 is

about introduction and some preliminary results including literature re-

view,objectives,methodology and basic definitions.In chapter 2,we have

given the results on the computation of the eigenvalues,dichotomy condi-

tions and some results on singular continuous spectrum.Chapter 3 con-

tains the main results in deficiency indices,absolutely continuous spectrum

and the spectral multiplicity.Finally,we have summarized our results in

chapter 4 and also highlighted areas of further research.
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1.2 Basic Concepts

Definition 1.2.1

An operator T defined on Hilbert space H is said to be symmetric if it is

densely defined and D(T ) ⊂ D(T ∗) where T ∗ is a Hilbert adjoint of T

Definition 1.2.2

An operator T on a Hilbert space H is said to be self-adjoint if T = T ∗

so that self adjoint operators are symmetric by definition.

Definition 1.2.3

Let T be an operator defined on Hilbert space H . A number λ is said

to be in the spectrum of T if the operator T − λI is not invertible. The

spectrum of T is denoted by σ(T ) and is defined by

σ(T ) = {λ ∈ C : T − λI is not invertible}

. In addition, the complement of the spectrum,C\σ(T ) is called the re-

solvent operator T and is denoted by ρ(T ) that is,

ρ(T ) = {λ ∈ C : T − λI is invertible}

. In this, one says Rλ(T ) = (T − λI)−1 is the resolvent operator of T .

Here

σ(T ) ∩ ρ(T ) = φ

We note that an operator T − λI fails to be invertible if it is neither

one-to-one nor onto.

Definition 1.2.4

If the operator is not one-to -one, it implies that λ is an eigenvalue of the
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operator T . Thus the set of such λ ∈ C which makes T − λI not one-to-

one forms the components of the spectrum known as the point(discrete)

spectrum denoted by σρ(T )

Definition 1.2.5

If T − λI is not invertible (does not have a bounded inverse) because

T−λI is not onto then the spectral values λ in this case form a continuous

spectrum. The set of all such λ is denoted by σc(T ) = {λ ∈ C : T − λI

does not have a bounded inverse, T − λI is not onto}.

Definition 1.2.6

Let T be the maximal multiplication operator defined by Tu(x) = xu(x)

on a Hilbert space H,then the spectrum of T is absolutely continuous

with the D(T) consisting of all u ∈ H with xu(x) ∈ H.

Definition 1.2.7

A mapping 4 is known as forward difference operator if for any function

f(t), t ∈ N then

4f(t) = f(t+ 1)− f(t).

Similarly 4∗ or ∇ is backward operator if

∇f(t) = f(t)− f(t− 1).

Definition 1.2.8

Let H be a separable Hilbert space and let T be a densely defined sym-

metric linear operator on H. The operator T is closed if its graph

{x⊕ Tx ∈ H ⊕H : x ∈ D(T )}
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is closed. If T
′

is a symmetric operator on H with D(T ) ⊂ D(T
′
) and

T ′ − \D(T ) = T we call T’ a symmetric extension of T. symmetric op-

erators have maximal symmetric extensions and the maximal symmetric

extensions are closed only if not self-adjoint. In order to convert equa-

tion (1.1), into a first order system, we define the vector valued functions

x(t),u(t) and y(t) by,

x(t) = (x1(t), x2(t))
tr, u(t) = (u1(t), u2(t))

tr, y(t) = (x(t), u(t))tr

where the superscript tr denotes transpose and

x1(t) = y(t− 1)

x2(t) = 4y(t− 2)

u1(t) = p(t)4y(t− 1)−43y(t− 2) + i{4(q(t)4y(t− 1)) +

q(t)42y(t− 2)} − ir(t)y(t)

u2(t) = 42y(t− 2)− iq(t)4y(t− 1).

Now we let

x(t) =

 x1(t)

x2(t)


and

u(t) =

 u1(t)

u2(t)


Therefore the discrete linear Hamiltonian system as outlined by Hinton

and Shaw[14] for differential operators and discritised by Shi[20] is of the

5



form

J4Y (t) = [zW (t) + P (t)]R(Y )(t) (1.2)

where t ∈ N, W (t) and P (t) are 4 x 4 complex Hamiltonian matrices.

W (t) = diag(w(t), 0..., 0), w(t) is a weighted function, x(t), u(t) ∈ C2, J

is a symplectic matrix, that is

J =

 0 −I2

I2 0

 and P(t) =

 −C(t) A∗(t)

A(t) B(t)

 .

For non-zero elements of 2 x 2 matrices A,B, and C are given by

A1,2 = 1, A2,2 = iq, B2,2 = 1, C1,1 = m,C1,2 = −C2,1 = ir, and C2,2 = p

Definition 1.2.9

Let `2w[(0,∞)] be a Hilbert space with weight function w(t) and define

this Hilbert space using the vector valued function x(t), u(t) and Y (t) by

`2w[(0,∞)] = {y; y = y(t)∞t=0 ⊂ C and
∞∑
t=0

(RY ∗)(t)W (t)(RY )(t) <∞}

where RY (t) is a partial shift operator

Ry(t) =

 x(t+ 1)

u(t)


Like in differential operators,a regularity condition is needed for spectral

analysis of higher order difference operators,that is, there exists an n0 such

that non-trivial solutions Y(t,z) of (1.1) viz (1.2) and all z ∈ C,Shi[20]
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∑n
t=0(RY (t, z)∗W (t)(RY (t, z)) > 0, n ≥ 0.

The scalar product for the vector valued functions system is,∑∞
t=0 y1(t+ 1)w(t)y(t+ 1) = 〈y1, y〉w, y, y1 ∈ `2w([o,∞) see [20].

In this case, one defines maximal difference operator L∗ on `2w(N) by

D(L∗) = {y(t) ∈ `2w(N):there exists f(t) ∈ `2w(N) such that

J∆Y (t)− P (t)RY (t) = W (t)f(t), t ∈ N.

This implies that for y(t),f(t) ∈ `2w(N),then

L∗y(t) = w(t)f(t).

The restriction of L∗ by boundary conditions at 0 and all t ≥ n + 1 for

some n ∈ N results into a pre-minimal difference operator defined by

D(L′) = {y(t) ∈ D(L∗): there exists n ∈ N such that y(0) = y(t) = 0, for

all t ≥ n+ 1}.Thus for y(t) = D(L
′
) then

L∗y(t) = L
′
y(t).

The closure of pre-minimal operator L
′
, L̄′ is defined as the minimal dif-

ference operator. This means that a minimal operator is a restriction of

maximal operator L∗. We shall denote by L and L∗ minimal and maximal

operators respectively. It follows that L and L∗ are symmetric, L ⊂ L∗

and L = L∗∗ as required.

In order to compute deficiency indices of L,we have used a > 2 as the

left-end point in order for L∗ to be densely defined .The result can be ex-

trapolated to the set N using Remlings results [19] since deficiency indices

of an operator are invariant of left-end points

Definition 1.2.10

The deficiency indices of the operator L is the pair (N−, N+) defined
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by, dimN(L∗ ± iI) and denoted by N− and N+, for dimN(L∗ − i) and

dimN(L∗ + i) respectively. Here N(L∗ ± i) is the null space of L∗ ± i.

Thus

2 ≤ N−, N+ ≤ 4

and if N− = N+ then, there exists a symmetric self-adjoint extension H

of an operator L.

Definition 1.2.11

Let

Yα(., z) =

 Uα(., z)

Vα(., z)


be the fundamental matrix of

J4

 x(t)

u(t)

 =

 0 −4

4 0

 x(t)

u(t)

 =

 −C(t) + zW A∗(t)

A(t) B(t)

 x(t)

u(t)


(1.3)

with initial values of

Yα(a, z) =

 α∗1 −α∗2
α∗2 α∗1

 ,
where

α1, α2

satisfy

α1α
∗
1 + α2α

∗
2 = I2, α1α

∗
2 − α2α

∗
1 = 02 and α1α2Y (a) = 0 (1.4)

8



α1 and α2 are 2 x 2 matrices, that is α = (α1, α2) ∈ C2 x2.

Uα, Vα are 4 x 2 complex-valued matrices whose every column solves

Ly = zy and that Vα(, ..z) satisfy self-adjoint boundary conditions at

a. Thus,columns of Yα(, ...z) span the 4-dimensional vector space of solu-

tions of (1.3). Therefore in the limit point case with Imz > 0 one has a

matrix M ∈ C2 x 2 such that

Xα(t, z) = Yα(a, z) =

 I2

M(z)

 = Uα(t, z) + Vα(t, z)M(z)

whereXα(t, z) satisfy the boundary conditions of (1.4).It has been shown

in [20] that if L is limit point as t → ∞,then one can construct the

M-matrix M(z) for the Hamiltonian restriction to [a,∞) with Dirichlet

boundary conditions.To do this ,let W1(a, z)

W2(a, z)

 be a system of 2 square summable solutions for Imz > 0.

Then from the theory of Hinton and Shaw [14], it follows that this solu-

tions also arise from Ya(t, z)

 In

M(z)

,where Ya(t, z) is the fundamental

solution of the system satisfying the appropriate boundary conditions at

a.

Definition 1.2.12

If L is limit point, then L has self-adjoint extensions.With a=0,the self-

adjoint extension H of L are precisely defined by

D(H) = y ∈ D(L∗) : (α1, α2)y(0) = 0, L∗y = Hy

and L ⊂ H = H∗ ⊂ L∗.

9



1.3 Literature Review

The spectral analysis and deficiency indices of Sturm-Liouville operators

have been generating a lot of interest in the field of mathematical research.

Sturm-Liouville equations and their discrete counterparts, Jacobi matri-

ces are analysed in related and almost in a similar way. It is a known fact

that the spectral theory of Sturm- Lioville operators and Jacobi matrices

are developed in parallel.

The accelerated growth of the theory of difference equations has played an

important role in the applicable analysis and in mathematical research as

a whole. The difference equations appeared earlier than differential equa-

tions and played an important role in the development of the latter.

The qualitative study of the solutions of difference systems is periodic

and one can easily include method of variation of constants, the con-

cept of exact and adjoint equations and Lagranges’ and Green’s identities

into this analysis. The method of generating functions, a very important

technique for obtaining the closed form solutions of higher order differ-

ence equations will follow immediately.

Currently,there are research papers that have developed and expanded

the M-function theory for difference systems. These papers include Fis-

cher and Remling[12], Clark and Gesztesy [9], Behncke and Nyamwala

[4,5], Behncke [7], Shi [20].For example,Remling made an attempt to es-

tablish asymptotic integration as a valuable tool in spectral analysis in

conjuction with the theory of the M-matrix.Remling could prove some re-

sults on the spectral theory of fourth order operators,though unbounded

10



middle terms formed an obstacle.Behncke,Hinton and Remling finally de-

veloped the spectral theory for higher even order operators with bounded

coefficients satisfying some regularity conditions.Due to this and other re-

sults on asymptotic integration by Behncke and Hinton,it was clear that

one obstacle to analysis of the absolutely continuous spectrum of oper-

ators with unbounded coefficients, is the understanding of the zero’s of

polynomials, here the Fourier polynomials. This is experienced especially

when proving some results on the spectral theory of fourth order opera-

tors, where the middle terms form an obstacle even though unbounded.

The theory of M-functions as developed in these papers are equivalent but

the approach in [20] has been relevant in this study because the results

are closer to the traditional approach of Hinton and Shaw [14]. Actually,

the analysis has been parallel to that of Shi [20].

Even though attempts have been made to compute deficiency indices

and the location of absolutely continuous spectrum of unbounded opera-

tors, much has not been done for discrete operators except for papers by

Behncke and Nyamwala [4,5] and that of Agure, Ambogo and Nyamwala

[1] where the coefficients that were taken to be unbounded were the even

order coefficients.

We have investigated the absolutely continuous spectrum of fourth or-

der difference operator generated by (1.1) when odd order coefficients are

unbounded. This has been done using asymptotic summation. Asymp-

totic summation is based on the discretized version of Levinson’s theorem

which appeared in the Benzaid-Lutz paper [8] and the result which is z-

uniform is stated here below,since the assumptions in the Theorem have

11



been used in chapter 3 to prove our main result in that chapter.

Theorem 1.3.1

Let Λ(t, z) = diag{λ1(t, z), ...λ2n(t, z)} for t ≥ a assume

(i) λi(t, z) 6= 0 for all 1 ≤ i ≤ 2n and t ≥ a

(ii)R(t, z) is a 2n x 2n matrix defined for all t ≥ a satisfying

∞∑
t=0

| 1

λi(t, z)
| ‖R(t, z)‖ ≤ ∞

for all i = 1, 2...2n

(iii) Λ(t, z) satisfy the following uniform dichotomy condition for any

pair of indices i and j such that i 6= j, assume their exist a δ

with 0 < δ < 1 such that |λi(t, z)| ≥ δ for all t ≥ a.Then either

| λi(t,z)
λj(t,z)

|≥ 1 or | λi(t,z)
λj(t,z)

|≤ 1 for large t. Here the linear system

X(t+ 1, z) = [Λ(t, z) +R(t, z)]X(t, z)

has the fundamental matrix satisfying

X(t, z) = [I + o(1)]
t−1∏
l=a

Λ(l, z) as t→∞.

12



1.4 Statement of the problem

The theory of difference operators occupies a central position in analy-

sis.This is because of its continuous growth and infact it will continue

playing an important role in mathematics as a whole. In this study, we

have investigated the deficiency indices of minimal difference operator

generated by equation (1.1) and also investigated the absolutely contin-

uous spectrum of fourth order self-adjoint extension operator of minimal

operator when the coefficients are unbounded. We have used asymptotic

summation approach as outlined in Levinson-Benzaid-Lutz theorem.

1.5 Objectives of the study

The objectives of the study were:

• To compute deficiency indices of fourth order minimal difference

operator when the coefficients are unbounded.

• To locate the absolutely continuous spectrum of self adjoint exten-

sion operator of the minimal difference operator generated by (1.1).

• To compute the spectral multiplicity of the absolutely continuous

spectrum using the M-matrix.

13



1.6 Significance of the study

Our study on absolutely continuous spectrum of fourth order difference

operators with unbounded coefficients on Hilbert space using asymptotic

summation have contributed more knowledge to the existing results in

this field. The study have extended the existing knowledge of compu-

tation of deficiency indices and spectral theory. In particular, location

of absolutely continuous spectrum together with its spectral multiplicity

using M-matrix have also been very useful to quantum physicists.

We believe that this study have also provided some solutions to unan-

swered open questions on absolutely continuous spectrum of fourth order

difference operators with unbounded coefficients on Hilbert space, for ex-

ample the fourth order square well problem with unbounded coefficients.

1.7 Research Methodology

We started by reducing the fourth order difference system to a first or-

der difference equation using quasi-difference. We have also gone a head

and computed the eigenvalues of the minimal operator. We have also

established the dichotomy condition uniformly in the spectral parame-

ter. Again we have calculated or approximated the eigenfunction of the

difference operator using Levison-Benzaid Lutz theorem. We have also

calculated deficiency indices and found that they are equal and hence we

have defined the self adjoint extension operator. Finally, we have located

the absolutely continuous spectrum together with its spectral multiplicity

14



using the M-matrix.
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Chapter 2

Difference Operators

2.1 Hamiltonian System

The known origin of discrete Hamiltonian systems is from discrete pro-

cesses acting according to the principle of Hamiltonian systems, that is,

discrete control problems and discrete physical problems. It also origi-

nated from the discretisation of continuous Hamiltonian system.

In order to define discrete Hamiltonian system of (1.1),we need to intro-

duce quasi-differences as explained in [20] and [4,5].Thus we define the

vector valued functions x(t), u(t) and Y (t) as in chapter one. Therefore

we introduce the spectral parameter z, z ∈ C and solve the equation

Ly(t) = zy(t) (2.1)

In such a case,the Hamiltonian system (1.2) which can be rewritten as

J4

 x(t)

u(t)

=

 0 −4

4 0

 x(t)

u(t)

=

 −C(t) + zW A∗(t)

A(t) B(t)

 x(t)

u(t)


with A,B and C given by

16



A =

 0 1

0 iq

 , B =

 0 0

0 1

 , and C =

 m− z ir

−ir p



In order to ensure the existence, uniqueness and continuity of the

solutions of initial value problem of (2.1),we need that I2−A is invertible

in N, but this is always true for the fourth order case as long as a > 2.

Let (I2 −A)−1 be denoted by E, then in line with the analysis of shi[20],

(2.1) then has a first order system of the form

Y ((t+ 1), z) = S(t, z)Y (t, z) (2.2)

where

S(t, z) =

 E EB

CE I − A∗ + CEB


The 2x2 block matrices are then obtained from;

E =

 1 1
1−iq

0 1
1−iq

 , EB =

 0 1
1−iq

0 1
1−iq



CE =

 m− z m−z+ir
1−iq

ir p−ir
1−iq

 , CEB =

 0 m−z+ir
1−iq

0 p−ir
1−iq



17



Hence (2.2) becomes,

 x(t+ 1, z)

u(t+ 1, z)

 = S(t, z)

 x(t, z)

u(t, z)

 (2.3)

where S(t, z) is a 4 x 4 transfer matrix given by;


1 1

1−iq 0 1
1−iq

0 1
1−iq 0 1− iq

m− z m−z+ir
1−iq 1 m−z+ir

1−iq

−ir p−ir
1−iq −1 1+q2+P−ir

1−iq


The system (2.2) is now solved using asymptotic summation. The spectral

multiplicity is computed via M-matrix.

2.2 Asymptotic Summation

We stated earlier that Levinson-Benzaid -Lutz theorem is useful in asymp-

totic summation. In this case the results is the extension of Levinson’s

theorem from differential calculus to difference setting .This result first

appeared in the paper of Benzaid and Lutz [8] and has been extended

by many authors, namely, Behncke and Nyamwala[4,5] as well as Shi[20].

Thus asymptotic summation is based on Levinson-Benzaid-Lutz theorem

. The statement of this theorem implies that we solve for the eigenval-

ues of the matrix S(t, z). In such a case ,we determine the characteristic

polynomial det(S(t, z)− λI4) which gives;
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P(t, λ, z) =

(1− λ)2[ 1
(1−iq)2 + q2

(1−iq)2 −
2λ

1−iq −
λq2

1−iq −
λp

1−iq + λir
1−iq + λ2]− 2irλ(1−λ)

1−iq + λ2m
1−iq .

Thus multiplying P(t, λ, z) by 1−iq
λ2

so that if λ is a root, then λ
−1

is

also a root, we obtain;

F (t, λ, z) = [(1− λ−1)2(1− λ)2 + p(1− λ−1)(1− λ) + (m− z)] + [q(1−

λ−1)(1− λ)(iλ+ (iλ)−1) + r(iλ+ (iλ)−1)].

In order to have a polynomial of real coefficients, we apply a transfor-

mation λ = is+1
is−1 that maps upper half plane into the interior of a circle,

such that

(1− λ−1)2(1− λ)2 =
16

(s2 + 1)2

(1− λ)(1− λ−1) =
4

(s2 + 1)

iλ+ (iλ)−1 =
4s

s2 + 1

and

Q0(s, t, z) =
16

(s2 + 1)2
+

4p

s2 + 1
+ (m− z) +

4q

s2 + 1
(

4s

s2 + 1
) +

4rs

s2 + 1

The terms in the denominator can be eliminated by multiplying through

by (s2 + 1)2 so that we have
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Q(s, t, z) = (s2 + 1)2Q0(s, t, z)

and is given by

Q(s, t, z) = ms4 +4rs3 +(4p+2m)s2 +(16q+4r)s+(16+4p+m). (2.4)

Since the transformation of (2.1) into Levinson-Benzaid -Lutz form by

asymptotic summation involves diagonalisation, we need that the eigen-

values of S(t, z) be distinct. By considering the resultant or the discrim-

inant of P(λ, t, z) and ∂λρ(λ, t, z) one can show just like in [3], that there

are only finitely many spectral values z for which P(λ, t, z) has multiple

roots. Let ω1 < ω2 < ... < ωk denote all of the real spectral values z

leading to multiple roots. Following [3], the analysis will be restricted

to small complex neighborhoods of z0 ∈ (ωi, ωi+1), i = 0, ..., k where

ω0 = −∞ and ωk+1 =∞. For a given z0 ∈ (ωi, ωi+1), one can now choose

ε > 0 and a > 0 so that P(λ, t, z) = 0 has no multiple roots for any z

z ∈ Kε(z0) = {z||z − z0| ≤ ε, Imz ≥ 0}

and t ≥ a.This is possible because the roots of P(λ, t, z) depend analyt-

ically on the coefficients. Throughout the study, it may be necessary to

adjust a and ε repeatedly.This will be done without mentioning.
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2.3 Bounded Coefficient

Definition 2.3.1

The coefficients q(t), r(t), p(t) and m(t) are said to be almost constant

coefficients if there exists constants cq, cr, cp and cm such that

q(t)→ cq, r(t)→ cr, p(t)→ cp, and m(t)→ cm as t→∞. (2.5)

In this case,the coefficients q(t), r(t), p(t) and m(t) are bounded. With

this assumption, we have the following theorem, which proves that in the

case of bounded coefficients, then there exists an interval in which the

singular continuous spectrum of H is absent.

Theorem 2.3.2

Let H be self-adjoint extension operator of the minimal difference operator

generated by (1.1). Assume the coefficients are almost constant, then

σsc(H) ∩ (m, m̄) = φ.

Here,

m = lim inf m(t) and m̄ = lim sup m(t)

Proof. The proof is analysed both for accumulation of eigenvalues and

boundedness of the M-matrix. σsc(H) cannot lie within the interval

(m, m̄) since if X is an open subset of C such that (m, m̄) ⊂ X, then

we may assume that for z ∈ X,the solutions yj(t, z), j = 1,..., 4, of

(L − z)y analytically depend on z such that for z ∈ X with Imz > 0,

then defL = (2, 2) and the point spectrum has no accumulation point

within(m, m̄).The solutions yj(t, z), form the fundamental system Y (t, z)
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of (1.1) since otherwise there would exist a solution which is in the domain

of self-adjoint extension operator, implying that z is an eigenvalue. By

analyticity, it follows that yj(t, z), j=1, ...,4, form a fundamental system

for all z ∈ X, with possible exception for at most countably many points

which cannot accumulate in X.

Finally we show that the solutions that lose their square summability

as Imz → 0+ cannot contribute to singular continuous spectrum. For

z ∈ R, those eigenvalues ,λ, with |λ| < 1 and |λ| > 1 will lead to

eigenfunctions which are z-uniformly square summable and z-uniformly

non-square summable respectively and hence discrete spectrum at most.

But if Imz > 0, z ∈ C, then as Imz → 0+, some of the eigenfunctions

from eigenvalues λ, |λ| = 1 , lose their square summability, but since the

domain of H is defined by only those eigenfunctions that are z-uniformly

square summable, we need to show that ImM(z) exists finitely and is

bounded.

Now let F (., z) be 2 by 4 system of square summable solutions which

satisfy α-boundary conditions at 0 and define the M-matrix M(z) (see

C.Remling[17])

< F (., z), F (., z
′
) > (z̄ − z′) = M∗(z)−M(z′), (2.6)

whose discrete version is given in [20]. Then for z = z + iη, z0 ∈ R we

have

ImM(z0) = lim
η→0+

η < F (., z0 + iη);F (., z0 + iη) > .
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Assume the α-boundary conditions does not give rise to a bound state

since otherwise ImM(z0) will exist boundedly, then the above limit exist

finitely. To see this we use the two eigensolutions given by the eigenvalues

λ such that |λ| < 1 even as Imz → 0+. In this case,

yj(t, z) ' cjkλ
t

and

yi ' cikλ
t,

where cik and cjk appropriate eigenvectors and are bounded. Then by

Cauchy-Swartz inequality, we obtain

ImM(z0) = lim
η→0+

η| < yi(t, η), yj(t, η) > | ≤

lim
η→0+

η(
4∑

k=1

|cik|2|λti(η)|2)
1
2 (

4∑
k=1

|cjk|2|λtj(η)|2)
1
2 .

The term on the right hand side is bounded absolutely as t → ∞ since

|λj(η)|, |λi(η)| < 1. Consequently, ImM(z0) is non-trivial. This shows

that the spectrum of H has no singular continuous part. �

The interval (m,m) is not necessarily empty since if we assume that

m(t) = sin (t+1)
2

Π,then m = −1 and m = 1, hence (m,m) = (−1, 1) yet

m(t) is bounded for all t ∈ N.

Suppose that m, p are bounded with q = r = 0, then (2.4) becomes a

biquadratic whose zeros can be solved explicitly. Therefore under vari-

ous asymptotic conditions we obtain the following result which has been
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proved in Agure, Ambogo and Nyamwala [1] and we provide proof for

completeness.

Theorem 2.3.3

Let m and p be bounded and suppose all the necessary and sufficient

conditions for asymptotic summation are satisfied, then

(i) If q = r = 0 and p2 < 4(m− z) then defL = (2, 2) and σ(H) is pure

discrete.

(ii) Assume all the coefficients are almost constant and that the limiting

characteristic polynomial has 2l eigenvalues of absolute value one

(0 ≤ l ≤ 2), then the self-adjoint extension operator H has no

singular continuous spectrum and σac(H) agrees with that of the

constant coefficient limiting operator and has spectral multiplicity

of l.

Proof. (i) Assune that r(t) = q(t) = 0 for all t ∈ N and the other co-

efficients bounded then the polynomial is a well known biquadratic

polynomial that can be solved explicitly. Thus if p2 < 4(m−z), the

discriminant of the polynomial is less than zero and hence the roots

have non-zero imaginary parts. These roots are in complex conju-

gate pairs. Assume these roots are of the form αj ± βj, j = 1, 2.

Using analysis given in [4], the two roots with βj > 0 will lead to

eigensolutions that are z-uniformly square summable while the two

roots with βj < 0 will lead to z-uniformly non-square summable

eigensolutions. Thus def L = (2, 2) and the spectrum is discrete at

most.
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(ii) If the coefficients are almost constant, then those roots λ of

P(λ, t, z) such that |λ| > 1

lead to solutions that are z-uniformly non-square summable while

the roots |λ−1| < 1 lead to z-uniformly square summable solutions.

Therefore, it is the roots λ such that |λ| = 1, that lead to eigenfunc-

tions of which half of their number lose their square summability as

Imz → 0+.The eigenfunctions that lose their square summability

as Imz → 0+ contribute to absolutely continuous spectrum.

Invoking the results of [3], the absolutely continuous spectrum of

H coincides with that of the constant coefficients limiting operator

and of spectral multiplicity equal to the number of eigenfunctions

that lose their square summability as Imz → 0+.

�

The following example confirms the results of the above two theorems.

Before we give the example, we state the following lemma which is from

classical linear algebra.

Lemma 2.3.4

If λ and λ̄−1 are roots of the characteristic polynomial ρ(λ, t, z) and as-

sume that ζ = λ+ λ̄−1, then |ζ| ≤ 2 is only possible if ζ is real otherwise

|ζ| > 2.

Lemma 2.3.4 implies that we can obtain|λ| ' |λ̄−1| ' 1 only if λ+ λ̄−1 is

real otherwise we will have |λ| > 1 and |λ̄−1| < 1.
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Example 2.3.5

Let L be a fourth order difference operator generated by a difference

equation of the form

44y(t− 2)−4{(cp + tβp)4y(t− 1)}+ (cm + tβm)y(t) = zy(t)

where βm, βp < 0 and cp, cm > 0 are constants.

Then one can easily convert the above difference equation into its first

order system using quasi-differences. Here as t→∞, then

cp + tβp → cp, while cm + tβm → cm.

The characteristic polynomial P(λ, t, z) multiplied by λ−2 becomes

(1− λ)2(1− λ−1)2 + (cp + tβp)(1− λ)(1− λ−1) + cm + tβm − z = 0

Now let λ+ λ−1 = ζ so that we have

(2− ζ)2 + (2− ζ)(cp + tβp) + (cm + tβm − z) = 0

Solving for ζ by absorbing tβp , tβm − z into cp and cm respectively we get

ζ+ = 2 +
cp
2

+ {
c2p
4
− cm}

1
2

ζ− = 2 +
cp
2
− {

c2p
4
− cm}

1
2 .

Thus we have two broad cases to consider.
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(a)βp < βm < 0. Then ζ+ and ζ− will be in complex conjugate pairs with

non-zero imaginary parts. Applying the results of Lemma 2.3.4

,both ζ+ and ζ− have absolute value greater than 2, hence each

contribute (1,1) to deficiency index and the eigensolutions that are

square summable are z-uniformly square summable. Hence defL =

(2, 2) and σ(H) is discrete at most.

(b) βm < βp < 0. This can be split into three cases as follows

(i) |ζ−| ≤ 2, |ζ+| > 2 then the expansion of

ζ− = 2 +
cp
2
− {

c2p
4
− cm}

1
2 ≈ 2 +

cp
2
− cp

2
{1− 2cm

c2p
+ ..}.

Thus after two diagonalisations, we need that the correction term

be summable. The term affected by this, is that associated to the

spectral parameter z which is cm
c2p

.Hence

42(
cm
c2p

) ≈ 42(tβm−2βp) ≈ O(tβm−2βp−2).

Therefore if βm − 2βp < 1 then defL = (3, 3) and σ(H) is pure

discrete. But if βm − 2βp > 1 then defL = (2, 2) and σac(H) ⊂

[cm, 16 + 4cp + cm] and has a spectral multiplicity of 1

(ii) If we assume |ζ+| ≤ 2 and |ζ−| > 2, we obtain similar results as

in (i) above

(iii) Suppose |ζ+|,|ζ−| ≤ 2, this is possible since cp and cm can
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be chosen appropriately. Then if βm − 2βp < 1 ,defL = (4, 4) and

σ(H) is pure discrete while if βm − 2βp > 1 then defL = (2, 2) and

σ(H) ⊂ [cm, 16 + 4cp + cm] of spectral multiplicity 2.

2.4 Unbounded Coefficients

In this section, we compute the approximations of the eigenvalues of the

characteristic polynomial P(λ, t, z) when r(t) is unbounded as t→∞.In

particular,we assume that

p(t), q(t),m(t) = o(r(t)), and r(t)→∞ as t→∞, (2.7)

that is p(t), q(t) and m(t) are bounded for all t ∈ N while r(t) is un-

bounded.

Lemma 2.4.1

Suppose (2.7) is satisfied ,then the roots of the polynomial (2.4) can be

approximated from the equations

i)ms4 + 4rs3 +R1(s) = 0 where

R1(s) = (4p+ 2m)s2 + (16q + 4r)s+ (16 + 4p+m)

ii)4rs3 + (4p+ 2m)s2 + (16q + 4r)s+R2(s) = 0 where

R2(s) = ms4 + (16 + 4p+m)

iii)(16q + 4r)s + (16 + 4p + m) + R3(s) = 0 here R3(s) = ms4 + 4rs3 +

(4p+ 2m)s2 where

R1(s)s
−3
1 m−1,

1

4
R2(s)r

−1s−1± ,
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and R3(s)(16q + 4r)−1 tend to zero as t→∞.

Then,

|s1| ≈ |
4r

m
|, |s2±| ≈ |

4r

16 + 4r
|, |s3| ≈ |

16q + 4r

16 + 4p+m
|

Proof. It suffices to show that

R1(s)s
−3
1 m−1,

1

4
R2(s)r

−1s−1±

and

R3(s)(16q + 4r)−1

tend to zero as t→∞, that is, they are o(1).

Now we show that R1(s)s
−3
1 m−1 tend to zero as t→∞.

|m|−1R1(s)

|s31|
= |m|−1[|4p+ 2m|s−11 + |16q + 4r|s−2lg + |16 + 4p+m|s−31 ]

≤ |4p+ 2m|
4r

+
|16q + 4r|m||
|4r|2

+
|16 + 4p+m||m|2

|4r|3

each term goes to zero as t→∞ since r(t)→∞ too.

|m|−1|R1(s)|
s31

→ 0

Also we show that 4R2(s)r
−1s−12± tend to zero as t→∞

R2(s)
4rs

= ms3

4r
+ 16+4p+m

4rs
,
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For s2+ as r(t)→∞, R2(s)
4rs
→ 0 since R2(s)

4rs
≈ m{(−2p+m

4r
)+i(1+ 2q

r
)}3

4r

+ 16+4p+m

4r{−2p+m
4r

+i(1+ 2q
r
)}

For s2− as r →∞, R2(s)
4rs
→ 0

R2(s)
4rs
≈ m{(−2p+m

4r
)−i(1+ 2q

r
)}3

4r
+ 16+4p+m

4r{−2p+m
4r

−i(1+ 2q
r
)} .

Finally we show that R(s)(16q + 4r)−1 tend to zero as t→∞ that is

| R3(s3)

16q + 4r
| = |m||16 + 4p+m

16 + 4r
|4 + 4|r||16 + 4p+m

16q + 4r
|3 +

|4p+ 2m||16 + 4p+m

16q + 4r
|2

as r(t)→∞ therefore; |R3(s3)|
|16q+4r| → o(1) �

Therefore from the above results, the λ roots can be evaluated using

backward substitution. From Lemma 2.4.1

s1 ≈ −4r
m

and backward substitution leads to

λ1 =
i(−4r

m
) + 1

i(i(−4r
m

)− 1)
=
−4ir +m

−4ir −m
.

By rationalizing the denominator we get

λ1 =
−m+ 4ir

m+ 4ir

≈ (m2 + 16r2)−1{m2 + 8irm+ 16r2}
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≈ 1

16r2

{
1 +

m2

16r2

}
{16r2 −m2 + 8irm}

By use of binomial theorem,

≈ 1

16r2

{
1− m2

16r2 + m4

265r4
+ ...

}
{16r2−m2 + 8irm}

≈ 1

16r2

{
16r2 + 8irm− 2m2 +

m4

16r2
− irm3

2r2

}
≈ 1 +

im

2r
+O(r−2).

Thus |λ1| ≈ 1.

The other roots can be approximated using the relation,

4sr3 + (4p+ 2m)s2 + (16q + 4r)s = 0

s2± ≈ −
(4p+m)

8r
±
{

(4p+m)2−16r(16q+4r)
8r

} 1
2

s2± ≈ −
(4p+m)

8r
±
{

(16p2+8pm+m2−256rq−64r2)
16r2

} 1
2

s2± ≈ −
(4p+m)

8r
±
{
− 1− 4q

r
0(r−2)

} 1
2

s2± ≈ −
(4p+m)

8r
± i
{

1 + 4q
r

} 1
2

s2+ ≈ −(4p+m)
8r

+ i
{

1 + 2q
r

}

s2− ≈ −(4p+m)
8r

− i
{

1 + 2q
r

}

31



λ2 ≈=
is2++1

is2+−1

=
−1− 2q

r
−i( 4p+m

8r
)+1

−1− 2q
r
−i( 4p8r+m

8r
)−1

≈ − 2q
r
−i( 4p+m

8r
)

−2− 2q
r
−i( 4p+m

8r
)

≈
{
− 2q

r
− i(4p+m

8r
)
}{

1 + q
r

+ i(4p+m
8r

)
}−1

≈ −1
2

{
− 2q

r
− i(4p+m

8r
)
}
− 1

2

{
1 + 2q

r
+ i(4p+m

8r
)
}−1

λ2 ≈ q
r

+ i (4p+m)
16r

+ 0(r−2)

⇒ |λ2| ≈ O(| q
r
|)

λ3 =
is2−+1

is2−−1

=
(1+ 2q

r
)−i( 4p+m

8r
)+1

(1+ 2q
r
)−i( 4p8r+m

8r
)−1

≈ 2+ 2q
r
−i( 4p+m

8r
)

2q
r
−i( 4p+m

8r
)

≈ r
2q

{
2 + 2q

r
− i(4p+m

8r
)
}{

1− i(4p+m
16q

)
}−1

λ3 ≈ r
q

+ i (4p+m)r
16q2

+ 1...

λ3 ≈ r
q

+ i (4p+m)r
16q2

+ ....
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Thus |λ3| ≈ O( r
q
).

Finally the fourth λ − root is obtained from s4 ≈ −(16+4p+m)
16+4r

,whose

expansion leads to

s4 ≈ −(16 + 4p+m)(16q + 4r)−1

s4 ≈ −1
r
(4 + p+m) + 0(r−2)

Thus λ4 ≈ −1 + 2i
r

(4 + p+m) + 0(r−2), as t→∞, |λ4| ≈ 1.

2.5 Dichotomy Condition

Once we have known the approximate values for the roots of the Fourier

polynomial P(t, λ, z), one has enough ingredients to establish the uniform

dichotomy condition for the eigenvalues of the difference operator. The

dichotomy condition is only needed for λ1 and λ4 since as t→∞

|λ1| ≈ |λ4| ≈ 1.

The result below which is in Nyamwala [16] simplifies the proof for di-

chotomy condition and will just be stated without proof since the proof

can be obtained in the said reference.

Theorem 2.5.1

Let

u(t+ 1) = [Λ(t) +R(t)]u(t), t ≥ 0 (2.8)
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Λ(t) = diag(λ1(t, z)......λ2n(t, z))

be asymptotically constant difference equation such that,

t−1∑
t=t0

‖R(t)‖|λ−1i (t, z)| <∞.

Assume eigenvalues λi(t, z) for i = 1, .., 2n satisfy

λi,0 + λi,1 + λi,2

with λi,0 constant, λi,1(t, z)→ 0 as t→∞, λi,2 is conditionally summable

and λi,0 is conditionally distinct. Let h(t) > 0 be non-summable,monotonic

function in N and assume the eigenvalues λi(t, z) can be assorted into

classes c1, .., cn so that if λi(t, z), λj(t, z) ∈ ck then

( |λi(t, z)|
|λj(t, z)| − 1

)
= o(h(t)).

If

λi(t, z) ∈ ck, λj(t, z) ∈ cl, k 6= l

then either
|λi(t, z)|
|λj(t, z)|

≤ 1− h(t)

or
|λi(t, z)|
|λj(t, z)|

≥ 1 + h(t).

For each λ(t, z) write now |λ(t, z)| = 1 + µ(t) with µ+ = max (0, µ) and
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µ− = min(0, µ) and define for each class k

ak(t) = max
λ∈ck

µ(t)+ and bk(t) = max
λ∈ck

µ(t)

.

Then associated to each ck there are |ck|, is the number of elements in the

kth class, solutions u(t) satisfying

K1

t−1∏
t=t0

(1− bk(t)) ≤‖ u(t) ‖≤ K2

t−1∏
t=t0

(1 + ak(t))

The conditionally summable terms can be removed by a simple transfor-

mation
∏t−1

t=t0
Λi,2(s). The rest of the proof will follow by iteration and is

identical to the proof of Theorem 5.1 in [6].

Remark 2.5.2

The theorem implies that the uniform dichotomy condition is proved only

for eigenvalues |λ| ≈ 1 since those eigenvalues with |λ| < 1 and |λ| >

1 will lead to z-uniformly square summable and non-square summable

eigensolutions respectively.

Theorem 2.5.3

Let z ∈ κε(zo) so that the λ− roots of P(λ, t, z) are distinct. If z = z0+ iη

such that η > 0, that is,Imz > 0 then λi, where i=1,2,3 and 4 satisfy

z-uniform dichotomy condition.

Proof. By application of Theorem 2.5.1, we need to show the z-uniform

dichotomy condition only for λ1 and λ4 since λ2 and λ3 will lead to z-

uniformly square summable and z-uniformly non-square summable eigen-

solutions irrespective of the dichotomy condition.
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Now choose z ∈ Kε(z0) such that z = z0 + iη,with 0 < η ≤ ε,then

by rewriting λ1 and λ4 to O(r−2) we obtain

λ1 ≈ 1 +
i(m− z)

r
≈ (1 +

η

r
) +

i(m− z0)
2r

and thus |λ1| > 1 off-the real axis while

λ4 ≈ −1 +
2i(m− z)

r
≈ (−1 +

η

r
) +

2i(m− z0)
r

and therefore |λ4| < 1 off- the real axis. This is the required z-uniform

dichotomy condition. �
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2.6 Diagonalisation

In order to convert the first order system into its Levinson-Benzaid-Lutz

form,we need to diagonalise the system.This requires that we compute

the eigenvectors corresponding to the eigenvalues λj(t, z), j = 1, 2, 3, 4.

Using the approach in [1,4,5,16] the components of eigenvectors can be

obtained directly from the quasi-differences. In such a case replace 4 by

(λ− 1) and y(t+ k) by λk. Thus we have

v1 = λ−1j

v2 = (λj − 1)λ−2j

v3 = p(λj − 1)λ−1j − (λj − 1)3λ−2j + i{(λj − 1)2qλ−1j

+q(λj − 1)2λ−2j } − ir

v4 = (λj − 1)2λ−2j − iq(λj − 1)λ−1j , j = 1, 2, 3, 4

For simplicity if we compute the leading term only, the terms of diagno-

lising matrix can be approximated by

T(t,z) =


1 r

q
q
r

−1

im
2r

−r2
q2

q
r

−2

−ir ir2

q
−r
q

−ir
qm
2r

r2

q2
−iq −2iq


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with detT (t, z) = O( r
3

q
). Hence T−1(t, z) can be approximated by

T−1(t, z) =
−q
3r3



2ir3

q2
− r3

q
− 2r3

q3
r3

q3
−ir2
q

r3

q3

−2rq 2rq − 2ir 2iq −2r
q

2r3

q
+ 2ir3

q2
−2ir3
q2

−2ir2
q

2r2

q2
2ir3

q2

−2r3
q

r3

q3
−ir2
q

r3

q3


Using the transformation y(t, z) = T (t, z)v(t, z) and applying this to (2.3)

we obtain

v(t+ 1, z) = T−1(t+ 1, z)S(t, z)T (t, z)v(t, z) = T−1(t+ 1, z)(T (t, z)

−T (t+ 1, z))Λ(t, z)v(t, z) +

Λ(t, z)v(t, z) = (Λ(t, z) +R(t, z))v(t, z). (2.9)

Here

Λ(t, z) = T−1(t+ 1, z)S(t, z)T (t, z)

and

R(t, z) = −T−1(t+ 1, z)4T (t, z)Λ(t, z) with Λ(t, z) = diag(λj(t, z)).
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The remainder matrix R(t, z) can then be computed explicitly. Note

that the correction terms to the diagonals are given by Rjj(t, z) but since

λ2 ≈ q
r
, λ3 ≈ r

q
, these two eigenvalues will lead to square and non-

square summable solutions irrespective of the dichotomy condition and

the contribution from the perturbing matrix R(t, z). Critical though are

the contribution from R11(t, z) and R44(t, z) to λ1(t, z) and λ4(t, z) re-

spectively. However, these are given by

R11(t, z) ≈
λ1
3

{ i

q2
(4(

m

r
))− 1

r
)4(r) +

1

q2
4(

qm

2r
)
}

R44(t, z) ≈
λ4
3

{
− 1

r
4(r) +

2i

q2
4(q)

}
computed correct toO(r−2). The system (2.9)however, is not yet Levinson-

Benzaid-Lutz form since the coefficients were assumed to have second dif-

ference. Thus a second diagonalisation is required. This requires smooth-

ness and decay conditions on the coefficients. These conditions are ob-

tained from the matrix entries of R(t, z) in (2.9).Therefore,one requires

that

4(f)

f
,4(f) ∈ `2,4

2(f)

f
, (4f)2,42(

r

f
),42(f) ∈ `1, f = m, p, q, r.

(2.10)

The second diagonalisation can then be carried out as explained in

Behncke and Nyamwala[5]. One can diagonalise
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y(t+1, z) = (Λ(t, z)+V (t, z)+ R̃(t, z)y(t, z), V (t, z) −→ 0, t ≥ a. (2.11)

The expression R(t, z) consists of `2 and `1 terms .One can thus split

R(t, z) into V (t, z) and R̃(t, z), where V (t, z) ∈ `2 and R̃(t, z) ∈ `1. A

matrix (I + B(t)) formed with the eigenvectors of (Λ + V )(t) can be

used to diagonalise (2.9) .By adjoining the diagonals of V (t) to Λ(t) and

dropping the spectral parameter z temporarily ,B(t) is constructed as

follows:

Bii = 0, Bij = (λj − λi)−1Vij, i 6= j, i, j = 1, ..., 2n, t ≥ a

The corrections to the eigenvalues-diagonal are by (Λ2)ii = (V B)ii, i =

1, ..., 2n.Applying the transformation y(t + 1) = (I + B(t))v(t) on (2.9)

,one obtains

v(t+ 1) = [(I +B(t+ 1))−1(I +B(t))][Λ(t) + Λ2(t)]+

(I +B(t+ 1))−1R(t)(I +B(t))v(t).

After the second diagonalisation,the system is now in Levinson-Benzaid-

Lutz form and applying Levinson-Benzaid-Lutz theorem, the solutions of

(2.3) respectively (1.1) are in the form

yj(t, z) = (ρj + rjj(x, z))
t−1∏
l=a

(λj(l, z)) (2.12)
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where ρj is the appropriate normalised eigenvectors and rjj(x, z) = o(1)

or simply rjj(x, z) ∈ `1.
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Chapter 3

Deficiency Indices and

Spectrum

3.1 Introduction

In this chapter we have computed the deficiency index of the operator

generated by (1.1) as well as the absolutely continuous spectrum of the

self-adjoint extension of L. Besides, we have calculated the spectral mul-

tiplicity of this component of spectrum. A simple example of a fourth

order difference operator with unbounded coefficient has been discussed

too.

3.2 Spectrum of Difference operators

Once the dichotomy condition is settled, we can now apply Levinson’s

Theorem to obtain the eigenvalues of the matrix
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S(t, z) =

 E EB

CE I − A∗ + CEB



Theorem 3.2.1

Assume that

p(t), q(t),m(t) = o(r(t)), and r(t)→∞ as t→∞, (3.1)

that is p(t), q(t) and m(t) are bounded for all t ∈ N while r(t) is un-

bounded.Similarly,assume that

4(f)

f
,4(f) ∈ `2, 4

2(f)

f
, (4f)2,42(

r

f
),42(f) ∈ `1, f = m, p, q, r,

are satisfied ,then defL = (3, 3) if r−1(t) is summable and σ(H) is pure

discrete. Moreover, if r−1(t) is not summable, then defL = (2, 2) and

σac(H) = R of spectral multiplicity 1.

Proof. We consider the minimal difference operator generated by (1.1)

defined on `2w(N) with w(t)=1,then the difference equation (1.1) is con-

verted into its Hamiltonian system (1.2) and first order system (2.2) using

quasi-differences. Thus in order to apply Levinson-Benzaid-Lutz theorem

to obtain solutions of (1.1) viz-a-viz those of (2.2), we need the eigen-

values of the matrix S(t, z) which can be computed via its characteristic

polynomial,that is

det(S(t, z))− λI4 = 0.
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As explained in chapter 2, we can then choose an appropriate z ∈ Kε(z0)

such that the characteristic polynomial has distinct roots.These roots are

approximately given by

λ1 ≈ 1 +
im

2r
+O(r−2)

λ2 ≈
q

r
+O(r−2)

λ3 ≈
r

q

λ4 ≈ −1 +
2im

r
+O(r−2)

�

Here we have absorbed z into m. The uniform dichotomy condition is

required only for eigenvalues λ1 and λ4 since |λ1| ≈ |λ4| ≈ 1 as t → ∞.

But this follows immediately from Theorem 2.5.3. The system can now

be diagonalised to convert it into Levinson-Benzaid-Lutz form. As in sec-

tion 2.5 ,this diagonalisation is carried out using the matrix T (t, z) which

is computed from the corresponding eigenvectors. Hence applying the

transformation Y (t) = T (t)v(t), one obtains

v(t+ 1, z) = (Λ(t, z) +R(t, z))v(t, z) (3.2)

where

Λ(t, z) = T−1(t+ 1, z)S(t, z)T (t, z) and
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R(t, z) = −T−1(t, z)4T ((t, z))Λ(t, z)

where

Λ(t, z) = diag(λj(t, z)).

As a result of the assumptions (2.10), the system (3.1) is not yet in

Levinson-Benzaid-Lutz form and can be diagonalised again using a matrix

(I+B(t, z)) as explained in Section 2.6. After the second diagonalisation,

the system is in Levinson-Benzaid-Lutz form and application of Theorem

1.3.1 (Levinson-Benzaid-Lutz theorem) will lead to eigensolutions of the

form (2.9). Critical for square summability of the eigensolutions are the

magnitude of the eigenvalues ,the correction terms Rjj(t, z) after the first

diagonalisation and finally the nature of the spectral parameter z.

The eigensolutions corresponding to λ2(t, z) and λ3(t, z) are square and

non-square summable irrespective of the correction terms R22(t, z) and

R33(t, z), and the nature of the spectral parameter z. For the other

eigensolutions, if z ∈ R, then the correction terms plays a role. Thus

if r−1(t) is summable, then R11(t, z) and R44(t, z) are summable since

they are O(r−1(t)) and hence the eigensolutions y1(t, z), y4(t, z) will be

square summable implying that defL = (3, 3) and self-adjoint exten-

sion operator H of L exists and is defined using α-boundary conditions.

All the eigensolutions that are square summable are z-uniformly square

summable and the spectrum of H is at most discrete. Suppose that

r−1(t) is not summable, then the square summability of y1(t, z), y4(t, z)

will depend on the nature of z.In this case we choose z ∈ Kε(z0) such that
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z = z0 + iη

for

η > 0, 0 < η ≤ ε

,z0, η ∈ R

then y1(t, z) loses its square summability since |λ1| > 1 for this z as shown

in Theorem 2.5.3 This solution contributes to absolutely continuous spec-

trum thus only y2(t, z) and y4(t, z) are z-uniformly square summable.

Therefore defL = (2, 2) and the self adjoint extension operator is defined

using α-boundary condition both at t = a and t = ∞. From the results

of Naimark [15] the spectral multiplicity is equal to 1 and since z can be

picked arbitrarily in R and because r(t) is unbounded we have σac(H) = R

of spectral multiplicity 1.Thus if F (t, z) is 2x4 system of square summable

solutions and we use

< F (t, z), F (t, z) > (z − z) = M∗(z)−M(z),

then the rank of M(z) is 1 as Imz → 0+.

It remains to show that Im M(z) exist boundedly thus we have from

Section 2 (page 23), that

ImM(z) = lim
η→0

η < y4(t, z), y4(t, z) > . (3.3)
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Here we have used y4(t, z) since its eigenvalue has absolute value of at

most 1 and it is square summable even if Imz → 0+. The computation

involving y2(t, z) is trivial therefore (3.2) leads to

lim
η→0

η
t−1∏
l=a

|λ4(l, z)|2 = lim
η→0

η
t−1∏
l=a

|(−1 +
2η

r
) +

2i(m− z)

r
|.

Taking the natural logarithm and using Euler summation formula we

have

ln
t−1∏
l=a

|λ4(l, z)|2 ≈
t−1∑
a

2 ln |λ4(l, z)| ≈
∫ t−1

a

exp
−c2

|r|
(l, z)dl

Where c ∈ R. The power of the exponent is negative sinceO < |−1+ 2η
r
| <

1 leading to a negative logarithm. Therefore as η → 0, and t → ∞, we

have

ImM(z) = lim
η→0

η < y4(t, z), y4(t, z) >≈
∫ t−1

a

exp
−c2

|r|
(l, z)dl

which goes to zero as t → ∞. Thus ImM(z) exists boundedly and thus

spectral function is continuous.

Example 3.2.2

Let L be a fourth order difference operator generated by a difference

equation of the form

∆4y(t− 2) + i(tα∆y(t− 1) + ∆(tαy(t)) = zy(t)
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where α > 0, α ∈ R and z is the spectral parameter.Thus we have

Q(s, t, z) = −zs4 + 4tαs3 − 2zs2 + 4tαs+ (16− z)

and hence the roots λ can be approximated by

λ1 ≈ 1− izt−α

2
+O(t−2α),

λ2 ≈ O(t−α),

λ3 ≈ O(tα), and

λ4 ≈ −1− 2izt−α +O(t−2α).

Since the coefficients are power coefficients the dichotomy condition will

be satisfied for λ1 and λ4.

If 0 < α < 1
2

then def L=(3,3),σac(H) = R.

If α > 1
2

then def L=(2,2),σac(H, 1) = R.
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Chapter 4

Chapterwise Summary

4.1 Conclusion

In this research, it has been proved in chapter 2 Theorem 2.3.2 that

there exists a bounded interval which is a subset of R with no singular

continuous spectrum. Similarly under different asymptotic conditions, it

was shown (see chapter 3 Theorems 2.3.3 and 3.2.1 together with examples

2.3.5 and 3.2.2) that defL = (k, k) : 2 ≤ k ≤ 4. Finally, we have shown

in Theorem 3.2.1 that the absolutely continuous spectrum of H, the self-

adjoint extension of L is the whole of R with spectral multiplicity one

when r(t)→∞ as t→∞.

4.2 Recomendations

The main obstacle of the analysis of the absolutely continuous spectrum of

operators with unbounded coefficients, is the understanding of the zero’s

of polynomials, here the Fourier polynomials. This is experienced espe-
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cially when proving some results on the spectral theory of fourth order

operators, where the middle terms form an obstacle even though un-

bounded.Therefore, to solve this, the results should be solved for power

coefficients and the classes be extended by allowing much more general

coefficients and by including the analysis of the absolutely continuous

spectrum as well, whenever possible. This is possible through the refine-

ment of Levinson’s Theorem.

One can also investigate the absolutely continuous spectrum of H when

all the coefficients of (1.1) are unbounded.
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